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Memories are stored, at least partly, as patterns of strong synapses. Given molecular turnover, how can synapses maintain strong
for the years that memories can persist? Some models postulate that biochemical bistability maintains strong synapses. However,
bistability should give a bimodal distribution of synaptic strength or weight, whereas current data show unimodal distributions
for weights and for a correlated variable, dendritic spine volume. Thus it is important for models to simulate both unimodal
distributions and long-termmemory persistence.Here amodel is developed that connects ongoing, competing processes of synaptic
growth andweakening to stochastic processes of receptor insertion and removal in dendritic spines.Themodel simulates long-term
(>1 yr) persistence of groups of strong synapses. A unimodal weight distribution results. For stability of this distribution it proved
essential to incorporate resource competition between synapses organized into small clusters. With competition, these clusters are
stable for years. These simulations concur with recent data to support the “clustered plasticity hypothesis” which suggests clusters,
rather than single synaptic contacts, may be a fundamental unit for storage of long-term memory. The model makes empirical
predictions and may provide a framework to investigate mechanisms maintaining the balance between synaptic plasticity and
stability of memory.

1. Introduction

A central question in neuroscience is the mechanism by
which memories can be preserved for years. Long-term
memories are at least in part encoded as specific patterns,
or “engrams,” of strengthened synapses [1, 2], and long-
term synaptic potentiation (LTP) persists for months in vivo
[3]. How can specific groups of synapses remain strong for
months or years despite turnover of macromolecules and
fluctuations in the size and shape of synaptic structures?

Numerous mathematical models have been developed
that describe maintenance of long-term memory (LTM) as
dependent on bistability of synaptic weights, mediated by
positive feedback loops of biochemical reactions, typically
thought of as operative in dendritic spines. Proposed feed-
back mechanisms have relied on self-sustaining autophos-
phorylation of CaM kinase II [4, 5], persistent phosphoryla-
tion of AMPA receptors by protein kinase A [6], enhanced
translation of protein kinase M 𝜁 [7], or self-sustaining

clustering of a translation activator, cytoplasmic polyadeny-
lation element binding protein [8]. With these models, LTP
switches a synapse from a state of low basal weight to a
high weight state and turns on the positive feedback loop.
The loop then operates autonomously to keep the synapse in
the high weight state indefinitely. However, despite extensive
investigation, empirical evidence of a bistable distribution
of two distinct synaptic weight states has not, in fact, been
obtained. Although some studies [9, 10] have suggested two
distinct strength states for synapses, as measured by the
amplitude of excitatory postsynaptic currents before and after
a stimulus protocol, these studies have only examined the
early phase of LTP (<1 h), which does not depend on protein
synthesis or other processes necessary for long-termmemory
storage. Therefore, those data do not address the dynamics
of long-term memory storage. In addition, a demonstration
of synaptic bistability would require not only finding two
distinct synaptic strength states but also finding that a set of
different protocols for LTP induction (e.g., different patterns
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of stimuli, or localized application of pharmacological agents)
commonly switched synaptic weights between the same two
stable states. Such a demonstration has not been attempted.
In addition, modeling suggests that stochastic fluctuations
of macromolecule numbers within a small volume such
as a spine head are likely to destabilize steady states of
biochemical positive feedback loops, causing randomly timed
state switches ([11]; see [5] for an opposing view). Finally,
in hippocampal neuron cultures, continuous and extensive
fluctuations of postsynaptic density (PSD) morphology are
observed and are driven in part by synaptic activity [12]. Such
dynamics would seem difficult to reconcile with only two, or
a few, stable weight states.

Empirical distributions of the weights of excitatory
synapses onto cortical or hippocampal pyramidal neurons
appear unimodal (a single peak) rather than bimodal and are
commonly heavy-tailed (skewed towards high weights) [13–
18]. Some histograms are based on relatively small numbers
of measurements, so that some bimodality might be present
but hidden in variability among bins. However, the weight
distribution of Song et al. [18] is based on measurements
of several hundred excitatory postsynaptic potential (EPSP)
amplitudes and appears to particularly disfavor the bimodal
hypothesis. A large number of measurements are fit well by a
log-normal distribution (i.e., a normal distribution with the
logarithm of the volume on the 𝑥-axis).

In addition, a histogram of the volume of dendritic
spines, based on a large number of individual measurements
(∼10,000) in mouse auditory cortex, is clearly unimodal,
heavy-tailed, and approximately log-normal [19]. Observa-
tions support a substantial correlation between spine vol-
ume and synaptic weight. Spine volume is approximately
proportional to the postsynaptic density size [20–22] and to
the number of postsynaptic AMPA receptors [22] as well as
to the amplitude of the EPSC measured following localized
glutamate uncaging [23]. Thus it is plausible, and we assume
that increases/decreases in spine volume can serve as a proxy
for LTP/LTD.

If synaptic weights and correlated spine volumes are not
in fact bistable, how can patterns of strong synapses be
maintained for very long times? Two observations support
a mechanism based on metastability of small clusters of
large dendritic spines, corresponding to groups of strong
synaptic contacts.The first observation is that although spine
volumes fluctuate, some large spines are extremely stable,
existing for months (in sensory cortex [24] or in motor
cortex [25]). The second is that induction of late, protein
synthesis-dependent LTP (L-LTP) at a spine facilitates L-LTP
expression at nearby spines, on the same dendritic branch,
that coincidentally receive stimuli too weak to support L-
LTP if given alone [26]. This observation supports the
“clustered plasticity hypothesis” in which clusters of spines
on a single dendritic branch, rather than single spines, may
serve as “primary functional units” for storage of LTM [27].
This hypothesis is now supported by substantial recent data
[28]. For example (1) in motor cortex, learning induces
coordinated formation of small spine clusters on a given
dendritic branch [29] (2)morphologically, spines are grouped
into small clusters on pyramidal dendrites [30] and (3) in

rat hippocampal slice cultures, spontaneous coactivation of
dendritic spines is frequent and is clustered, occurring more
often for spines within 8 𝜇m of each other [31].

Here an initial, relatively phenomenological model is
developed describing synaptic weight changes due to com-
peting processes of LTP (corresponding to spine growth)
and long-term synaptic depression (LTD) (corresponding to
spine shrinkage). Assuming volume changes are a proxy for
weight changes, weight changes are simulated for discrete
intervals of 1 day, over times of months or years. The discrete
intervals were chosen to simulate the dynamics observed
in experiments where volumes are imaged at intervals of ∼
1 day [19, 32]. In the model, a single synapse corresponds
to a dendritic spine. Daily growth of synapses or spines
corresponds to LTP and daily shrinkage to LTD. Each day
the magnitude of LTP is governed by a Gaussian random
variable, as is that of LTD (Methods). These magnitudes are
also approximately proportional to the preexisting weight. As
suggested by recent data ([24, 25, 32] but see [19]), a volatility
factor was introduced so that the weights of larger synapses
fluctuate less. This factor proved necessary for large synapses
to remain stable for months (see Discussion).

Model parameter sensitivity was lessened when synapses
were modeled as coupled into small clusters (∼10 spines,
modeled as on the same dendritic branch and able to
interact). In accordance with data [32, 33], the model also
incorporates disappearance or silencing of small synapses
and compensatory regeneration of new synapses. When the
dynamics of 1,000 small clusters were simulated, the weight
distribution of the entire ensemble of individual synapses
converged to a steady-state, log-normal form. Individual
clusters remained stable for many years, with the average
number of active synapses maintained in a range consistent
with empirical data. The magnitude of daily changes in
synaptic weight approximated a normal distribution except
for an extra peak at Δ𝑊 = 0, which constitutes a model
prediction.

Persistence of imposed memories for years was also
simulated. If a subset of synapses was reinitialized to have
large weights, this subset maintained large average weights
for ∼2 yrs, corresponding to persistence of a pattern of strong
synapses that might serve as the engram for a memory.
Some memories however persist for even longer times. In
support of the clustered plasticity hypothesis, our simulations
suggest that such memories might be encoded as a pattern of
specific, stable clusters of active synapses. In simulations, such
a pattern remained stable for many years.

2. Methods

Weight evolution in 1,000 independent clusters was simu-
lated. Each cluster consists of𝑁cl synapses, corresponding to
𝑁cl individual spines. At a given time, most of these synapses
are “active,” with synaptic weight𝑊 ranging from ∼0.2 to 10.
The remaining synapses are “silent,” with a very low, basal
weight of 0.05. Weight evolution is simulated using discrete,
large time steps Δ𝑡, considered to correspond to 24 h. At each
time step, all weights are synchronously updated.The size and
direction of a weight update at a given synapse are assumed
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Figure 1: Schematic illustrating key model elements. Two silent synapses, corresponding to two small dendritic spines, are adjacent to two
active synapses corresponding to larger spines. Only the silent synapse next to an active synapse is currently eligible for regeneration. Although
the dynamics of mRNAs or locally synthesized proteins are not simulated, large synapses are implicitly assumed to capture more of these
resources. This is illustrated by a greater flow of mRNAs (colored strands) onto ribosomes near the largest synapse and a greater flow of
plasticity-related proteins (PRPs) into that synapse. This resource capture attenuates the amount of resource available to support growth of
all synapses in the cluster. The average amplitude of LTP events is thereby reduced when more synapses in a given cluster are strong.

uncorrelated with that at a neighboring synapse and with the
preceding update at the given synapse. These assumptions
are supported by data describing spine volume changes on
pyramidal dendrites [32].

Figure 1 schematizes key elements of the model. A cluster
of four spines is illustrated; two are active. High values of𝑊
correspond to large spines. Very small spines correspond to
“silent” synapses. For each active synapse, two independent
processes change synaptic weights during each time step. An
“LTP” process increases𝑊 and an “LTD” process decreases
𝑊. Strong synapses consume more resources for mainte-
nance, corresponding to locally available mRNAs/proteins.
The model thus assumes that the more strong synapses
present in a cluster, the fewer resources are available to
support synaptic growth (LTP). Thus the amplitude of LTP
decreases with the number of strong spines. Empirically,
smaller spines aremore volatile.Thus, themodel assumes that
the amplitude of LTP is also proportional to a volatility factor
that decreases as𝑊 increases (1)-(2) as is that of LTD (3). LTP
and LTD add to give the net change in𝑊 per time step (4).

For each time step, the LTP and LTD amplitudes are pro-
portional, respectively, to Gaussian random variables 𝑟

1
and

𝑟
2
. These variables have respective means 𝑎

1
and 𝑎
2
, and sd

1

and sd
2
are the standard deviations. 𝑎

1
and 𝑎
2
are substantially

larger, by a fixed factor of 4, than are sd
1
and sd

2
. Thus 𝑟

1
and

𝑟
2
are very rarely negative, but if either becomes negative it

is reset to zero. A synapse is “strong” if its weight is above a
threshold 𝑇st. The average LTP amplitude 𝑎

1
is a decreasing

function of the number of strong synapses in a given cluster,
denoted as 𝑁st. With 𝑁cl the total number of synapses in a
cluster, the average LTP amplitude 𝑎

1
decreases linearly with

𝑁st, from a maximum amplitude 𝑥
2
(for 𝑁st = 0) to a min-

imum 𝑥
1
(for 𝑁st = 𝑁cl). For the simulation of Figure 2(b)

with this amplitude decrease removed, 𝑎
1
and thus sd

1
are

fixed parameters. For comparison, simulations were also
carried out in which 𝑟

1
and 𝑟
2
were drawn from exponential

distributions. With exponential distributions 𝑟
1
and 𝑟

2
are

always nonnegative, with probability densities that peak at
0 and decay exponentially for increasing positive values.
The corresponding decay rate constants were varied indepen-
dently within the range [0.5, 3.0].

LTP and LTD are also proportional to a volatility factor
VO
𝑊
, decreasing with𝑊:

VO
𝑊
= {Vhi − (Vhi − Vlo) (

𝑊

𝑊 +𝑊med
)} . (1)

From (1), VO
𝑊
decreases from the parameter Vhi (for𝑊 = 0)

to Vlo (for𝑊 ≫ 𝑊med). When𝑊 = 𝑊med, VO𝑊 is midway
between Vhi and Vlo.

LTP and LTD amplitudes are also multiplied by the pre-
existing value of𝑊. To keep𝑊 bounded the LTP amplitude
is also multiplied by a decreasing function of𝑊 that has two
parameters, 𝑘hi and 𝑊hi. Combining factors the LTP ampli-
tude is

𝐴LTP = 𝑊 ⋅ 𝑟
1
⋅ VO
𝑊
[1 − 𝑘hi (

𝑊

𝑊 +𝑊hi
)] . (2)

The LTD amplitude is

𝐴LTD = 𝑊 ⋅ 𝑟
2
⋅ VO
𝑊
. (3)

At each time step, for each active synapse,

𝑊new = 𝑊old + 𝐴LTP − 𝐴LTD. (4)

If 𝑊 falls below a threshold 𝑇wk, the synapse is reset
to be silent. For each silent synapse at each time step,
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Figure 2: Simulated distributions of synaptic weights. (a) Distribution for 1,000 independent clusters with𝑁cl = 10. Black trace, histogram
with 80 bins illustrating an approximately log-normal distribution of the 10,000 weights. Each bin is equal in width in natural log units.
Red curve, a log-normal distribution (mean at 0.0131, standard deviation of 0.9341), fitted by MATLAB, that approximately reproduces the
histogram.The histogram was constructed after 50,000 simulated days to ensure a steady state. (b) Black and red traces, similar to (a), except
the mean and standard deviation of LTP, parameters 𝑎

1
and sd

1
, are fixed at 0.16 and 0.04, respectively. Blue trace, the histogram of 𝑊 is

shifted to much lower values when 𝑎
1
is decreased by 2%. (c) Weight dynamics without regeneration of synapses. The histogram of the active

synapses shifts to much greater values (black trace). ∼45% of synapses are silent, unable to regenerate, and not included in the histogram.
This histogram is an approximate steady state, although with no regeneration, all synapses would become silent after a much longer time. Red
curve, normal distribution from (a).

the probability for regeneration 𝑃ACT increases with the
number of strong synapses in its cluster, to a maximal value
𝑃bas:

𝑃ACT = 𝑃bas
𝑁st
𝑁cl

. (5)

In addition, regeneration only occurs if an adjacent synapse
is strong. In a cluster, synapse 1 can only switch to active if
synapse 2 is strong, and synapse 5 can only switch if synapse
4 and/or 6 is strong. A switch resets𝑊 to𝑊reset, above 𝑇wk.

For all simulations, to ensure initial weight, distributions
were at steady state and distributions and other quantities
were computed only after 50,000 simulated days. 𝑊 is
nondimensional and 𝑡 has units of hrs.

It is necessary that simulated time steps plausibly corre-
spond to the common empirical interval of 1 day between
spine imaging sessions. Therefore, it was necessary to scale
LTP and LTD amplitudes so that for a time step the simulated

per cent change in 𝑊, averaged over all synapses, agreed
with an average daily empirical change in 𝑊. Empirically
Yasumatsu et al. [32] presented a piecewise-linear relation-
ship between spine volume𝑉 and its change Δ𝑉 (Figure 7(b)
of [32]) under control conditions (normal synaptic activity).
Thismodel, which they denote C-1, was also able to predict an
empirical steady-state spine volume distribution (Figure 8(e)
of [32]). Model C-1 is

Δ𝑉 = −0.16 ⋅ 𝑉 + 0.01 for 𝑉 ≤ 0.25 𝜇M3 (most spines) ,

Δ𝑉 = 0.12 ⋅ 𝑉 − 0.06 for 0.25 𝜇M3 < 𝑉 ≤ 0.5 𝜇M3,

Δ𝑉 = 0 for 𝑉 > 0.5 𝜇M3.
(6)

From this relationship, combined with the plotted volumes
in Figures 1(b) and 1(c) of [32], it can be inferred that the
average percent daily change in 𝑉 lies within the range of
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∼14–20%. One cannot infer a more precise value from these
data. For comparison, in the model’s steady-state weight
distribution of Figure 2(a), the percent change in𝑊 during a
time step, averaged over all 10,000 synapses, is 16.5%. Assum-
ing 𝑉 is a proxy for 𝑊, this qualitative agreement between
simulated and empirical average weight changes suggests
that the fixed time step in Figures 2–5, which is otherwise
arbitrary, can be taken to correspond to approximately 1 day
of weight dynamics.

Simulation of the Pearson correlation coefficient 𝑅 was
done as follows. Let 𝑋

𝑖
denote the total set of 𝑛 synaptic

weights at a reference time, with 𝑖 the indexing variable from
1 to 𝑛. For 1,000 10-synapse clusters, 𝑛 = 10, 000. Let𝑌

𝑖
denote

the set of 𝑛 weights at any later time step. As 𝑡 increases from
the reference time, 𝑌

𝑖
will evolve and 𝑅 will decline from 1.

Let 𝑋, 𝑌 denote the means of 𝑋
𝑖
, 𝑌
𝑖
. The standard equation

was used:

𝑅 =

∑
𝑛

𝑖=1
[(𝑋
𝑖
− 𝑋) (𝑌

𝑖
− 𝑌)]

√∑
𝑛

𝑖=1
(𝑋
𝑖
− 𝑋)

2
√∑
𝑛

𝑖=1
(𝑌
𝑖
− 𝑌)

2

. (7)

Standard parameter values, used in all simulations unless
stated otherwise, are as follows:

𝑁cl = 10, 𝑊reset = 0.4, 𝑇wk = 0.08,

𝑇st = 0.8, Vhi = 4.0, Vlo = 0.2,

𝑊med = 0.4, 𝑥
1
= 0.144, 𝑥

2
= 0.18,

𝑎
2
= 0.16, 𝑘hi = 0.05, 𝑊hi = 20.0, 𝑃bas = 0.1.

(8)

In Supplementary Material (available online at http://dx.doi
.org/10.1155/2015/185410), a Java program is given that exe-
cutes simulations from Figures 2–4.

3. Results

Figure 2(a) illustrates the approximately log-normal distri-
bution of synaptic weights obtained at steady state. Here,
1,000 clusters of synapses were simulated, with 𝑁cl = 10.
The black trace is the resulting histogram of synaptic weight
𝑊; the red trace is a log-normal distribution fitted to the
histogram. There are 10,000 values of 𝑊 in the histogram.
The range of𝑊 spans approximately 5 natural log units (i.e.,
a multiplicative factor of ∼150). This range is similar to data
describing the range of dendritic spine volumes [19, 32]. In
this steady state, the relative synaptic weight change per time
step, averaged over all synapses, is 16.5%. This percent is in
qualitative agreement with data ([32]; details in Methods).
This agreement is necessary for the model time step to
represent the empirical interval of 1 day between imaging
sessions.

To prevent this distribution from being overly sensitive
to the average daily LTP amplitude, the model assumes this
amplitude decreases with the number of strong synapses
in the cluster to which the synapse belongs. Starting from
Figure 2(a), when the mean LTP amplitude was decreased

by 5%, the mean of 𝑊 decreased by only 16%. In contrast,
Figure 2(b) illustrates that in a model variant with mean
and standard deviation of the LTP amplitude fixed, the
weight histogram was shifted to the right of the log-normal
distribution fromFigure 2(a) andhas a shape clearly distorted
from log-normal with a much steeper cutoff at high 𝑊. To
attempt to improve the histogram, the mean LTP amplitude
was decreased by 2%. This small change resulted in a large
shift of the histogram to the left (blue trace), and 56% of the
synapses became silent (not included in the histogram). A
similar distribution, with extreme sensitivity to mean LTP
amplitude, resulted from a model variant in which synaptic
clustering was deleted by fixing the mean and standard
deviation of the LTP amplitude and also fixing the synapse
regeneration probability 𝑃ACT (5). These model variants with
extreme sensitivity were not analyzed further.

Removal of synaptic regeneration greatly alters the dis-
tribution and dynamics of synaptic weights. The distribution
(Figure 2(c)) no longer resembles data. The distribution is
strongly bimodal, with almost 50% of synapses silenced at the
low basal weight, unable to regenerate, and the remainder in
a narrow distribution centered at very high weights.

One other model variant was also simulated, in which the
Gaussian random variables 𝑟

1
and 𝑟
2
that govern the ampli-

tudes of individual LTP and LTD increments were replaced
by random variables drawn from exponential distributions
(Methods). However, these simulations failed to produce
synaptic weight distributions that resembled experimental
data. If the decay rate constants for the two exponential dis-
tributions differed by more than twofold, almost all synaptic
weights either ran to infinity (if the mean LTP amplitude was
greater) or converged to a low basal synaptic weight imposed
as a floor in the model (if the mean LTD amplitude was
greater). If the rate constants were similar a positive synaptic
weight distribution could be obtained, but the shape of this
distribution was itself exponential. It was not close to log-
normal and did not resemble experimental distributions.
Therefore this model variant was also not analyzed further.
All following results are therefore based on the first model
variant described above, that of Figure 2(a), with synaptic
regeneration and an LTP amplitude that decreases with
the number of strong synapses in a cluster. Equations and
parameter values are in Methods.

Typical time courses for clusters with regeneration are
illustrated in Figures 3(a) and 3(b). Strong synapses are much
more stable on average, in agreement with data demonstrat-
ing that large dendritic spines are more persistent [32, 34, 35].
Strong synapses often maintain high values of 𝑊 for a year
or more, whereas weak synapses show much larger relative
(percent) fluctuations in 𝑊. Weak synapses often drop to a
very low basal weight.These “silent” synapses can regenerate,
evident as vertical jumps in time courses near the bottom of
Figures 3(a)-3(b) (e.g., arrowheads below 𝑥-axes).

Figure 3(c) illustrates a typical time course for the number
of strong synapses𝑁st in a cluster (with weights greater than a
threshold 𝑇st = 0.8). Clusters are very stable in that, for𝑁cl =
10 synapses per cluster,𝑁st almost always remains between 4
and 7 for years. Simulations with𝑁cl = 15 or 20 also had very
stable clusters. However, for a smaller𝑁cl = 5, the model no

http://dx.doi.org/10.1155/2015/185410
http://dx.doi.org/10.1155/2015/185410
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Figure 3: Dynamics of synaptic weights. (a) and (b) Representative time courses for 10-synapse clusters over 400 days. Synapses with higher
𝑊 exhibit less volatility (smaller percent changes in𝑊). Synapses with high weights often remain strong for >1 yr. (c) A representative time
course of the number of strong synapses,𝑁st, in a 10-synapse cluster. Although individual weights undergo large fluctuations,𝑁st is extremely
stable, remaining between 4 and 7 for periods of over a year and rarely leaving this range during 5.5 years.

longer simulated a log-normal synaptic weight distribution at
steady state. A bimodal distribution occurred, with synapses
either at basal weight or very strong.

Minerbi et al. [36] recorded synaptic dynamics for many
days in cortical neuron cultures. Rather than spine volume,
they examined variations in the size of PSD-95:GFP puncta,
that is, localized concentrations, with a size corresponding to
spines, of the postsynaptic density protein PSD-95 fused to a
GFP fluorophore.Their dynamics are qualitatively consistent
with those illustrated in Figures 2(a) and 3 in that (1) new
synapses were continually formed, (2) synapses whose size
was reduced beneath some threshold, analogous to themodel
threshold𝑇wk, were eliminated, and (3) large synapses tended
to shrink and small synapses to grow. In accordance with (3),
stability of a simulated steady state, unimodal distribution
such as that of Figure 2(a) requires that individual synapses
with weights above the peak of the distribution decrease their
weight on average and vice versa for those with low weights.
EmpiricallyMatsuzaki et al. [37] found that smaller spines are
more likely to undergo stable enlargement in response to an
LTP induction protocol.

Loewenstein et al. [19] and Yasumatsu et al. [32] present
plots of daily changes in spine volume versus initial volume.
Figure 4(a) illustrates a simulated histogram of the ampli-
tudes of the daily changes in synaptic weight, Δ𝑊, at steady
state. The majority of the histogram is fitted well by a normal
distribution with the clear exception of the narrow peak close
to Δ𝑊 = 0. A scatter plot of Δ𝑊 versus 𝑊 revealed that

over almost the entire range of 𝑊, the amplitude of Δ𝑊
varied from near zero to a peak value of ∼0.3–0.5. Therefore,
the peak near zero is not due exclusively to large synapses.
Figure 4(b) plots daily changes in weight versus initial weight.
The plot is qualitatively linear, which is not surprising
because, in the model, the average daily LTD and LTP
amplitudes contain terms proportional to 𝑊 (Methods, (2),
(3)). However, the plot further illustrates that the average
change in 𝑊 varies much less than does 𝑊 itself. As 𝑊
increases from 0.05 to 2.0, the absolute value ofΔ𝑊 increases
only from ∼0.05 to 0.12. Thus, the relative change in𝑊 (i.e.,
Δ𝑊/𝑊) decreases substantially as𝑊 increases. This predic-
tion of the model appears in accordance with the data from
Yasumatsu et al. [32] but not with the data of Loewenstein
et al. [19] for which this relative change appears nearly
constant (see Discussion).

Strong synapses can maintain high weights for many
months in simulations. However, what if the weight dis-
tribution is altered by an imposed large perturbation that
sets high weights for a specified subset of synapses? Such
a perturbation might correspond to formation of a specific,
long-termmemory engram.Will the subset of strong synaptic
weights remain elevated for months, corresponding to long-
lasting storage of amemory? Starting from the distribution of
Figure 2(a), for all of the 1000 10-synapse clusters, synapses
1–5 were reset to a high weight of 5.0 at 𝑡 = 200 days. This
weight is well above the steady-state mean 𝑊. The other 5
synapses were reset to a low weight (0.5). We then simulated
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Figure 4: Distributions of the magnitude of synaptic weight change. (a) Black trace, histogram with 80 bins illustrating the steady-state
distribution of weight update amplitudes for the active synapses in Figure 2(a).These amplitudes consist of all the synchronousweight updates
for the 9,482 active synapses (out of 10,000 total), at a given time step. Red curve, a normal distribution (mean 0.0, standard deviation 0.07)
that approximates the histogram excepting the sharp peak for update amplitudes near zero. (b) A histogram of Δ𝑊 versus𝑊 shows a slightly
increasing, relatively linear trend. 80 bins for 𝑊 are equally spaced on a log scale. Black trace, mean values of Δ𝑊. Red traces, mean ± 1
standard deviation.

the dynamics of all clusters for a further 700 days. Figure 5(a)
illustrates a typical time course of weights for a cluster. After
the reset, the weights fluctuate but 400 days later, all but
one of the strong synapses have maintained 𝑊 above the
steady-state average. Figure 5(b) illustrates the time course of
resetting and decay for all 5,000 synapses that were reset to
𝑊 = 5.0. Their average weight decays slowly such that 700
days after reset this average is still about twice the steady-state
average of 𝑊. The lower red trace, one standard deviation
below the average weight, is also still above the steady-state
average.

If the steady-state distribution of 𝑊 is evolved without
any perturbation, the time scale for decorrelation of synaptic
weights from their specific values at a given time is, perhaps
surprisingly, quite long, similar to the time scale for the decay
of perturbed synaptic weights. Starting from the distribution
of Figure 2(a), the Pearson correlation coefficient between the
weights of the 10,000 synapses decays with a time constant of
approximately 500 days (Figure 5(c)), similar to the dynamics
of Figure 5(b).

4. Discussion

With simulations of isolated, uncoupled synapses
(Figure 2(b)), weight distributions were extremely sensitive
to model parameters. This model variant was therefore
not a plausible description of synaptic dynamics, because
biophysical parameters are expected to vary somewhat
between spines, dendritic branches, and individual neurons.
This sensitivity was eliminated when synapses were modeled
as coupled into clusters (∼10 synapses). In the model a single
“synapse” corresponds to a dendritic spine. Yadav et al. [30]
have reported similar spine clusters on primate cortical
pyramidal neurons. On a scale of ∼4–10 𝜇m along dendritic
branches, numerous clusters of 5–15 spines were identified
algorithmically. This distance scale and cluster number

appears to correspond to the observations of Takahashi et al.
[31] that spontaneous coactivation of dendritic spines is
clustered, occurring more often for spines within 8 𝜇m of
each other. We do note recent analysis by a different group
[38] failed to support clustering of this type and scale.

With coupling into clusters of ∼10 synapses, when the
dynamics of 1,000 clusters were simulated, the weight distri-
bution of individual synapses converged to a stable steady-
state, log-normal form (Figure 2(a)). Individual synaptic
weights fluctuate but the distribution is stable indefinitely.

Data illustrates that spines compete for LTP expression;
that is, local resources (possibly amounts of key proteins)
are limited such that the amount of LTP at a given spine
decreases if LTP is simultaneously induced at multiple spines
close together on the same dendritic branch [26]. Our
mechanism of coupling synapses into clusters is similar
in that it corresponds to an additional form of resource
competition. However, in the model, competition is gener-
ated by ongoing maintenance of multiple synapses rather
than only by simultaneous LTP of multiple synapses. Thus,
the mean magnitude of LTP at a given synapse during a
simulated day was assumed to be a decreasing function
of the number of other large synapses in the same cluster
(Methods). Ongoing maintenance of large spines is assumed
to consume resources (proteins, RNA) that would otherwise
be available for strengthening of neighboring spines, so that
their mean LTP magnitude decreased. Current data does
not support or refute this coupling mechanism. However,
it appears plausible and constitutes a model prediction. The
competition described by Govindarajan et al. [26] occurs
over a distance scale of 10–20𝜇m, comparable to, although
slightly larger than, the scale of 5–10𝜇m posited by Yadav
et al. [30] for clusters of ∼5–10 spines. Govindarajan et al.
[26] did not determine the rate at which competition falls
off with distance. However, they did determine this rate
for another measure of synaptic cross talk, the ability of
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Figure 5: Weight dynamics with imposed LTP of a subset of synapses. (a) A representative time course of a 10-synapse cluster. 𝑡 = 0

corresponds to the distribution of Figure 2(a). At 𝑡 = 200 days,𝑊 was set to a high value of 5 for synapses 1–5 and a low value of 0.5 for
synapses 6–10. Over 400 days the distinction between strong and weak synapses was largely preserved, with synapses 1–4 remaining at high
weights. (b) Dynamics of the potentiated synapses in 10,000 10-synapse clusters. For each cluster, synapses 1–5 were potentiated as in (a); thus
dynamics of 5000 synapses are illustrated. Black trace, time course of the average weight of these synapses. Red traces, ±1 standard deviation
from average. 700 days after LTP, the average weight remains >1 standard deviation above the steady-state average. (c) Correlation coefficient
describing the evolution of synaptic weights during maintenance of the steady-state distribution. For 10,000 synapses in 10-synapse clusters,
in the distribution of Figure 2(a), the Pearson correlation coefficient 𝑅 was calculated between the values of𝑊 at 𝑡 = 0 and the values at later
times.

a weakly stimulated spine to capture plasticity-related factors
synthesized in response to strong stimulation of a nearby
spine (synaptic tagging and capture, resulting in LTP at the
weakly stimulated spine). LTP was observed for distances up
to ∼50𝜇m. These data suggest that, for clusters of ∼10 spines
as simulated here, distance between spines might not limit
the efficacy of resource competition. However, these data do
not address whether competition could occur over a longer
distance scale, for example, 50𝜇m. To assess this question
groups of spines spaced along a dendritic branch would need
to be concurrently stimulated, and LTP quantified.

To simulate a distribution spanning a broad range of
synaptic weights, as is observed empirically, it was critical to
model synaptic regeneration. To obtain distributions similar
to that of Figure 2(a), synapses that fell to a low basal weight
needed to have, on successive days, a probability of weight
reset to a higher, “active” value. This method of simulating
regeneration was chosen to maintain equal average numbers
of synaptic loss and regeneration events within any given
cluster. Empirically, the number of active spines in a cluster is
relatively low (∼3–7) [30].Thus for clusters with low numbers
of active spines to serve as functional memory storage
units, as suggested by the clustered plasticity hypothesis [27],

the average cluster size would need to be stable to avoid
disappearance of clusters. An important question in neuro-
science is how the observed regeneration of spines avoids
disrupting storedmemories or forming spurious “memories.”
It is plausible that new, or regenerated, spines are generically
not strong (as in our model) and therefore cannot participate
in memory storage unless they are potentiated by stimuli
that induce long-term memory. However, further empirical
investigation of this question, in conjunction with modeling,
is needed.

The model of Loewenstein et al. [19] simulates daily
changes in the volume of dendritic spines and obtains a
steady-state log-normal distribution of spine volumes very
similar to the empirical distribution found by these authors.
These important results have clarified the necessity of rec-
onciling unimodal weight distributions with stable storage
of long-term memory. Their model consists of an Ornstein-
Uhlenbeck stochastic process in which the logarithm of
the volume of any given spine is directly incremented each
day. The model presented here may constitute a further
advance, in that it represents more biophysical elements,
such as synapse loss/regeneration and synapse clustering.The
LTP and LTD processes in the model (1) act directly on
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the synapticweight rather than on its logarithmand (2) can be
thought of as due to a large number of individual biochemical
events occurring during a simulated day and corresponding
to insertion and removal of individual molecular complexes
or slots. Point (2) connects the current model with the more
detailed molecular model of Lisman and Raghavachari [39],
in which LTP and LTD correspond, respectively, to insertion
and removal of “slot” complexes, each consisting of a small
number ofAMPA receptors togetherwith associated scaffold-
ing proteins and, possibly, kinases or other signaling proteins.
Additional elements of our model that may be consistent
with that of Lisman and Raghavachari [39] are as follows. If
over a day, the time intervals between individual insertions
of “slot” complexes as well as the intervals between removals
of complexes follow Poisson distributions, and if there are
on average more than ∼20 insertions and removals/day, then
by the Central Limit Theorem the sums of these Poisson
processes will approximateGaussian randomvariables.These
Gaussian variables would correspond to themodel’s Gaussian
random variables 𝑟

1
and 𝑟

2
, to which the daily LTP and

LTD amplitudes are proportional (2), (3). Similarly, if the
individual time intervals were Gaussian random variables,
their sum would be Gaussian. It also appears plausible
that average numbers of slot insertions and removals are
proportional to the preexisting size of a spine, corresponding
to themodel assumption that mean LTP and LTD amplitudes
are approximately proportional to synaptic weight.

Recent data [40] are consistent with these ideas and also
suggest such slot complexes include presynaptic components
and release sites. Current data has not directly examined
whether there is spatial clustering of presynaptic boutons
at the distance scale of ∼5 𝜇m that corresponds to putative
postsynaptic spine clusters. However, at this distance scale,
such clusters would correspond to a single axon and spines
in a cluster would thus be coactivated by a common input,
consistent with the hypothesis that such clusters constitute
functional units in the formation and storage of specific
memories.

In the model, the average relative (percent) change
in 𝑊 over a day decreases substantially as 𝑊 increases
(Figure 4(b)). This result is essential for the model to rep-
resent stable long-term memory storage, because selective
stability of strong synapses is only found if the relative
change in 𝑊 decreases in this manner. Are these dynamics
supported by current data? Relevant data describes the
relationship of spine volume changes Δ𝑉 to 𝑉. These data
are, however, contradictory. Loewenstein et al. [19] illustrate
a substantially larger relative variation in Δ𝑉 (Figure 4(c) of
[19]), such thatΔ𝑉 and𝑉 appear approximately proportional.
However, Yasumatsu et al. [32] show a different relationship,
for which smaller spines have an average Δ𝑉 similar to
large spines (Figure 1(c) of [32]). The latter relationship, but
not the former, appears compatible with our assumption.
It is plausible that the difference in synaptic dynamics in
these studies was generated, at least in part, by substantial
differences in experimental conditions. Yasumatsu et al. [32]
imaged CA1 pyramidal neurons in cultured rat hippocampal
slices at postnatal days 17–23, whereas Loewenstein et al.
[19] did craniotomies to allow in vivo imaging of dendrites

in auditory cortex of mice approximately 6 months old. In
addition, filopodia (protrusions without spine heads or with
very small heads) were eliminated from the former study,
but not the latter. Clearly further empirical investigation is
needed to clarify these critical aspects of synaptic dynamics.

At steady state the magnitudes of the daily changes in
weight were distributed approximately normally except for
an extra peak centered at Δ𝑊 = 0 (Figure 4(a)). Empirical
data has not reported such a peak close to zero [19].Therefore,
this peak could constitute a deficiency of themodel. However,
data does indicate that aminor percentage of spines are stable
formonths or years [24, 25].These data suggest that a subpop-
ulation of spines with very small daily weight changes might
exist, but not yet be resolved due to empirical sensitivity
limits.The current model does not represent the biochemical
processes that might underlie long-term stability of such a
subpopulation. However, recent studies support a relevant
hypothesis that ongoing spontaneous neuronal activity is crit-
ical for long-term maintenance of synaptic strength. Models
have suggested that such activity can preferentially maintain
synapses that are already strong [41] possibly by preferentially
reactivating stored patterns of strengthened synapses [42].
Empirically, a temporary induced knockdown of NMDA
receptor function can irreversibly eliminate remote memo-
ries [43], plausibly by preventing spontaneous activity from
potentiating and therebymaintaining synapses. Ongoing LTP
increments that are necessary to maintain strong synapses,
whether single or clustered (as in the current model), may
correspond to frequent spontaneous or environmentally
induced activity, whichmay induce repeated cycles ofNMDA
receptor-dependent LTP.

Simulations (Figures 5(a)-5(b)) illustrate that the model
can store a specific memory trace, for ∼1 yr, corresponding
to persistence of a pattern of strong synapses. However, in
humans, some memories persist for many years. In accor-
dance with the hypothesis of Govindarajan et al. [27], such
memories might be encoded at the cluster level rather than
the single-synapse level, as a set of specific, stable clusters
of active synapses. In simulations, these clusters were stable
indefinitely (Figure 3(c)). They maintained a range of strong
synapse numbers (∼4–7) similar to the range suggested
by data demonstrating clustering on neocortical pyramidal
dendrites [30]. Because each cluster was stable indefinitely, if
a pattern of such clusters was established, that pattern would
persist.

In simulations, stable clusters were found when the total
number of synapses in a cluster was 10 (Figure 3(c)), or
15–20. However, for five synapses per cluster, anomalous
dynamics resulted. A bimodal synaptic weight distribution,
not resembling empirical data, was seen at steady state.We do
not take this result to be a prediction of aminimum empirical
cluster size. Instead, we believe that the model should be
improved in future work to avoid or reduce this dramatic
change in dynamics.

The model makes additional predictions. When compar-
ing spines of similar sizes in different clusters, the average
volume change between imaging sessions is predicted to
be less positive (or more negative) if other spines in a
cluster are large. In addition, because synaptic weights and
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spine volumes are not considered bistable, different induc-
tion protocols for late, protein-synthesis dependent LTP are
predicted to induce clearly different amplitudes of synaptic
weight increase or of average spine volume increase. Without
bistability, repeated applications of stimulus protocols should,
at least in some cases, further enhance L-LTP.
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