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Transport of drugs across biological barriers has been a subject of study for decades.
The discovery and characterization of proteins that confer the barrier properties of
endothelia and epithelia, including tight junction proteins and membrane transporters
belonging to the ATP-binding cassette (ABC) and Solute Carrier (SLC) families,
represented a significant step forward into understanding the mechanisms that
govern drug disposition. Subsequently, numerous studies, including both pre-clinical
approaches and clinical investigations, have been carried out to determine the influence
of physiological and pathological states on drug disposition. Importantly, there has
been increasing interest in gaining a better understanding of drug disposition during
pregnancy, since epidemiological and clinical studies have demonstrated that the
use of medications by pregnant women is significant and this condition embodies a
series of significant anatomical and physiological modifications, particularly at excretory
organs and barrier sites (e.g., placenta, breast) expressing transporter proteins which
influence pharmacokinetics. Currently, most of the research in this field has focused
on the expression profiling of transporter proteins in trophoblasts and endothelial
cells of the placenta, regulation of drug-resistance mechanisms in disease states and
pharmacokinetic studies. However, little attention has been placed on the influence
that the cerebrovascular dysfunction present in pregnancy-related disorders, such
as preeclampsia, might exert on drug disposition in the mother’s brain. This issue
is particularly important since recent findings have demonstrated that preeclamptic
women suffer from long-term alterations in the integrity of the blood-brain barrier (BBB).
In this review we aim to analyze the available evidence regarding the influence of
pregnancy on the expression of transporters and TJ proteins in brain endothelial cells,
as well the mechanisms that govern the pathophysiological alterations in the BBB of
women who experience preeclampsia. Future research efforts should be focused not
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only on achieving a better understanding of the influence of preeclampsia-associated
endothelial dysfunction on drug disposition, but also in optimizing the pharmacological
treatments of women suffering pregnancy-related disorders, its comorbidities and to
develop new therapies aiming to restore the integrity of the BBB.

Keywords: blood-brain barrier, ABC transporters, SLC transporters, tight junction proteins, endothelial
dysfunction, preeclampsia, eclampsia, brain alterations

INTRODUCTION

Worldwide, there has been an increase in the number of
prescribed and over-the-counter medications taken by pregnant
women (Mitchell et al., 2011; Beyene and Beza, 2018; Navaro
et al., 2018). In Latin America, the true extent of the
use of therapeutic drugs among pregnant women is not
well characterized, but in countries such as Uruguay, 96%
of pregnant women take medications and 78% use two
or more (Viroga et al., 2013). A prospective cohort study
conducted in Brazilian, Argentinian and Peruvian populations
showed that immunodeficiency virus (HIV)-infected pregnant
women exhibit a better adherence to anti-HIV therapy when
compared to post-partum (Kreitchmann et al., 2012). The
above-mentioned statistics are significant since pregnancy is
a physiological condition associated with anatomical and
physiological modifications capable of influencing the disposition
of drugs, including increased blood volume, enhanced basal
metabolism, and modified hormone levels, among others.

Treatment of chronic diseases within pregnancy carries
a risk for both the mother and fetus, as the administered
drug could cross the placenta and reach the fetus circulation,
with deleterious consequences (Jentink et al., 2010; Tomson
et al., 2018). Pharmacokinetic studies carried out in animal
models and human suggest that exposure to drugs is reduced
in pregnancy since there is an increase in both the renal
glomerular filtration rate (thereby increasing renal elimination)
and hepatic metabolism mediated by isoforms of cytochrome
P450 enzymes and uridine 5′-phosphate glucuronosyltransferases
(Pariente et al., 2016; Koren and Pariente, 2018). Furthermore,
the expression and activity of transporters involved in drug
disposition appears to be modified in excretory organs (Hebert
et al., 2008) in a similar fashion to that observed with
metabolizing enzymes.

Pregnant women suffering from psychiatric disorders and
other central nervous system (CNS) diseases often require
pharmacotherapy to stabilize their symptoms, which are likely to
continue after labor due to their chronic nature. Clinical studies
of pregnant women receiving antiepileptic and antidepressive
pharmacotherapy demonstrated that the reduced drug exposure,
due to increased clearance, is associated with an increase in the
seizure rate (Reisinger et al., 2013) and decreased plasma levels of
serotonin reuptake inhibitors, respectively (Westin et al., 2017).
These outcomes clearly demonstrate that pregnancy could have a
negative impact on the clinical effect of these drugs.

Furthermore, women under pharmacological treatment for
epilepsy (Borthen, 2015) or depression (Palmsten et al., 2012)
have a higher risk of suffering complications derived from

pathophysiological alterations associated with pregnancy, such
as preeclampsia. This pathological condition, that is present in
2–8% of all pregnancies (Duley, 2009), is a disorder characterized
by hypertension and proteinuria after the twentieth gestational
week, which may evolve to vasogenic edema, eclampsia (seizures)
and cerebrovascular stroke if not properly controlled (American
College of Obstetricians and Gynecologists, Task Force on
Hypertension in Pregnancy, 2013; Cipolla, 2013; Hammer
and Cipolla, 2015). It is also reported that 75% of maternal
deaths due to preeclampsia are related to cerebrovascular
complications including eclampsia, intracranial hemorrhage, and
edema (Zeeman, 2009).

Preeclampsia is associated with impaired systemic endothelial
function (Roberts et al., 1989) and, in the brain of preeclamptic
women, this endothelial dysfunction presents in the form of
impaired integrity of the BBB (Bergman et al., 2018), which is
apparently maintained even post-partum (Bergman et al., 2016).
The influence of endothelial dysfunction on drug disposition
in the brain has been studied in disease states, including
stroke (Huang et al., 2017) however there is a lack of studies
investigating the effect of endothelial dysfunction on brain
drug disposition in pregnancy-related disorders. The latter
issue is extremely important and needs to be addressed since
preeclamptic women may need to receive medications to control
symptoms within pregnancy, and/or at some point post-partum,
particularly for treatment of chronic conditions, e.g., epilepsy,
depression and HIV-infection. Furthermore, it is likely that
women with brain endothelial dysfunction could experience
increased exposure to the effects of endogenous factors and
potentially harmful xenobiotics.

While the function of the BBB and transport of molecules
across brain endothelial cells (BECs) has been extensively studied
in non-pregnant populations, much less is known about BBB
physiology during pregnancy and pregnancy-related disorders.
Therefore, this review will summarize the findings related to
the effect of pregnancy and preeclampsia on the expression and
activity of proteins involved in the transport of drugs at the BBB.

OVERVIEW OF THE BLOOD-BRAIN
BARRIER

The BBB (Figure 1A) is a highly restrictive and specialized
neurovascular network comprised of BECs, a basal membrane
composed on collagen, fibronectin and laminin, pericytes,
neurons and glial cells (Abbott, 2013; Daneman and Prat,
2015). In essence, the BBB isolates the brain parenchyma from
the systemic circulation, regulating the supply of nutrients,
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FIGURE 1 | Structure of the blood-brain barrier. The BBB is a neurovascular unit comprised of endothelial cells, a basal membrane, pericytes, astrocytes and
neurons (A). Brain endothelial cells (BECs) express ABC/SLC transporters and high levels of Tight Junction (TJ) proteins that confer the barrier properties of the BBB
(B). Figure adapted from Abbott et al. (2010) and O’Brien et al. (2012) with permission from their publishers.

controlling the bidirectional transport of endogenous mediators
and protecting the CNS from exposure to harmful compounds,
i.e., xenobiotics and metabolites.

Unlike other vascular beds, the endothelial cells of the
BBB express a unique phenotype (Figure 1B) with higher
levels of expression of tight junction (TJ) proteins, membrane
transporters belonging to the ATP-binding cassette (ABC)
and Solute Carrier families (SLC), and metabolizing enzymes
(Decleves et al., 2011; Shawahna et al., 2011; Daneman and Prat,
2015; Liao et al., 2017).

Findings of in vitro and animal models have consistently
demonstrated that the transport of molecules across the BBB is
strongly regulated by membrane transporters and TJ proteins
(Cecchelli et al., 1999; Cantrill et al., 2012; Helms et al., 2016).
More recently, the use of imaging techniques and probes have
allowed the in vivo analysis of transporter functionality, e.g.,
P-glycoprotein (P-GP) activity at the BBB in both healthy (Bauer
et al., 2015) and disease states (Shin et al., 2016).

OVERVIEW OF TIGHT JUNCTION
PROTEINS IN BRAIN ENDOTHELIAL
CELLS

The paracellular transport of molecules at the BBB is highly
selective, and this feature is associated with the expression of
high levels of TJ proteins. These proteins act as a biological
adhesive, anchoring together adjacent BECs via transmembrane
proteins attached to intracellular scaffolding proteins (Haseloff
et al., 2015).

The transmembrane proteins occludin, claudins and
Junctional Adhesion Molecules (JAMs) form complex strands
that interact between cells, reducing paracellular diffusion
(Haseloff et al., 2015; Keaney and Campbell, 2015). However,
in order to maintain this restrictiveness, TJs are linked to the
cytoplasmic zonula occludens (ZO) proteins that provide a
structural bridge to the actin cytoskeleton. In zones where
there is contact between three BECs, the TJ protein tricellulin
(MARVELD2) plays a pivotal role in modulating paracellular
permeability by reducing the passage of large molecules
(Reinhold and Rittner, 2017).

Since the discovery that the permeability of the BBB could
be regulated through reversible disruption of TJs, this principle
has served as an approach for the delivery of therapeutics that
would not cross this barrier by conventional means, e.g., passive
diffusion, carrier-mediated transport (Dithmer et al., 2017; Sol
et al., 2017).

OVERVIEW OF TRANSPORTERS
INVOLVED IN BRAIN DRUG
DISPOSITION

Data from in vitro and animal models have helped establish
which membrane transporters impact brain drug disposition.
Furthermore, the International Transporter Consortium et al.
(2010) has published and updated recommendations (Hillgren
et al., 2013) for decision-making processes related to drug-
transporter interactions that could be translated to clinical
settings. In this regard, the ABC transporters P-glycoprotein (P-
GP; Cordon-Cardo et al., 1989), Multidrug Resistance-associated
Proteins (MRPs) MRP4 and MRP5 (Huai-Yun et al., 1998;
Seetharaman et al., 1998), Breast Cancer Resistance Protein
(BCRP; Eisenblatter and Galla, 2002; Eisenblatter et al., 2003),
and the Organic Anion Transporting Polypeptides (OATPs)
OATP1A2 and OATP2B1 SLC transporters (Roth et al., 2012), are
considered the most clinically important transporters within the
BBB. Although there is evidence (from pre-clinical models) that
other SLC transporters expressed in the BBB, including members
of the Monocarboxylate Transporter (MCT; Lee and Kang, 2016),
Organic Anion Transporter (OAT) subfamilies (Hosoya and
Tachikawa, 2011) are involved in the uptake of drugs, this review
will exclusively focus on the transporter proteins expressed in
human BECs. The characteristics of these protein families in
human BECs are briefly summarized in Table 1 and the following
section.

ATP-Binding Cassette Transporters
P-glycoprotein is a 170 kDa efflux transporter encoded by
the ABCB1 gene in human and the abcb1a/abcb1b genes in
rodent. This protein is located at the luminal side of BECs
and is described as a phenotypical marker (Sugawara et al., 1990;
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TABLE 1 | Human BEC ABC and SLC transporters involved in drug disposition.

Transporter Gene Molecular weight
(kDa)

Detected at
protein level

Localization and
function

References

ABC

P-GP ABCB1 170 Yes Luminal/Efflux Dauchy et al., 2009; Shawahna et al.,
2011; Uchida et al., 2011

BCRP ABCG2 70 (Monomer) Yes Luminal/Efflux Eisenblatter et al., 2003; Dauchy et al.,
2009; Shawahna et al., 2011; Uchida
et al., 2011

MRPs ABCC4 170 Yes Luminal/Efflux Nies et al., 2004; Shawahna et al.,
2011

ABCC5 160 Yes

SLC

OATP1A2 SLC21A3 ≈70 Yes Luminal/Uptake Lee et al., 2005; Roth et al., 2012

OATP2B1 SLC21A9 ≈77 Yes Luminal/Uptake Bronger et al., 2005; Roth et al., 2012

Dauchy et al., 2008; Cantrill et al., 2012). P-GP exhibits a
broad substrate specificity that includes anticancer drugs (Mealey
and Fidel, 2015), antidepressant drugs (O’Brien et al., 2012),
antiepileptic drugs (Stepien et al., 2012), cardiotonic drugs
(Ledwitch et al., 2016), HIV protease inhibitors (Liu et al., 2017)
and immunosuppressants (Picchianti-Diamanti et al., 2014)
among others. This characteristic implies the transporter has a
predominant role in regulation the disposition of xenobiotics,
including therapeutic drugs, thereby acting as a mechanism
of detoxification and drug resistance. Some studies have also
proposed a role for P-GP in the transport of endogenous
mediators including steroids, bilirubin (Cascorbi, 2011) and
amyloid-β, the peptide responsible of the formation of amyloid
plaques in Alzheimer’s disease (Zhong et al., 2016).

The BCRP is an ABC transporter encoded by the ABCG2
gene in human and abcg2 gene in rodent, and is expressed at
the luminal domain of BBB endothelial cells (Eisenblatter et al.,
2003). BCRP is a monomeric protein (70 kDa) that requires
the formation of at least a homodimer (and can even form
homotetramers) to be functionally active (Ni et al., 2010). There is
significant overlap in the substrate specificity of P-GP and BCRP
and, like P-GP, BCRP can significantly influence drug transport
in the body (Poguntke et al., 2010). In human BECs, BCRP is
expressed at higher levels than P-GP (Shawahna et al., 2011;
Uchida et al., 2011), but its overall contribution to the transport
of substrates is less well understood than P-GP. As well as
transporting drug substrates, BCRP also participates in transport
of hormones (and conjugated metabolites) (Grube et al., 2018)
and urate, a product of purine metabolism whose accumulation
causes gout (Woodward et al., 2009; Fujita and Ichida, 2018).

The MRP transporters are encoded by the ABCC class of genes
in human and abcc genes in rodents. MRPs mediate the transport
of a diverse array of drugs and endogenous molecules including
hormones, prostaglandins, leukotrienes and their conjugates
(glucuronides, sulfates, and glutathione) (Zhou et al., 2008;
Zhang et al., 2015; Bloise et al., 2016). Members of the MRP

family are not as highly expressed in BECs as P-GP and BCRP
in human BECs, but the findings of proteomic (Shawahna et al.,
2011; Uchida et al., 2011) and transcriptomic (Warren et al.,
2009) analyses have demonstrated that MRP4, an isoform located
at the luminal side, is expressed at detectable levels in human
BECs. Luminal expression of MRP5 in human BECs has also been
confirmed by means of fluorescent immunohistochemistry (Nies
et al., 2004).

Solute Carrier Transporters
The OATPs, a group of SLC transporters belonging to the
SLCO subfamily, are ubiquitously expressed throughout the
body, and at the human BBB, luminal expression of OATP1A2
(Lee et al., 2005) and OATP2B1 (Bronger et al., 2005), has
been reported. OATPs mediate the uptake and efflux of
endogenous and exogenous molecules, which tend to possess
amphiphilic characteristics (Roth et al., 2012) and substrates
include prostaglandins, steroid and thyroid hormone conjugates
(Grube et al., 2018), bile acids and therapeutic drugs (Kalliokoski
and Niemi, 2009; Roth et al., 2012).

EXPRESSION AND FUNCTIONALITY OF
BLOOD-BRAIN BARRIER TIGHT
JUNCTIONS PROTEINS AND DRUG
TRANSPORTERS IN PREGNANCY

During normal pregnancy there is an increase in blood
levels of several endogenous mediators including hormones
and their metabolites, pro-inflammatory cytokines, chemokines,
matrix metalloproteinases and growth factors (Chavan et al.,
2017; Chen and Khalil, 2017). For example, clinical studies
report that pro-inflammatory cytokines including interleukin-6
(IL-6) and markers of cyclooxygenase-2 activity were increased
in healthy women, suggesting that pregnancy is characterized
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by a mild, sub-clinical systemic inflammatory state (Palm et al.,
2013; Danielsen et al., 2014). Under this physiological pro-
inflammatory condition, expression and functionality of BBB TJ
proteins and ABC/SLC transporters involved in drug disposition
could be modified as is observed in other conditions (Keaney and
Campbell, 2015; Qosa et al., 2015). Although little is known of the
influence of pregnancy on the expression of BBB transporters and
TJ proteins, recent studies are addressing this issue.

Tight Junction Proteins and Pregnancy
The influence of pregnancy on the integrity of TJs has primarily
been studied in endothelial cells of the placenta (Marzioni et al.,
2001; Ahn et al., 2015), and to date, we are not aware of any
studies reporting the effects of a healthy pregnancy on the
expression of TJ proteins in the maternal BBB. During normal
pregnancy, high plasma levels of vascular endothelial growth
factor (VEGF), an angiogenic mediator that increases BBB
permeability through changes in the expression of TJ proteins
(Lafuente et al., 2006) including claudin-5 and occludin (Argaw
et al., 2012), have been reported (Evans et al., 1998). However,
despite elevated plasma levels of VEGF, the permeability of the
BBB remains unaltered in normal pregnancy (Cipolla, 2013).
Indeed, studies have shown that the serum collected during late
pregnancy attenuates the effects of VEGF on permeability of
cerebral veins isolated from non-pregnant rats and rats in late-
pregnancy (Schreurs et al., 2012). The authors attributed this
outcome to the fact that, in late pregnancy, high plasma levels of
soluble Fms-like tyrosine kinase 1 (sFlt1), a splice variant of the
VEGF receptor (VEGFR) lacking activity, counteracts the effects
of VEGF (Cipolla, 2013).

Membrane Transporters
Current evidence suggests that expression levels of ABC
transporters within the maternal BBB vary throughout
pregnancy, although this outcome has only been demonstrated
in animal models. Studies report the expression of rodent
P-gp and mrp1 in the BBB of pregnant mice is higher at mid-
gestation and decreases in late-gestation (Coles et al., 2009),
whilst positron emission tomography (PET) studies conducted
on macaques (Chung et al., 2010) report that P-GP activity
increased from mid-gestation to late-gestation, as evidenced
by reduced accumulation of the radiolabelled P-GP substrate
11C-verapamil. However, the latter study did not confirm if this
effect was a result of increased P-GP expression. No studies to
date have reported the influence of pregnancy on the expression
of SLC transporters in the maternal BBB, although it has been
demonstrated expression of rodent Oatp1a4 (a rodent isoform
that shows a high homology with human OATP1A2) in the BBB
of the newborn increases with maturation (Harati et al., 2013).

ATP-binding cassette and SLC transporters govern movement
of a whole array of endogenous and exogenous molecules
through endothelial cells of the BBB. Consequently, this
transcellular passage of substances may be significantly affected
by pregnancy-dependent changes in transporter expression.
However, despite the potential implications of modification of
the barrier properties of the maternal BBB, to date, the precise
mechanisms by which pregnancy could influence the expression

of the above transporters are unclear and are only relatively
recently being investigated.

A recent study reported that acute exposure of isolated
hippocampal rat brain capillaries to serum obtained from
pregnant rats reduced P-GP activity (Johnson et al., 2018). The
authors hypothesized that this inhibition of P-GP, mediated by
high levels of circulating serum factors, was associated with
the increased incidence of seizures in normal pregnant rats.
However, this study did not identify the molecules responsible
for reduced P-GP activity. Furthermore, the findings are in
contrast to those reported in studies investigating the relationship
between seizures and P-GP activity, which suggest glutamate-
mediated induction of cyclooxygenase-2 activity is responsible
for the up-regulation of P-GP expression and activity in
BECs in animal models of epilepsy (Zibell et al., 2009; van
Vliet et al., 2010) and in capillaries isolated from human
brains (Avemary et al., 2013). These findings are particularly
important since studies suggest that in normal pregnancies and
in preeclampsia, the cerebral levels of glutamate are reduced
when compared to non-pregnant women (Nelander et al.,
2018).

The specific effects of endogenous factors on the expression
and activity of ABC transporters during pregnancy have been
studied more in-depth on the developing fetal BBB than
in the maternal BBB. Studies have reported that primary
cultures of guinea pig BECs, obtained from late-gestational
fetuses and postnatal pups, are highly responsive to the
effects of glucocorticoids and pro-inflammatory cytokines, with
hydrocortisone and dexamethasone (Iqbal et al., 2011) increasing
P-gp activity and IL-1β, IL-6 and TNFα (Iqbal et al., 2012)
decreasing P-gp activity. However, despite the opposing effects
exerted by glucocorticoids and cytokines on P-gp expression and
activity, a later report demonstrated that co-treatment with the
synthetic glucocorticoid dexamethasone, apart from increasing
the expression of the transporter, enhanced the inhibitory actions
of IL-1β, IL-6, and TNFα on P-GP activity (Iqbal et al., 2016). The
authors suggested that this enhancement of cytokine inhibitory
actions is the result of a dexamethasone-mediated increase in the
expression of pro-inflammatory cytokines receptors.

Transforming Growth Factor β (TGFβ), a protein found at
high levels in plasma during pregnancy (Forbes and Westwood,
2010), has also been reported to regulate the expression of P-GP
in BECs, and Baello et al. (2016), have reported TGFβ-mediated
up-regulation of P-GP expression and activity, through activation
of the ALK1 and ALK5 signaling pathways, in BECs isolated from
male fetuses and postnatal guinea pig pups.

ENDOTHELIAL DYSFUNCTION AT THE
BRAIN IN PREGNANCY-RELATED
DISORDERS

Pregnancy alone can be considered as an inflammatory (but not
pathological) state. One hallmark of pregnancy-related disorders,
including preeclampsia, is the manifestation of endothelial
dysfunction promoted by high levels of factors released from the
placenta (Escudero et al., 2009; Myatt and Roberts, 2015).
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The brain vasogenic edema present in later stages of
preeclampsia is apparently the result of impaired autoregulation
of cerebral blood flow and increased BBB permeability (Cipolla
and Kraig, 2011; Cipolla, 2013; Hammer and Cipolla, 2015),
but the pathophysiological mechanisms involved are still
unclear. In vitro studies have demonstrated that when rat
cerebral vasculature was exposed to plasma from normal and
preeclamptic human pregnancies, there was an increase in BBB
permeability. Interestingly, this effect was more marked following
treatment with preeclamptic plasma (Amburgey et al., 2010).

Furthermore, this study demonstrated that inhibition of VEGF
receptor tyrosine kinase activity reversed the effect elicited by the
treatment with preeclamptic plasma, suggesting that VEGF could
be involved in modulating vascular permeability.

The pro-inflammatory cytokine TNFα is also believed to
contribute to the increased BBB permeability in preeclampsia.
TNFα infusion in healthy pregnant rats at gestational day 19
increased the water content in the anterior cerebrum without
increasing the BBB permeability (Warrington et al., 2015).
However, when pregnant rats were subjected to a reduction of

TABLE 2 | Drugs employed for treatment of chronic diseases in pregnancy and preeclampsia as substrates/inhibitors of ABC/SLC transporters expressed in human
brain endothelial cells.

Drug ABC Transporter SLC Transporter Reference

Substrate Inhibitor Substrate Inhibitor

Antidepressants

Citalopram P-GP Weiss et al., 2003a; O’Brien et al., 2012

Fluoxetine P-GP Weiss et al., 2003a; O’Brien et al., 2013

Paroxetine P-GP P-GP Weiss et al., 2003a; O’Brien et al., 2012

Antiepileptics

Carbamazepine P-GP P-GP Weiss et al., 2003b; Zhang et al., 2012

Lamotrigine P-GP, BCRP P-GP Weiss et al., 2003b; Luna-Tortos et al.,
2008; Romermann et al., 2015

Oxcarbazepine P-GP Weiss et al., 2003b; Zhang et al., 2011;
Antunes Nde et al., 2016

Phenobarbital P-GP Luna-Tortos et al., 2008

Antihypertensives

Labetalol P-GP Incecayir et al., 2013

Nicardipine P-GP Kadono et al., 2010

Nifedipine P-GP Choi et al., 2013

Antirretroviral drugs

Abacavir P-GP, BCRP P-GP, BCRP Pan et al., 2007; Storch et al., 2007

Atazanavir P-GP P-GP, BCRP OATP2B1 Perloff et al., 2005; Storch et al., 2007;
Weiss et al., 2007; Fujimoto et al., 2009

Darunavir P-GP P-GP OATP1A2 OATP2B1 Annaert et al., 2010; Hartkoorn et al.,
2010; Kis et al., 2010

Efavirenz BCRP P-GP, BCRP OATP2B1 Storch et al., 2007; Weiss et al., 2007;
Kis et al., 2010

Indinavir P-GP OATP1A2 Lee et al., 1998; Van Der Sandt et al.,
2001; Campbell et al., 2015

Lopinavir P-GP P-GP, BCRP OATP1A2 Lee et al., 1998; Janneh et al., 2007;
Weiss et al., 2007; Hartkoorn et al.,
2010

Nelfinavir P-GP P-GP, BCRP OATP2B1 Kim et al., 1998; Gupta et al., 2004;
Storch et al., 2007; Weiss et al., 2007;
Kis et al., 2010

Nevirapine P-GP, BCRP Storch et al., 2007; Weiss et al., 2007

Raltregavir P-GP, BCRP Hashiguchi et al., 2013

Ritonavir P-GP P-GP, BCRP OATP1A2, OATP2B1 Van Der Sandt et al., 2001; Gupta
et al., 2004; Weiss et al., 2007;
Hartkoorn et al., 2010

Saquinavir P-GP P-GP, BCRP OATP1A2 OATP1A2, OATP2B1 Kim et al., 1998; Lee et al., 1998;
Gupta et al., 2004; Janneh et al., 2005;
Weiss et al., 2007; Hartkoorn et al.,
2010; Kis et al., 2010

Zidovudine P-GP, BCRP, MRP4 BCRP Schuetz et al., 1999; Wang et al., 2003;
Pan et al., 2007
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uterine perfusion pressure (RUPP), a model of placental ischemia
that emulates preeclampsia and impairs the maternal cerebral
blood flow, they exhibited an increase in both the water content
at the anterior cerebrum and BBB permeability, which was
counteracted by treatment with the TNFα inhibitor etanercept.

Findings from other studies conducted in the RUPP model
have helped to elucidate how BECs respond to the circulating
factors present in preeclampsia. When RUPP was performed in
pregnant rats at gestational day 14, edema and increased maternal
BBB permeability in the anterior cerebrum were observed, with
increased expression of the protein aquaporin 4 and no changes
in the expression of TJ proteins (Warrington et al., 2014).
However, it has been reported the same procedure led to post-
partum edema and increased maternal BBB permeability in the
posterior cortex, probably due to reduced expression of the TJ
protein occludin (Clayton et al., 2018).

The increased BBB permeability reported by both Warrington
et al. (2014) and Clayton et al. (2018), is partly supported by
clinical studies which demonstrated that in women developing
preeclampsia, blood levels of S100B, neuronal specific enolase
(NSE) and neurofilament light chain (NfL), three markers of
cerebral injury, were higher than those observed in women
with normal pregnancies (Bergman et al., 2018). Indeed, another
report showed that in preeclamptic women, the levels of S100B
and NSE were still high 1-year post-partum, suggesting that
the alterations in the integrity of the BBB are manifest for a
substantial period of time following delivery (Bergman et al.,
2016).

PHARMACOLOGICAL MANAGEMENT
OF PREECLAMPSIA

Hypertension is one of the pathological features of preeclampsia
and is routinely managed with the use of antihypertensive

drugs including nifedipine, nicardipine, labetalol, hydralazine
and methyldopa (Odigboegwu et al., 2018). Although it remains
unclear whether the BBB permeability of these drugs is
affected during preeclampsia, it is noteworthy that several
antihypertensives, namely labetalol, nicardipine and nifedipine,
are substrates of efflux transporters including P-GP (Thiel-
Demby et al., 2009; Choi et al., 2013; Incecayir et al., 2013).
The therapeutic management of neurological complications
associated with preeclampsia, including seizures, primarily
relies on the intravenous or intramuscular administration of
magnesium sulfate, a drug with demonstrated ability to prevent
the development of eclampsia and reduce maternal mortality
(Altman et al., 2002).

The mechanism of action by which magnesium sulfate
exerts its effects is unknown, but despite this limitation,
it is widely considered a neuroprotective agent capable of
reducing BBB permeability in animal models of brain injury
(Li et al., 2017). Furthermore, a recent study demonstrated
that magnesium sulfate reduced the water content in the
anterior cerebrum, as well protein, cytokine, chemokine
and VEGF levels in cerebrospinal fluid of rats subjected to
the RUPP procedure (Zhang and Warrington, 2016). The
above findings are important since the transport of drugs
and endogenous mediators across the choroid plexus, which
constitutes the blood-cerebrospinal fluid barrier, is a subject that
is receiving increasing interest. A better characterization
of the mechanisms that govern transport of molecules
across this barrier will certainly help to understand brain
drug disposition in both healthy and disease states such as
preeclampsia.

To date, as the specific effects of magnesium sulfate on
the expression/functionality of BBB TJ proteins and drug
transporters are unknown, future studies addressing this subject
will prove crucial in identifying potential therapeutic targets and
in developing treatment strategies.

FIGURE 2 | Effect of the endothelial dysfunction elicited by preeclampsia and stroke on the expression of transporters and TJ proteins. In both stroke and
preeclampsia there is a decrease in the expression of TJ proteins, but in preeclampsia, this change appears to be evident post-partum. In stroke, endothelial
dysfunction increases the expression of P-glycoprotein.
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HOW BLOOD-BRAIN BARRIER
ENDOTHELIAL DYSFUNCTION COULD
ALTER BRAIN DRUG DISPOSITION IN
PREECLAMPSIA

The effect of endothelial dysfunction elicited by preeclampsia
on brain drug disposition is unknown. A preeclampsia-
mediated increase in BBB permeability could potentially result
in increased permeation of endogenous, blood-borne substances,
including placental derived sFlt-1, and hormones, into the brain.
Furthermore, a less restrictive BBB could allow more extensive
penetration of therapeutic drugs into the CNS, resulting in
increased side effects. In preeclamptic women, in addition to
hypertension, which is treated with antihypertensive P-GP drug
substrates, comorbidities, including epilepsy, depression and
HIV infection, are often reported (Pariente et al., 2016). Since
there is evidence that drugs belonging to these pharmacological
groups are substrates and/or of ABC/SLC transporters (O’Brien
et al., 2012; Stepien et al., 2012; Alam et al., 2016; Han et al.,
2017), there is an obvious need to better understand the effect
of preeclampsia on BBB transporter physiology and the effects
of transporter modifications on brain drug disposition. A list of
drugs used for treatment of chronic diseases in pregnancy and
preeclampsia is presented in Table 2.

Although the precise mechanisms, and effects, of alterations
in BBB permeability associated with preeclampsia have not yet
been elucidated, it is possible to gain an insight into the potential
consequences of BBB modification from clinical situations in
which the expression of BBB drug transporters and BBB integrity
are altered. In this regard, ischemic and hemorrhagic stroke
are life-threatening conditions whose outcomes include severe
BBB disruption (Knowland et al., 2014; Keep et al., 2018). In
rodent models of ischemic stroke, based on middle cerebral artery
occlusion (MCAO), an increase in brain water content and a
decrease in the expression of TJ proteins, including occludin
and claudin-5, have been observed (Huang et al., 2017). In
functional terms, the cited reports demonstrated an increase in
BBB permeability, i.e., increased brain levels of drugs transported
through the paracellular pathway. Interestingly, MCAO also
resulted in a time dependent up-regulation of P-GP expression
(Cen et al., 2013; DeMars et al., 2017), which may serve as a
compensatory protective mechanism, especially for drugs that are
substrates of this transporter.

Pathological similarities are observed in both ischemic stroke
and preeclampsia, including neuroinflammation, vasogenic
edema and increased BBB permeability (Figure 2). To date, there
is a lack of studies addressing the effect of preeclampsia on
BBB physiology and, in particular, the effects of this disorder on

TJ complexes, which govern paracellular permeability, and on
ABC/SLC transporters, which regulate transcellular permeability.
However, there is potential to monitor ABC transporter
functionality, particularly P-GP activity, in women who have
a history of preeclamptic pregnancies using non-invasive PET
studies employing 11C-verapamil as tracer (Shin et al., 2016).
Future studies could employ this technique in women who had
suffered preeclampsia or eclampsia, in order to measure P-GP
activity and investigate whether there is a correlation between
transporter activity and propensity of seizures.

CONCLUDING REMARKS

The BBB is a highly restrictive but dynamic system that regulates
the transport of ions and molecules into and out of the
brain. Consequently, alterations in its function could result in
an increased CNS exposure to potentially toxic xenobiotics,
including therapeutic drugs, and endogenous factors. Given
the findings that preeclampsia is associated with increased
BBB permeability, there is an urgent and fundamental need to
characterize the functionality of BBB ABC and SLC transporter
proteins involved in CNS drug disposition through the use of
appropriate pre-clinical models and execution of clinical studies.

A better understanding of preeclampsia-associated changes
in BBB physiology would not only allow characterization of
the processes responsible for pathophysiological changes, but
could help improve the therapeutic management of women
experiencing, or those who had experienced, preeclamptic
pregnancies. Indeed, this knowledge will help to reduce the risk
of acute and chronic complications caused by alterations in BBB
function elicited by preeclampsia.
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