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Abstract

Inexpensive raw materials have been used to prepare ZSM-5 zeolites with SiO2/Al2O3 molar ratios in the range
20 – 40. Kaolin or Bolivian diatomaceous earth was used as aluminosilicate raw materials and sodium hydroxide
and n-butylamine were used as mineralizing agents and template. Dealumination of the raw materials by acid leaching
made it possible to reach appropriate SiO2/Al2O3 ratios and to reduce the amount of iron and other impurities. After
mixing the components and aging, hydrothermal treatment was carried out and the products were recovered The
results clearly show for the first time that well-crystallized ZSM-5 can be directly prepared from leached metakaolin
or leached diatomaceous earth using sodium hydroxide and n-butylamine as mineralizing agents and template under
appropriate synthesis conditions. A longer induction time prior to crystallization was observed for reaction mixtures
prepared from leached diatomaceous earth, probably due to slower digestion of the fossilized diatom skeletons as
compared with that for microporous leached metakaolin. The use of leached diatomaceous earth allowed higher yield
of ZSM-5 crystals within comparable synthesis times. However, low amounts of Mordenite formed, which was related
to the high calcium content of diatomaceous earth. Another considerable advantage of diatomaceous earth over kaolin
is that diatomaceous earth does not require heat treatment at high temperature for metakaolinization.
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Introduction
The zeolite ZSM-5 (Zeolites Socony Mobil) is an alumino-
silicate with high silica ratio with suitable properties for
catalysis, adsorption and membrane applications (Jacobs
1981, Tavolaro and Drioli 1999, Weitkamp 2000). Re-
searchers (Argauer and Landolt 1972) of Mobil Oil
Corporation obtained the first patent on the synthesis
of ZSM-5 zeolite, in which they described that this
zeolite can be formed with molar ratios of SiO2/Al2O3

varying between 20 and 120. Depending on this ratio, the
acidity and surface properties of ZSM-5 vary and therefore
it is important to carefully control this parameter in the
final product (Armaroli et al. 2006, Shirazi et al. 2008).
Typical syntheses of ZSM-5 require sources of silicon

and aluminium, a mineralizer (e.g. OH− or F−) and an

organic molecule as templating agent. Quaternary am-
monium compounds like tetrapropyl ammonium bromide
(TPA-Br) (Padovan et al. 1984, Shirazi et al. 2008) and tet-
rapropyl ammonium hydroxide (TPA-OH) (Kotasthane
and Shiralkar 1986) are mostly used for the synthesis of
ZSM-5. Unfortunately, these quaternary ammonium com-
pounds are rather expensive. The molecule n-butylamine
was reported (Sang et al. 2004, Zhao 2005, Martins et al.
2006, Feng et al. 2009) as an alternative templating agent
to replace TPA-Br and TPA-OH and is about 100 times
less expensive on a molar basis. In the past two decades,
efforts have also been undertaken to identify inexpensive
Si and Al sources to synthesize ZSM-5(Chareonpanich
et al. 2004, Sanhueza et al. 2004, Mignoni et al. 2007, Aliev
et al. 2011) and it has been shown that kaolin clay and
diatomaceous earth are two suitable and inexpensive
sources of silica and alumina.
Kaolin clay contains kaolinite with a SiO2/Al2O3 molar

ratio close to 2 and therefore it is well suited for the
preparation of low-silica zeolites such as zeolite A (Costa

* Correspondence: gonzalo316@gmail.com
1Chemical Technology, Luleå University of Technology, Luleå, Sweden
2Department of Chemistry, Faculty of Science and Technology, San Simon
University, Cochabamba, Bolivia
Full list of author information is available at the end of the article

a SpringerOpen Journal

© 2014 Aguilar-Mamani et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited.

Aguilar-Mamani et al. SpringerPlus 2014, 3:292
http://www.springerplus.com/content/3/1/292

mailto:gonzalo316@gmail.com
http://creativecommons.org/licenses/by/4.0


et al. 1988, Murat et al. 1992, Chandrasekhar et al. 1997,
Sanhueza et al. 1999). To obtain this zeolite from kaolin,
two steps are necessary: first, a thermal treatment of
kaolin to obtain an amorphous and reactive material
denoted metakaolin. The second step is a hydrothermal
treatment to convert metakaolin to zeolite in an alkaline
aqueous medium. Preparation of zeolites with higher
SiO2/Al2O3 molar ratios such as zeolites X (De Lucas
et al. 1992, Caballero et al. 2007, Colina and Llorens
2007) and Y (Bosch et al. 1983, Atta et al. 2007) from
kaolinite has also been reported. However, the syntheses
of these zeolites require either an increase of the amount
of silica or partial removal of aluminium. The first alterna-
tive implies using an additional source of silica with high
solubility, e.g. sodium silicate. The second alternative, i.e.
dealumination, consists in either leaching kaolin in a
solution of an inorganic acid (HCl, H2SO4, HNO3)
(Ford 1992) or alternatively calcining the kaolin with
an inorganic acid (H2SO4) (Colina et al. 2001, Colina
et al. 2002)
The synthesis of ZSM-5 zeolite from kaolin with

additional sources of silica has been reported in patent
(Reid 1982) and research papers (Khatamian and Irani
2009, Kovo et al. 2009). Dealumination of metakaolinite to
synthesize ZSM-5 has also been investigated (Madhusoodana
et al. 2005); (Zhang et al. 2007); (Madhusoodana et al.
2001). In all these studies, expensive tetrapropylamine was
used as template. The synthesis of ZSM-5 with a high
SiO2/Al2O3 molar ratio from metakaolin and silica sol and
less expensive n-butylamine has been reported (Feng et al.
2009). However, to the best of our knowledge, a combin-
ation of dealumination of metakaolin by acid treatment
together with the use of n-butylamine as a template
has not yet been reported.
Diatomaceous earth is another inexpensive source of

silica, which is a sedimentary rock comprised of fossil-
ized skeletal remains of diatoms. It consists essentially
of amorphous hydrated silica and a small amount of alu-
mina and also impurities such as iron (Sanhueza et al.
2003). It can be used to produce mesoporous material
such as MCM-41 (Sanhueza et al. 2006) and also both
low and high silica zeolites such as A (Ghosh et al.
1994), P (Wajima et al. 2008) or NaP (Wajima et al.
2006), analcime (Chaisena and Rangsriwatananon 2005);
(Rangsriwatananon et al. 2008), cancrinite (Chaisena and
Rangsriwatananon 2005), hydroxisodalite (Chaisena and
Rangsriwatananon 2005), NaY (Chi et al. 2011) and mor-
denite (Sanhueza et al. 2003). In most of these syntheses,
the raw diatomaceous earth was acid treated to remove
iron and other impurities. The conversion of diatomaceous
earth to ZSM-5 was also studied in combination with other
raw materials such as paper sludge ash (Wajima et al. 2008)
or volcanic ash (Aliev et al. 2011). However, there are a
few studies on the synthesis of ZSM-5 by using only

diatomaceous earth as silica source. In these studies,
diethanolamine(Sanhueza et al. 2004) and expensive
tetrapropylammonium bromide (Shan et al. 2004) were
used as templates and these synthesis required quite
long crystallization times from 40 hours to 6 days at a
quite high temperature of 180°C.
In the present work, we show for the first time that

leached metakaolinite or diatomaceous earth in combin-
ation with sodium hydroxide and n-butylamine can be used
as inexpensive raw materials for the synthesis of ZSM-5
without using an additional source of silica. However, both
sources of alumino-silica are shown to behave differently
during the course of synthesis and to lead to slightly dif-
ferent reaction products. In particular, we discuss these
discrepancies in terms of composition, morphology, and
porosity of the raw materials.

Experimental
Raw materials
Kaolin (Riedel de Haen, pro analysi), diatomaceous earth
(Murmuntani zone in the locality of Llica, Potosi, Bolivia),
sodium hydroxide (Sigma Aldrich, reagent grade, ≥98%,
anhydrous pellets), n-butylamine (Sigma Aldrich, 99.5%)
and hydrochloric acid (Merk, pro analysi 37%) were
used as reagents.

Heat treatment
Kaolin was first calcined in a porcelain crucible that was
placed in a furnace and heated at a rate of 8°C/min in air.
When the temperature reached 750°C, this temperature
was maintained for 2 h to obtain metakaolin and the
temperature in the furnace was then reduced to room
temperature. It was not necessary to carry out the heat
treatment for the diatomaceous earth in order to obtain
ZSM-5, and consequently, this material was not heat
treated. On the other hand, if the heat treatment of kaolin
was omitted, no zeolite formed.

Dealumination of raw materials
Metakaolin and diatomaceous earth were acid leached in
a spherical glass container under reflux conditions in a
thermostated oil bath maintained at 115°C. Metakaolin
or diatomaceous earth was stirred in hydrochloric acid
(3 M) for 150 minutes. The metakaolin or diatomaceous
earth to acid weight ratio was 1:17. Subsequently, the
suspension was quenched and the acid leached product
was washed with distilled water. Finally, the product
was separated by filtration and the filter cake was
washed with distilled water until the pH reached a
value close to 7.

Hydrothermal synthesis
The synthesis mixtures were prepared by mixing the
aluminosilicate sources with distilled water, n-butylamine
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(NBA) and sodium hydroxide. The molar ratios in the
synthesis mixtures were: Na2O/SiO2 = 0.18; SiO2/Al2O3 =
X; SiO2/NBA = 7; H2O/SiO2 = 30, where X = 33 and 44 for
leached metakaolin and leached diatomaceous earth, re-
spectively. The mixtures were aged under stirring for
24 hours at room temperature and were thereafter hydro-
thermally heated in Teflon lined stainless steel autoclaves
kept for different times in an oil bath at 165°C. After
hydrothermal treatment, the solids were recovered by
filtration and washed with distilled water until the pH
reached a value close to 7. The powders were dried at
100°C overnight and finally calcined at 550°C for 6 hours
to remove the template.

Characterization of the products
The chemical compositions of kaolin, diatomaceous earth,
leached aluminosilicates and the final products were
determined using inductively coupled plasma-sector field
mass spectrometry (ICP-SFMS). Samples of 0.1 g were
fused with 0.4 g of LiBO2 and dissolved in HNO3. Crystal-
linity was examined by X-ray diffractometry (XRD) using
a PANalytical Empyrean X-ray Diffractometer equipped
with Cu LFF HR X-ray tube, a graphite monochromator,
and a PIXcel3D detector. The X-ray tube was operated at
30 mA and 40 kV. The investigated 2θ range was from 5
to 50° with a step size of 0.026°. The degree of crystallinity
was calculated by using the area of characteristic peaks of
ZSM-5 between 22 and 25° after background removal fol-
lowing the equation by van Hooff (Vanhooff et al. 1991).
ZSM-5 crystals with an average length of 10 μm syn-

thesized from silicic acid and TPAOH by following the
method reported by Lechert and Kleinwort (Robson and
Lillerud 2001) were used as standard.
The morphology of the ZSM-5 crystals was studied by

scanning electron microscopy (SEM, Magellan 400, FEI
Company) without coating. The chemical composition
of individual crystals was determined by energy disper-
sive spectrometry (EDS, 80 mm2 X-max detector, Oxford
Instruments) at an accelerating voltage of 10 kV. Nitro-
gen adsorption-desorption data were recorded with an
ASAP 2010 equipment from Micrometrics to determine
the BET specific surface area, total pore volume and
micropore volume of the raw materials and reaction
products, as well as the reference crystals. The weight
percentage of solid retentate after aging was determined
by filtration through a 1 μm filter paper and gravimetric
method, while the filtrates were analyzed by ICP-SFMS.

Results
Characterization of the starting materials
X-ray diffractograms of the raw aluminosilicates and
dealuminated counterparts are shown in Figure 1. Kaolin
of course contains mostly kaolinite (evidenced by reflec-
tions at 2θ = 12.33; 19.80; 20.40; 21.40. 24.81 and 35.11)

but also traces of quartz (2θ = 20.85; 26.66) and muscovite
(2θ = 8.83; 35.06). Kaolin after calcination and leaching
was mostly an amorphous material with weak characteris-
tic peaks of muscovite and quartz. On the other hand, raw
diatomaceous earth shows the occurrence of halite NaCl
(2θ = 27.41; 31.76; 45.53), muscovite (2θ = 8.83; 27.83;
35,06 ), albite (2θ = 22.03; 23.70) and quartz (2θ = 20.85;
26.66) in addition to amorphous material. After acid treat-
ment and the subsequent washing, the amorphous material
remained and NaCl was removed, but the other minor con-
stituents were still present (muscovite, albite and quartz).
The chemical compositions of the raw and leached

materials measured by ICP-SFMS are given in Table 1.
Raw kaolin and diatomaceous earth had a SiO2/Al2O3

molar ratio of 2.2 and 15, respectively. This ratio was
successfully increased by acid leaching to 33 and 44 for
kaolin and diatomaceous earth, respectively. Acid leaching
also reduced significantly the concentration of impurities
in both materials. Finally, the leached materials had com-
parable compositions in terms of magnesium, potassium
and iron. However, leached diatomaceous earth was ap-
proximately 4 times richer in sodium and calcium, which
can be understood from the presence of NaCl and calcium
compounds in the raw diatomaceous earth originating
from a region close the salt lake Uyuni.
Figure 2 shows the morphology of the raw materials

and leached materials revealed by SEM. Kaolin is com-
posed of stacks of platelets with hexagonal symmetry
which is typical of natural kaolinites (Figure 2(a)). The
leached metakaolin (Figure 2(b)) has very similar platelet
morphology but the surface area increased from 12 to
288 m2/g as presented in Table 2. This is not surprising
since acid-leached metakolin is known to form micropor-
ous silica (Madhusoodana et al. 2001); (Zhang et al. 2007).
Raw diatomaceous earth (Figure 2(d)) exhibited large
particles with typical shapes of diatomaceous biogenic
sediments. Some diatomaceous earth particles were par-
tially broken in smaller pieces by the mechanical action of
stirring during the acid treatment but their characteristic
shapes could still be distinguished (Figure 2(e)). Leaching
of diatomaceous earth only caused a slight increase in spe-
cific surface area (from 38 to 55 m2/g; Table 2).

Hydrothermal synthesis
Hydrothermal synthesis in terms of composition of the
synthesis mixture and synthesis time was first optimized
to maximize the yield of ZSM-5 using leached metakaolin
as a raw material. The composition used in this work was
found to produce the highest yield of ZSM-5 crystals.
Figure 3 shows the evolution of XRD crystallinity com-
pared with a reference sample composed of 6–10 μm
ZSM-5 crystals. It can be noticed in Figure 3(a) that
samples prepared from leached metakaolin reached
maximum crystallinity for synthesis times between 9
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and 12 hours before decreasing for prolonged hydro-
thermal treatments. The reaction parameters of the
dealumination and hydrothermal treatments obtained
on kaolin were employed for diatomaceous earth. As
shown in Figure 3(b), the best crystallinity for leached dia-
tomaceous earth was obtained for 12 hours of synthesis.

Characterization of the crystalline products
The diffractograms of the final reaction products obtained
from both types of raw materials after 12 h synthesis are
presented in Figure 4. The main characteristic peaks
correspond to the MFI structure (2θ = 7.9; 8.7; 23.0 etc.) in
good agreement with the reference pattern PDF-042-0024.
The intensities of the main peak of quartz are similar in
both samples and of the same order of magnitude as in
the leached materials. Therefore, the quartz content is
similar in both samples and originates from the raw
materials. However, the reaction product obtained from

diatomaceous earth contained traces of mordenite, ap-
proximately 5% of the intensity of the main peak of
ZSM-5. The composition of the final products after
12 h synthesis was determined by ICP-SFMS analysis
and the results were presented in Table 1. The average
SiO2/Al2O3 molar ratio was 23 and 40 for the reaction
products obtained from leached metakaolin and diatom-
aceous earth, respectively. From these data, the reaction
products could be considered as quite pure ZSM-5 with
traces of mordenite formed during synthesis and of quartz
remaining from the raw material.
The morphology of the reaction products was studied

by SEM and typical images were presented in Figure 5.
Synthesis from leached metakaolin resulted in the forma-
tion of flat tablet shaped ZSM-5 crystals with a diameter
of 5–6 μm, but also some smaller particles, as shown in
Figure 5(a). In contrast, the ZSM-5 crystals obtained from
leached diatomaceous earth were rounded with average

Figure 1 XRD diffractograms of the raw materials and acid-leached materials.

Table 1 Compositions (in mole%) of kaolin, diatomaceous earth, leached metakaolin, leached diatomaceous earth and
ZSM-5 products by ICP-SFMS

Composition Kaolin Leached metakaolin ZSM-5 (K) Diatomaceous earth Leached diatomaceous earth ZSM-5 (D)

SiO2 67.7 95.9 94.0 78.8 96.4 96.0

Al2O3 30.1 2.92 4.15 5.22 2.17 2.40

CaO 0.15 0.12 0.10 4.44 0.49 0.63

Fe2O3 0.37 0.16 0.18 0.22 0.06 0.07

K2O 1.13 0.60 0.65 1.29 0.33 0.30

MgO 0.59 0.19 0.22 3.30 0.19 0.23

Na2O 0.16 0.08 0.65 6.78 0.35 0.37

Mol SiO2/Al2O3 2.2 33 23 15 44 40
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Figure 2 Morphology of the raw materials and leached materials. (a) Kaolin (50000x magnification). (b) Leached metakaolin (LMK) (50000x
magnification). (c) Solid part of LMK after aging (50000x magnification). (d) Diatomaceous earth (5000x magnification). (e) Leached diatomaceous
earth (LD) (50000x magnification). (f) Solid part of LD after aging (50000x magnification).

Table 2 Surface area and pore volumes derived from nitrogen adsorption data for the raw, leached materials, final
products and standard sample

Sample BET surface area (m2/g) Total pore volume (cm3/g) Micropore volume (cm3/g)

Kaolin 12 0.058 0.004

Leached metakaolin 288 0.24 0.089

Diatomaceous earth 38 0.093 0.003

Leached diatomaceous earth 55 0.11 0.006

ZSM-5 (K) 255 (82%) 0.17 0.082 (68%)

ZSM-5 (D) 298 (96%) 0.15 0.098 (82%)

ZSM-5 standard 310 0.15 0.12
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diameter around 7–8 μm and aspect ratio close to 1
(Figure 5(b)). This sample also contained smaller parti-
cles and particularly small slabs as those encircled in
Figure 5(b), which were attributed to mordenite.

Discussion
As shown above, the combination of both sodium hydrox-
ide and n-butylamine together with leached metakaolin or

leached diatomaceous earth was efficient to produce
micron-sized ZSM-5 crystals within similar synthesis
times. However, the reaction mechanism seems to differ
depending on which alumino-silica source was used.
Figure 3(a) clearly shows that crystal growth is triggered
after an induction period of 2 h and slowly progresses
until maximum crystallinity is reached after 9 h when
leached metakaolin was used. In contrast, the induction

Figure 3 Crystallinity as a function of time of the reaction products prepared from acid leached materials. (a) Leached metakaolin.
(b) Leached diatomaceous earth.

Figure 4 XRD diffractograms of the products obtained after 12 hours of synthesis from acid leached materials. (a) Leached metakaolin.
(b) Leached diatomaceous earth.
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period was extended to 6 h before a sudden burst of
crystal growth occurred between 8 and 9 h, if leached
diatomaceous earth was used as alumino-silica source
(Figure 3(b)). The differences in growth rates are not yet
understood. However, the difference in induction period
between both synthesis mixtures may be related to the
state of the synthesis mixtures after 24 h aging and
before hydrothermal treatment. After filtration through
a 1-μm filter paper, 26 and 80 wt.% of the original solid
material remained from the aged synthesis mixtures
prepared from leached metakaolin and leached diatom-
aceous earth, respectively. The filtrates were found to be
silica-rich sols by ICP-SFMS (SiO2/Al2O3 molar ratio ~
400–800). As shown in Figure 2(c), the solid retentate of
the aged synthesis mixture prepared from leached meta-
kaolin consisted of poorly defined platelets with a SiO2/
Al2O3 molar ratio of 7.5, which probably stem from un-
digested muscovite or other materials that did not become
microporous or possibly sintered upon calcination. On the
other hand in Figure 2(f), particles with typical morph-
ology of fossilized diatom still comprised the main con-
stituent of the diatomaceous earth synthesis mixture after
aging, even though further communition occurred by
mechanical mixing during aging. Therefore, the longer in-
duction time encountered for the leached diatomaceous
earth system can be imparted to the heavily condensed
state still present after aging in comparison to the silica-
rich sol resulting from aging of the leached metakaolin
mixture, the latter being more homogeneous and requir-
ing less transformation for nucleation of zeolite crystals.
Although induction time was longer, the maximum

crystallinity was slightly higher for samples prepared
from diatomaceous earth than from kaolin and amounts
to 93 and 87%, respectively, as shown in Figure 3. By a
normalization of the BET specific surface area and total
micropore volume with respect to the ZSM-5 standard
sample also used for determining crystallinity by XRD,
we show that the crystallinity of the reaction product ob-
tained from kaolin is in good agreement with the values

given in Table 2 with a specific surface area of 82%. The
total micropore volume (68%) value indicates that the final
product prepared from kaolin contains approximately 30%
of non-microporous material in addition to the ZSM-5
crystals. The same values calculated from the BET specific
surface area and total micropore volume for the diatom-
aceous earth-derived product, 96 and 82% respectively,
are higher than that obtained by XRD (93%). This can be
attributed to the presence of mordenite as a by-product in
addition to non-microporous materials.
It was not possible to prevent the formation of morde-

nite by further optimization of the synthesis parameters.
Instead, formation of mordenite occurred randomly,
probably due to the variability of the diatomaceous earth
raw material. Calcium was found to be concentrated in
the mordenite crystals as revealed by the comparison of
the EDS spectra between uncalcined ZSM-5 (Figure 6(a))
and mordenite (Figure 6(b)) crystals. Therefore, the higher
calcium content in leached diatomaceous earth as com-
pared to leached kaolin probably favored the formation of
mordenite. The presence of n-butylamine as templating
agent in the ZSM-5 crystals was also confirmed by EDS,
as shown in Figure 6(a) with the characteristic peak of
nitrogen and carbon, while that of sodium was quite weak.
The BET specific surface area obtained in this work for

the sample prepared from leached diatomaceous earth
(298 m2/g) is comparable with that obtained in the study
by Sang et al. 9 (294 m2/g), who employed water glass and
aluminum sulfate as Si and Al sources, respectively. There-
fore, Bolivian diatomaceous earth appears as a competitive
source of inexpensive raw materials for the synthesis of
ZSM-5 crystals. In addition to the higher crystallinity and
BET specific surface area achieved in this work compared
with kaolin, diatomaceous earth does not require heat
treatment at high temperature for metakaolinization.

Conclusions
The inexpensive raw materials: kaolin, Bolivian diatom-
aceous earth, sodium hydroxide and n-butylamine have

Figure 5 SEM images of ZSM-5 crystals from kaolin and diatomaceous earth. (a) Kaolin (5000x magnification). (b) Diatomaceous earth
(5000x magnification).
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been used to prepare ZSM-5 zeolites with SiO2/Al2O3

molar ratios in the range 20 – 40. Dealumination of the
raw materials by acid leaching made it possible to reach
appropriate SiO2/Al2O3 molar ratios and to reduce the
amount of iron and other impurities in the raw mate-
rials. After mixing and aging for 24 hours, synthesis by
hydrothermal treatment was carried out at165°C either
using leached metakaolin or leached diatomaceous earth
as source of alumino-silica. The results clearly show for

the first time that well-crystallized ZSM-5 can be directly
prepared from both materials in combination with sodium
hydroxide and n-butylamine under appropriate synthesis
conditions. Reaction mixtures prepared from leached
diatomaceous earth showed longer induction period due
to the slower digestion of the fossilized diatom skeletons
compared with microporous leached metakaolin. How-
ever, the use of leached diatomaceous earth allowed higher
yield in ZSM-5 crystals within comparable synthesis times

Figure 6 EDS spectra of the final product obtained from leached diatomaceous earth. (a) ZSM-5 crystal. (b) Mordenite crystal.
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despite the formation of low contents of mordenite,
which was related to the high calcium content of dia-
tomaceous earth. Another considerable advantage of
diatomaceous earth over kaolin is that diatomaceous
earth does not require heat treatment at high temperature
for metakaolinization.
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