
3364 |     Cancer Medicine. 2022;11:3364–3380.wileyonlinelibrary.com/journal/cam4

Received: 29 January 2021 | Revised: 14 January 2022 | Accepted: 25 January 2022

DOI: 10.1002/cam4.4687  

R E S E A R C H  A R T I C L E

Immune- related gene signature predicts clinical outcomes 
and immunotherapy response in acute myeloid leukemia

Qiang Xu1,2 |   Dedong Cao3  |   Bin Fang4 |   Siqi Yan1 |   Yu Hu1,2 |   Tao Guo1,2

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided 
the original work is properly cited.
© 2022 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

1Institute of Hematology, Union 
Hospital, Tongji Medical College, 
Huazhong University of Science and 
Technology, Wuhan, China
2Collaborative Innovation Center of 
Hematology, Huazhong University of 
Science and Technology, Wuhan, China
3Department of Oncology, Renmin 
Hospital of Wuhan University, Wuhan, 
China
4Department of Nephrology, Union 
Hospital, Tongji Medical College, 
Huazhong University of Science and 
Technology, Wuhan, China

Correspondence
Yu Hu, Institute of Hematology, Union 
Hospital, Tongji Medical College, 
Huazhong University of Science and 
Technology; Collaborative Innovation 
Center of Hematology, Huazhong 
University of Science and Technology, 
Wuhan 430022, China.
Email: dr_huyu@126.com

Tao Guo, Institute of Hematology, 
Union Hospital, Tongji Medical 
College, Huazhong University of 
Science and Technology; Collaborative 
Innovation Center of Hematology, 
Huazhong University of Science and 
Technology, Wuhan 430022, China.
Email: guotao1968@163.com

Funding information
This work was supported by the 
National Natural Science Foundation of 
China (81974008).

Abstract
Background: The immune response in the bone marrow microenvironment has 
implications for progression and prognosis in acute myeloid leukemia (AML). 
However, few immune- related biomarkers for AML prognosis and immunother-
apy response have been identified. We aimed to establish a predictive gene signa-
ture and to explore the determinants of prognosis in AML.
Methods: Immune- related genes with clinical significance were screened by 
a weighted gene co- expression network analysis. Seven immune- related genes 
were used to establish a gene signature by a multivariate Cox regression analysis. 
Based on the signature, low-  and high- risk groups were compared with respect 
to the immune microenvironment, immune checkpoints, pathway activities, and 
mutation frequencies. The tumor immune dysfunction and exclusion (TIDE) 
method was used to predict the response to immune checkpoint blockade (ICB) 
therapy. The Connectivity Map database was used to explore small- molecule 
drugs expected to treat high- risk populations.
Results: A seven- gene prognostic signature was used to classify patients into 
high-  and low- risk groups. Prognosis was poorer for patients in the former than 
in the latter. The high- risk group displayed higher levels of immune checkpoint 
molecules (LAG3, PD- 1, CTLA4, PD- L2, and PD- L1), immune cell infiltration 
(dendritic cells, T helper 1, and gamma delta T), and somatic mutations (NPM1 
and RUNX1). Moreover, hematopoietic stem cell/leukemia stem cell pathways 
were enriched in the high- risk phenotype. Compared with that in the low- risk 
group, the lower TIDE score for the high- risk group implied that this group is 
more likely to benefit from ICB therapy. Finally, some drugs (FLT3 inhibitors and 
BCL inhibitors) targeting the expression profiles associated with the high- risk 
group were generated using Connectivity Map.
Conclusion: The newly developed immune- related gene signature is an effec-
tive biomarker for predicting prognosis in AML and provides a basis, from an 
immunological perspective, for the development of comprehensive therapeutic 
strategies.
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1  |  INTRODUCTION

Acute myeloid leukemia (AML) is the most commonly oc-
curring aggressive leukemia in adults that is characterized 
by uncontrolled proliferation of immature myeloid cells 
and diverse clinical features.1 Although most patients 
with AML initially respond to chemotherapy, half of all 
patients relapse within 5 years of diagnosis.2 Recurrence 
after standard induction chemotherapy is a key obstacle 
to the treatment of AML; furthermore, some patients do 
not respond to induction therapy.3 Given the increasing 
incidence of AML and the low survival rate, better prog-
nostic biomarkers are needed for the development of pre-
vention, screening, and treatment approaches.4 Recently, 
researchers have identified numerous prognostic markers 
on public databases.5,6 These studies also proved that a 
comprehensive prognostic analysis of multiple features is 
more valuable than an individual feature.

There is increasing evidence that various immune 
pathways are activated in AML, leading to immunosup-
pressive effects, altering the tumor immune microen-
vironment, and reducing overall survival (OS) rates.7,8 
The immunosuppressive tumor microenvironment is 
known to significantly impede the anti- leukemia im-
mune responses. Moreover, this immunosuppression also 
adversely affects and invalidates the regular and experi-
mental treatments.9 An in- depth understanding of basic 
immunity and immune escape mechanisms in the periph-
ery and bone marrow microenvironment can accelerate 
the identification of biomarkers that can predict clinical 
outcomes.10 Immunotherapy induces a specific immune 
response to inhibit and kill tumor cells, thereby reducing 
the rate of tumor recurrence.11 Comprehensive studies of 
immunophenotypes in the AML microenvironment may 
improve our understanding of anti- tumor responses and 
provide a basis for clinically effective immunotherapies.12 
However, few patients benefit from immunotherapy and 
there are only a few effective markers to accurately predict 
the patient's response to immunotherapy.13 Therefore, this 
study is intended to perform a comprehensive analysis of 
immune- related genes associated with AML, to propose 
novel potential biomarkers for the clinical prognosis and 
ICB therapy responsiveness of AML.

In this study, we used the weighted gene co- expression 
network analysis to first categorize the immune- related 
genes associated with the clinical characteristics of AML. 
We then assessed the merit of these genes for the efficient 
prediction of clinical outcomes in patients with AML. We 

analyzed AML transcriptomic data from multiple patient 
cohorts to develop an immune- related signature for the 
prediction of prognosis and response to immunotherapy. 
Gene expression- based immune cell quantification was 
performed, and the relationships between immune cell 
subtypes and risk level based on the established signature 
were assessed. Overall, these data indicate that the identi-
fied signature might be a practical indicator for predicting 
heterogeneous clinical behavior and prognosis in AML.

2  |  MATERIALS AND METHODS

2.1 | Data acquisition and preprocessing

Expression profiles and clinical information for 151 AML 
samples were downloaded from The Cancer Genome Atlas 
(TCGA) database (https://tcga- data.nci.nih.gov/tcga/). 
The following additional datasets were used for valida-
tion: GSE 37642 (n = 417) and GSE 146173 (n = 246) from 
the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/). A list of immune- related 
genes (IRGs) was derived from the gene set “IMMUNE 
SYSTEM PROCESS” in the Molecular Signatures Database 
(MSigDB, https://www.gsea- msigdb.org/gsea/msigd b/) 
and ImmPort (http://www.immpo rt.org/). For the TCGA 
dataset, only highly variable IRGs with a median absolute 
deviation (MAD) higher than 1.0 were selected for further 
analyses.

2.2 | Weighted gene co- expression 
network analysis

The R package “WGCNA” was used to construct co- 
expression modules relevant to prognosis in the TCGA 
AML dataset. After filtering out samples with significant 
deviations in expression values using the hclust function, 
a hierarchical clustering analysis was performed to cluster 
the retained samples based on clinical information. The 
pickSoftThreshold function was used to estimate the op-
timal soft threshold power parameter (β) when construct-
ing a scale- free network and then an adjacency matrix was 
generated. Next, a dissimilarity matrix (1- TOM) based on 
the topological overlap measure (TOM) was derived from 
the adjacency matrix. IRGs with similar expression pat-
terns were classified into the same module using 1- TOM 
as a proximity metric, and co- expression modules were 

K E Y W O R D S

acute myeloid leukemia, biomarker, immune microenvironment, immunotherapy, prognosis

https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/msigdb/
http://www.immport.org/


3366 |   XU et al.

identified using the cutreeDynamic function. Each mod-
ule contained at least 35 genes, and modules with high 
similarity were merged with a cut height of 0.25. Different 
modules were represented by different colors. The cor-
relations between clinical traits and module eigengenes 
(MEs) were evaluated using a Pearson correlation analy-
sis. Finally, the most representative module correlated 
with AML prognosis was selected for further analyses.

2.3 | Construction and validation of a 
prognostic risk signature

Univariate Cox proportional hazards regression and 
Kaplan– Meier analyses were used to screen the eligible 
IRGs in the turquoise module. Additionally, only genes 
present in the three datasets were considered for the con-
struction of a prognostic risk signature. To select the most 
representative IRGs, a least absolute shrinkage and selec-
tion operator (LASSO) Cox regression analysis was per-
formed. The “ComBat” function was used to correct data 
from TCGA and GEO expression profiles to eliminate po-
tential batch effects between platforms. TCGA AML sam-
ples were chosen as the training cohort. A multivariate Cox 
regression analysis was performed to derive the regression 
coefficients for the IRGs. The risk score for each sample was 
calculated using the expression level and regression coeffi-
cient of the finally determined IRGs to develop a risk sig-
nature for prognostic prediction. Each sample was assigned 
a risk score, and samples were classified into a high- risk 
group and a low- risk group, using the median risk score 
of the training cohort as the threshold for stratification. A 
scatter plot and risk score distribution plot were generated 
to describe sample characteristics and a heatmap was used 
to visualize gene expression levels. The difference in OS be-
tween the high- risk and low- risk groups was identified by a 
Kaplan– Meier analysis. The accuracy of the risk signature 
for OS prediction was determined using the receiver oper-
ating characteristic (ROC) curve. In addition, TCGA AML 
cases were grouped according to clinical features, includ-
ing age (<60 years and ≥60 years), sex (male and female), 
cytogenetic risk (poor, favorable, and intermediate), and 
FLT3, DNMT3A, NPM1, TP53, and RUNX1 mutation sta-
tuses to further evaluate prognostic differences between risk 
score subtypes. AML samples were assigned to a risk group 
(favorable, intermediate, or poor) according to the level of 
clinical risk determined by cytogenetic abnormalities.2 GSE 
37642 (n = 417) and GSE 146173 (n = 246) were included 
as two validation cohorts to verify the risk signature's per-
formance. In the TCGA and GSE 146173 cohorts, clinical 
features (age, cytogenetic risk, and gene mutations) were in-
cluded in a multivariate analysis to determine whether the 
risk score was an independent predictor.

2.4 | Estimation of the immune 
microenvironment

To explore the possible reasons for the differential prog-
nosis of the risk subgroups (low-  and high- risk groups) 
distinguished by the seven- IRG signature, the immune 
microenvironment of the high- risk group and the low- 
risk group was analyzed. Based on the ESTIMATE al-
gorithm implemented in the R package, immune scores 
and ESTIMATE scores were extracted from the patient 
expression matrix from TCGA. Differences in scores and 
immune checkpoint expression between the high- risk and 
low- risk groups were evaluated. An immune cell abun-
dance identifier (ImmuCellAI, http://bioin fo.life.hust.
edu.cn/ImmuC ellAI/), a method based on a gene expres-
sion matrix, was used to accurately estimate the abun-
dance of 24 immune cell subtypes.14 The Wilcoxon test 
was used to compare the levels of infiltration of immune 
cell subtypes between risk subgroups, and the results 
were visualized using the “fmsb” R package. The tumor 
immune dysfunction and exclusion (TIDE) algorithm was 
used. Patients with higher TIDE scores are more likely to 
show immune escape; therefore, TIDE scores were com-
pared between the risk subgroups to predict the response 
to immune checkpoint (PD- 1, CTLA4) blockade therapy. 
Detailed methodological information can be found in pre-
vious reports.15

2.5 | Clinical characteristics and gene set 
variation analysis

To further explain the prognostic differences of risk sub-
groups, the mutation statuses of genes with high mutation 
frequencies in AML were evaluated.16 The chi- square test 
was used to compare the distribution differences of clini-
cal information and gene mutation status between risk 
subgroups in the TCGA cohort. GSVA was used to evalu-
ate variation in pathway activities in an unsupervised 
manner.17 Using the “limma” package in R, the t- test was 
used to compare pathway scores between high- risk and 
low- risk groups, and only the subgroup- specific pathways 
with adjusted p- value <0.05 are presented in the Results.

2.6 | Prognostic analysis of gene 
expression profiles

A Kaplan– Meier survival analysis was used to character-
ize differences in survival with respect to IRG expression 
levels. To explore the connections between the expres-
sion of IRGs and clinical characteristics, the Kruskal– 
Wallis test was used. Immune scores from the tumor 
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microenvironment were obtained and GSVA was used to 
derive gene set activity scores. The associations between 
gene expression levels and the aforementioned scores 
were tested by Spearman's correlation analysis, and data 
were visualized using the “ggplot2” package.

2.7 | Connectivity Map analysis

The connectivity map (CMap) database was used to identify 
drugs expected to reverse the input differential expression 
profile.18 To explore potential treatments for high- risk popu-
lations, we analyzed differentially expressed genes (DEGs) 
between high-  and low- risk groups and used DEGs to ex-
plore small- molecule drugs based on CMap (https://clue.
io). DEGs were obtained by setting |log fold change (FC)| > 1 
and false discovery rate adjusted p- value <0.05 as thresholds. 
The DEGs were obtained using the “limma” package in R.

2.8 | Statistical analysis

Survival curves were compared using the Kaplan– Meier 
method. The Wilcoxon test was used to compare continu-
ous variables between the two groups. The correlations 
between gene expression and clinical characteristics were 
tested using the Kruskal– Wallis test. Differences in the 
distributions of clinical characteristics and the status of 
highly mutated genes between risk subgroups were iden-
tified using the chi- square test. Relationships between 
parameters were evaluated using Spearman's correlation 
test. A p- value of less than 0.05, was considered to be sig-
nificant unless stated otherwise. All data were analyzed 
using R (V.4.0.0).

3  |  RESULTS

3.1 | Module construction and screening

To avoid IRGs with low variation across samples, we re-
tained genes with an MAD exceeding 1.0, resulting in a 
total of 1813 IRGs. Nine TCGA samples were excluded 
owing to a lack of survival time data. Using the hclust 
function, TCGA- AB- 2987 was identified as an outlier and 
was excluded (Figure  S1A). All matching samples were 
clustered by average linkage and Pearson correlation 
distances (Figure  S1B). We used a soft threshold power 
of 4 to build a scale- free topology (scale- free R2  =  0.95) 
(Figure  1A,B). For the combination of modules, setting 
a cut height of 0.25, we proved that no modules showed 
a high similarity (Figure 1C). Subsequently, we obtained 
seven co- expression modules from the cluster tree, with 

57 to 662 IRGs (Figure  1D). The associations between 
module eigengenes and clinical traits were defined using 
the Pearson correlation coefficient (PCC). The mod-
ule showing the highest correlations with survival time 
(PCC = −0.21, p = 0.01) and survival status (PCC = 0.2, 
p = 0.02) was the turquoise module (n = 662; Table S1). 
Therefore, IRGs in the turquoise module were included in 
further in- depth analyses.

3.2 | Screening of prognostic immune- 
related genes

Among 662 genes in the turquoise module, 427 genes 
shared between the TCGA and GEO datasets were 
screened. By univariate Cox proportional hazard regres-
sion and Kaplan– Meier analyses, 11 IRGs were included 
in further analyses (Table S2), using p- value cutoffs of 
0.01 and 0.05. A LASSO Cox regression analysis was per-
formed, where seven IRGs (CALR, PSMD3, THBS1, BST2, 
MPO, OGFR, and CDK6) were used to construct the risk 
signature (Figure S2).

3.3 | Construction of a risk signature 
in the TCGA cohort

By a multivariate Cox regression analysis, an immune- 
related risk signature was established to predict the prog-
nosis of patients with AML. The risk score was calculated 
using the following formula based on seven IRGs: Risk sc
ore = BST2*0.184823 + MPO*(−0.139860) + PSMD3*1.0
18944 + THBS1*0.031434 + CALR*(−0.250446) + OGFR
*(−0.765625) + CDK6*(−0.592075). The median risk score 
was used as a threshold to divide the training cohort into a 
high- risk group (n = 71) and a low- risk group (n = 71). We 
visualized the risk scores and gene expression profiles of 
the risk subgroups (Figure 2A,B). The Kaplan– Meier curve 
indicated that the survival rate was lower in the high- risk 
group than in the low- risk group (p < 0.001; Figure 2C). 
The areas under the ROC curve (AUCs) of the risk score 
for predicting 1- , 2- , and 3- year OS were 0.803, 0.781, and 
0.757, respectively, suggesting that the risk score has an 
excellent predictive value (Figure 2D).

3.4 | Strong prognostic prediction 
ability of the risk signature

In a stratified survival analysis of OS in different risk 
groups and TCGA clinical subgroups, age (≥60  years & 
high risk vs. ≥60 years & low risk, p = 0.029; <60 years & 
high risk vs. <60 years & low risk, p < 0.001), sex (female 

https://clue.io
https://clue.io
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F I G U R E  1  Co- expression module recognition. (A) Scale independence and mean connectivity under different threshold conditions. (B) 
Scale- free topology (β = 4). (C) A cluster dendrogram of co- expressed genes was obtained by average linkage hierarchical clustering based on 
1– TOM. (D) Module- trait relationship plot. The numbers in each grid are Pearson correlation coefficients and p- values. Positive correlations 
are shown in red, while negative correlations are shown in blue. TOM: topological overlap measure
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& high risk vs. female & low risk, p < 0.001; male & high 
risk vs. male & low risk, p  <  0.001), FLT3 status (FLT3 
mutant & high risk vs. FLT3 mutant & low risk, p = 0.005; 
FLT3 wildtype & high risk vs. FLT3 wildtype & low risk, 
p  <  0.001), DNMT3A status (DNMT3A mutant & high 
risk vs. DNMT3A mutant & low risk, p = 0.015; DNMT3A 
wildtype & high risk vs. DNMT3A wildtype & low risk, 
p  <  0.001), NPM1 status (NPM1 mutant & high risk vs. 
NPM1 mutant & low risk, p  =  0.005; NPM1 wildtype & 
high risk vs. NPM1 wildtype & low risk, p < 0.001), cytoge-
netic risk (poor & high risk vs. poor & low risk, p = 0.042; 
intermediate & high risk vs. intermediate & low risk, 
p < 0.001; favorable & high risk vs. favorable & low risk, 
p  =  0.024), TP53 wild- type status (TP53 mutant & high 
risk va. TP53 mutant & low risk, p = 0.291; TP53 wildtype 
& high risk vs. TP53 wildtype & low risk, p < 0.001), and 
RUNX1 wild- type status (RUNX1 mutant & high risk vs. 
RUNX1 mutant & low risk, p  =  0.233; RUNX1 wildtype 
& high risk vs. RUNX1 wildtype & low risk, p  <  0.001) 
did not affect the performance of risk score in OS predic-
tion (Figure 3A– H). Due to the small sample size of the 
TP53 mutation group (n = 10) and the RUNX1 mutation 
group (n = 14), we found no differences in prognosis be-
tween risk score subtypes in these groups (Figure 3G,H). 
The grouping criterion for validation cohorts was based 
on the median risk score of the training cohort. For the 
GSE 37642 dataset, we visualized the risk score and gene 
expression characteristics of the high- risk group (n = 221) 
and the low- risk group (n = 196) (Figure 4A,B). Similarly, 
low survival rates in the high- risk groups were also ob-
served in this validation cohort (p  =  0.001; Figure  4C). 
The AUCs of the risk score for predicting 1- , 2- , and 3- year 

OS were 0.589, 0.610, and 0.621, respectively, supporting 
the predictive value of the risk score (Figure 4D). Using 
the GSE 146173 dataset, we visualized the risk score and 
gene expression characteristics of the high- risk and low- 
risk groups (Figure  4E,F). An increase in the risk score 
was associated with a poor prognosis. The high- risk group 
(n = 117) had a worse prognosis than that of the low- risk 
group (n = 129) (p = 0.032; Figure 4G). The AUCs of the 
risk score for predicting 1- , 2- , and 3- year OS were 0.610, 
0.581, and 0.601, respectively, supporting the predictive 
value of the risk score (Figure  4H). Multivariate analy-
sis of TCGA (p < 0.001) and GSE 146173 (p = 0.046) co-
horts showed that the risk score was still associated with 
OS when adjusted for age, cytogenetic risk, NPM1 status, 
DNMT3A status, FLT3- ITD, FLT3- TKD, TP53 status, 
RUNX1 status, CEBPA status, IDH1 status, IDH2 status, 
and ASXL1 status (Table 1).

3.5 | Immune landscape between 
high-  and low- risk AML groups

Immune cells in the tumor microenvironment have been 
implicated in tumor progression, immunotherapy, and pa-
tient outcomes. We assessed differences in the tumor mi-
croenvironment between high- risk and low- risk groups. 
The high- risk AML group had higher immune scores 
(p < 0.001; Figure 5A) and ESTIMATE scores than those of 
the low- risk group (p = 0.001; Figure 5B). We characterized 
differences in the expression levels of immune checkpoint 
genes between the risk subgroups. Figure  5C illustrates 
the immune checkpoint genes with higher expression in 

F I G U R E  2  Construction of risk 
signature based on the TCGA cohort. (A) 
Gene expression in TCGA risk subgroups. 
(B) Comparison of various characteristics 
between the two groups of patients in 
the TCGA dataset. (C) Kaplan– Meier 
survival analysis (p < 0.001) results for 
142 patients in the TCGA dataset. (D) 
ROC curve based on the risk score in the 
TCGA dataset
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F I G U R E  3  Stratified survival analysis of risk score subtypes in clinical subgroups. (A– H) Samples were grouped according to age 
(<60 years and ≥60 years), sex (male and female), FLT3 status, DNMT3A status, NPM1 status, cytogenetic risk (poor, favorable, and 
intermediate), TP53 status, and RUNX1 status
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high- risk AML than in low- risk AML, and Figure  5D il-
lustrates the immune checkpoints with high expression 
in low- risk AML. Using ImmuCellAI, we obtained the im-
mune cell abundance in each sample to compare immune 

cell infiltration levels between risk subgroups (Figure 5E). 
Nine immune cell subtypes, including T helper 1, CD4 
naïve T cells, monocytes, cytotoxic T cells, exhausted T cells, 
gamma delta T cells, effector memory T cells, macrophages, 

F I G U R E  4  Validation of the risk signature in GEO cohorts. Trends in gene expression, risk score, and survival status in the risk 
subgroups in the GSE 37642 (A, B) and GSE 146173 (E, F) cohorts. Kaplan– Meier survival analysis of risk score subtypes in the GSE 37642 
(C) and GSE 146173 (G) cohorts. The area under ROC curve based on risk scores in the GSE 37642 (D) and GSE 146173 (H) cohorts
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and dendritic cells, showed higher abundances in the high- 
risk group than in the low- risk group. In addition, CD8 
naïve T cells and central memory T cells showed higher lev-
els of infiltration in the low- risk group than in the high- risk 
group. The TIDE score (p = 0.021) was higher in the low- 
risk group, whereas the T- cell dysfunction score (p < 0.001) 
was higher in the high- risk group (Figure 5F,G).

3.6 | Correlation between TCGA AML 
subgroups and somatic mutations

We analyzed the potential reasons for the prognosis dif-
ferences of risk subgroups, and the distribution of the 

top- ranked mutated genes and clinical features between 
subgroups were visualized using a heatmap (Figure 6A). 
Chi- square tests revealed several significant differences 
between AML subgroups. The mutation frequencies of 
NPM1 (p  =  3.71e- 02), RUNX1 (p  =  4.88e- 02), DNMT3A 
(p = 7.68e- 02), and FLT3- ITD (p = 3.04e- 01) were higher 
in the high- risk group than in the low- risk group, although 
the differences in FLT3- ITD and DNMT3A mutation fre-
quencies were not statistically significant. No significant 
differences in the mutation statuses of CEBPA (p = 5.96e- 
02), IDH2 (p  =  1), IDH1 (p  =  3.98e- 01), TET2 (p  =  1), 
TP53 (p  =  3.25e- 01), and NRAS (p  =  1) were observed 
between the risk subgroups. Advanced age (p  =  3.69e- 
03), death status (p  =  3.12e- 05), and worse cytogenetic 

T A B L E  1  Univariate analysis and multivariate analysis of the correlation of risk score with overall survival

Parameters

Univariate analysis Multivariate analysis

HR 95% CI p HR 95% CI p

TCGA set

Age (<60/≥60) 3.11 2.02– 4.77 <0.001 2.87 1.77– 4.65 <0.001

Cyto risk(poor/
favorable + intermediate)

1.87 1.15– 3.03 0.012 1.31 0.74– 2.32 0.349

NPM1 mutation (yes/no) 0.77 0.49– 1.22 0.261

DNMT3A mutation (yes/no) 0.46 0.29– 0.75 0.002 0.68 0.38– 1.20 0.182

FLT3- ITD (yes/no) 1.36 0.81– 2.26 0.243

FLT3- TKD (yes/no) 2.19 1.18– 4.06 0.013 2.63 1.20– 5.76 0.016

TP53 mutation (yes/no) 4.71 2.37– 9.35 <0.001 3.63 1.59– 8.28 0.002

RUNX1 mutation (yes/no) 1.84 0.99– 3.41 0.052

CEBPA mutation (yes/no) 1.12 0.54– 2.31 0.767

IDH1 mutation (yes/no) 0.81 0.39– 1.68 0.570

IDH2 mutation (yes/no) 1.01 0.52– 1.96 0.967

ASXL1 mutation (yes/no) 1.71 0.42– 6.99 0.452

Risk score (high/low) 3.64 2.31– 5.72 <0.001 2.96 1.75– 5.00 <0.001

GEO set (GSE 146173)

Age (<60/≥60) 2.26 1.63– 3.13 <0.001 2.05 1.44– 2.90 <0.001

Cyto risk(poor/
favorable + intermediate)

2.21 1.51– 3.22 <0.001 1.73 1.05– 2.85 0.031

NPM1 mutation (yes/no) 0.54 0.38– 0.78 0.001 0.70 0.44– 1.11 0.127

DNMT3A mutation (yes/no) 1.22 0.87– 1.71 0.248

FLT3- ITD (yes/no) 0.93 0.62– 1.41 0.742

FLT3- TKD (yes/no) 0.70 0.39– 1.27 0.244

TP53 mutation (yes/no) 3.32 2.02– 5.46 <0.001 2.30 1.21– 4.37 0.011

RUNX1 mutation (yes/no) 1.87 1.29– 2.71 0.001 1.52 0.94– 2.45 0.089

CEBPA mutation (yes/no) 0.45 0.14– 1.42 0.173

IDH1 mutation (yes/no) 1.43 0.84– 2.43 0.191

IDH2 mutation (yes/no) 1.38 0.88– 2.18 0.159

ASXL1 mutation (yes/no) 1.52 0.99– 2.34 0.056

Risk score (high/low) 1.29 1.11– 1.50 0.001 1.19 1.00– 1.40 0.046

Abbreviations: CI, Confidence interval; Cyto risk, cytogenetic risk; HR, hazard ratio.
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F I G U R E  5  Landscapes related to immunity in TCGA risk subgroups. (A) Immune scores in high-  and low- risk groups derived from 
the ESTIMATE algorithm. (B) ESTIMATE scores in high-  and low- risk groups. (C, D) Differences in the expression levels of immune 
checkpoints between risk subgroups. Immune checkpoints with similar expression trends were classified into a single group. (E) 
Abundances and differences of 24 immune cells in risk subgroups. (F) Differences in TIDE scores between high-  and low- risk groups. (G) 
Differences in T cell dysfunction scores between high-  and low- risk groups. TIDE, tumor immune dysfunction and exclusion. *p < 0.05, 
**p < 0.01, ***p < 0.001
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F I G U R E  6  Heatmap of patient characteristics and GSVA. (A) The distributions of mutation frequencies and clinical characteristics in 
high- risk and low- risk groups of TCGA samples. (B) GSVA of the two subgroups. GSVA, gene set variation analysis
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risk (p  =  2.03e- 06) were correlated with the high- risk 
group. Sex (p = 8.66e- 01) was not correlated with the risk 
subtypes.

3.7 | Differential pathways in patients 
with AML

Based on the risk status, we implemented a GSVA of 
the subgroups to obtain enriched biological pathways in 
the two subgroups. Hematopoietic stem cells/Leukemia 
stem cells, AML with CEBPA mutation, AML with 
FLT3- internal tandem duplication mutation, TALL1 
pathway, and MHC pathway, apoptosis were enriched 
in the high- risk group (Figure  6B). Ascorbate and al-
darate metabolism, retinol metabolism, and starch and 
sucrose metabolism were enriched in the low- risk group 
(Figure 6B).

3.8 | Clinical relevance analysis of genes

As described earlier, a Kaplan– Meier survival analy-
sis indicated that elevated expression levels of BST2 
(p = 0.034), OGFR (p = 0.014), PSMD3 (p = 0.021), and 
THBS1 (p = 0.014) were associated with a poor progno-
sis in AML, and low expression levels of MPO (p < 0.001), 
CALR (p = 0.030), and CDK6 (p = 0.045) were associated 
with a poor OS (Figure 7A). Stratified by cytogenetic sta-
tus, CALR, THBS1, BST2, MPO, and OGFR levels differed 
among three subgroups (poor cytogenetic groups, favorable 
cytogenetic groups, and intermediate cytogenetic groups) 
(Figure 7B). The differences in IRG expression among the 
three subgroups are shown in Figure 7C, according to age 
group (<30  years, 30– 60  years, and >60  years). Finally, 
based on the GSVA scores for the gene set and immune 
scores, we evaluated correlations between IRG expression 
and scores (Figure S3).

3.9 | Drug prediction based on CMap

To identify compounds predicted to alter the character-
istic gene expression profiles for high- risk populations, 
the CMap database was used for the prediction of small- 
molecule drugs based on the 50 most significantly up-
regulated DEGs and 50 most significantly downregulated 
DEGs in the high- risk group. Finally, we screened 21 po-
tential small- molecule drugs and derived 19 mechanisms 
based on a mode- of- action (MoA) analysis (Figure 8). In 
particular, ABT- 737 acted as a BCL inhibitor, TG- 101348 
functioned as a FLT3 inhibitor, and six drugs (digitoxi-
genin, bufalin, strophanthidin, digitoxin, ouabain, and 

helveticoside) acted as ATPase inhibitors. These com-
pounds were derived from the IRG signature and are po-
tential therapeutics for high- risk AML.

4  |  DISCUSSION

Although cytogenetic risk stratification has been proposed 
in recent years, AML is a heterogeneous disease, espe-
cially in terms of the immune microenvironment, which 
leads to wide variation in prognosis.19,20 Other clinical 
features such as age, performance status, and gene mu-
tations (such as NPM1, FLT3, DNMT3A, CEBPA, TP53) 
are considered to be significant prognostic factors in pa-
tients with AML at initial diagnosis.16 To determine the 
AML subtypes associated with immune- related genes and 
a better prognosis, we used a WCGNA to identify immune 
genes related to prognosis and established a prognostic 
risk signature based on seven genes associated with OS 
(CALR, PSMD3, THBS1, BST2, MPO, OGFR, and CDK6).

We verified the prognostic value of the IRG signature. 
When the median risk score was used to divide samples 
into two groups, the low- risk group showed a significantly 
better OS based on the Kaplan– Meier survival curve. 
Stratified survival analysis revealed that the medium risk 
score can still determine high- risk and low- risk patients in 
different clinical subgroups. More importantly, based on 
the TCGA cohort and GSE 146173 dataset, the risk score 
was still significantly associated with the OS in AML, 
even after adjustment for clinical factors (age, cytogenetic 
risk, and gene mutations). These results suggest that the 
risk signature we constructed has good application value 
in prognosis prediction. After that, we sought to parse 
out clinical features of patients with high- risk scores, 
the high- risk group displayed a strong tendency toward 
advanced age, poor cytogenetic risk, and RUNX1 muta-
tion, all of which were indicative of a poor prognosis in 
AML.16,21 We also noticed that the high- risk group showed 
a higher frequency of FLT3 mutations, although the dif-
ference was not statistically significant. FLT3 mutations 
include internal tandem duplications (ITDs) and tyrosine 
kinase domain (TKD). However, the predictive value of 
these mutations for prognosis remains controversial.21

Calreticulin (CALR) is a major Ca2+- binding protein in 
the endoplasmic reticulum. CALR mutations may inhibit 
the anti- tumor effect of ICB by inhibiting the phagocytic 
function of dendritic cells.22 Thrombospondin 1 (THBS1) 
encodes an adhesive glycoprotein that mediates cell- to- cell 
interactions and is necessary for efficient CD47 activation, 
which induces the overexpression of pro- inflammatory 
osteopontin in early monocyte- derived macrophages.23 
Bone marrow stromal cell antigen 2 (BST2) is involved in 
the growth and development of B cells. Type I interferons 
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upregulate BST- 2, thus reducing natural killer (NK) cell 
responses to HIV- 1- infected cells.24 Myeloperoxidase 
(MPO) is a heme protein synthesized during myeloid 
differentiation; it constitutes the major component of 
neutrophil azurophilic granules and is a fundamental 

component of the innate immune response against mi-
crobial pathogens.25 The OGF- OGFR axis can regulate the 
degree of CD3+ T- cell infiltration in the central nervous 
system.26 Cyclin- dependent kinase 6 (CDK6) can promote 
the expression of pro- inflammatory factors (IL- 17 and 

F I G U R E  7  Clinical value of immune- related genes. (A) Kaplan– Meier survival curves for genes. All samples were divided into a high 
expression group and a low expression group according to the median gene expression value. (B, C) Differences in the expression levels of 
genes with respect to cytogenetic risk and age. *p < 0.05, **p < 0.01, ***p < 0.001
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IL- 36) by phosphorylating EZH2.27 In addition, CDK6, as 
an effector of TCR, drives proliferation in Treg cells.28 In 
summary, the IRG signature was associated with the im-
mune response.

Subsequently, we explored the relationships be-
tween the risk subgroups, tumor immune microenvi-
ronment, and immune checkpoint genes. We observed 
that the high- risk group had a higher immune score and 
a higher ESTIMATE score than those of the low- risk 
group, suggesting that immune cells are more abundant 
in the high- risk group. The risk subgroups defined by 
the median risk score had different immune checkpoint 
expression patterns, with higher frequencies of PD- 1, 
PD- L1, PD- L2, CTLA- 4, and LAG3 expression in high- 
risk populations. Patients with high levels of immune 
checkpoints are more likely to develop T- cell exhaus-
tion, leading to an immunosuppressive microenviron-
ment and a worse prognosis.12,29 In addition, interferon 

gamma derived from NK cells upregulates MHC I, lead-
ing to resistance to the anti- cancer efficacy of NK cells.30 
The increase in exhausted T cells and the decline in cen-
tral memory T cells may be indicators of recurrence after 
hematopoietic stem cell transplantation (HSCT) in the 
high- risk group.31 Therefore, the high- risk group with 
high immune checkpoint expression and exhausted T- 
cell infiltration exhibited a poor prognosis, consistent 
with our results. In the tumor microenvironment, the 
binding of programmed cell death 1 (PD- 1) and PD- L1 
has a negative- modulating effect on T cells and reduces 
the production of cytokines, thereby inhibiting cytotoxic 
T- cell- mediated anti- tumor immunity and tumor clear-
ance ability.32,33 Unfortunately, high PD- 1 expression 
often results in an exhausted T- cell phenotype, leading 
to immune escape and poor outcomes.29 The immuno-
suppressive mechanism and effect of cytotoxic T lym-
phocyte antigen 4 (CTLA4) also show resemblance with 

F I G U R E  8  Connectivity Map (CMap) analysis. Row names indicated the mode of action, and column names corresponded to small- 
molecule drugs
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PD- 1.34 ICB therapy is still a very promising method to 
cure AML; in particular, immune genes provide a basis 
for the identification of candidate targets for AML ICB 
therapy.35 The expression of immune checkpoints has 
been considered an indicator of prognosis in patients 
receiving immunotherapy.36,37 The roles of PD- 1 and 
PD- L1 in immunosuppression in cancers make them 
potential targets for ICB therapy.38

In a recent phase 2 study, ICB therapy (nivolumab) 
concurrent with azacytidine resulted in a higher objective 
response rate, longer median OS, and longer event- free 
survival than those of chemotherapy alone.39 In addi-
tion, PD- L1 can increase the efficacy of other treatments 
when used in combination with them.40,41 In our study, 
the high- risk group had lower TIDE scores and higher T 
cell dysfunction scores; accordingly, the greater response 
to ICB therapy might be explained by higher expression 
levels of immune checkpoints.

To gain a comprehensive view of the immunological 
nature of AML subtypes, we obtained somatic mutations 
in both groups. NPM1 mutation frequency was higher in 
the high- risk group than in the low- risk group and might 
be an immunotherapy target.42 We found that the num-
ber of elderly patients differed significantly between the 
risk subgroups, and more precisely, with more elderly pa-
tients in the high- risk group.43 The T cells of patients with 
AML showed signs of aging and exhaustion at the time of 
diagnosis.

Aging involves shortened telomere ends; however, 
other factors can induce telomerase- independent senes-
cence.44,45 Leukemia stem cells are defined by their role in 
the initiation of leukemia and their unique immune resis-
tance characteristics.46 Treatment with a PARP1 inhibitor 
and NK cell transfer can inhibit leukemia in mouse mod-
els.47 We found that leukemia stem cell- related pathways 
are enriched in the high- risk group.

A CMap analysis accurately identified targeted in-
hibitors known to have specific effects on AML, in-
cluding a BCL inhibitor (ABT- 737),48 FLT3 inhibitor 
(TG- 101348),49 ATPase inhibitor,50 HDAC inhibitor 
(droxinostat),51 and CDK inhibitor (indirubin).52 These 
compounds are candidates for the treatment of high- 
risk AML. Given that the survival rate of patients treated 
with a single immune checkpoint inhibitor or targeted 
therapy is not ideal, the combination of the two may 
produce long- term effects.

Our study has many highlights. Several researches pre-
viously have proposed certain risk signatures based on 
various characteristics, in hopes of stratifying the progno-
sis of cancer patients.53,54 Zheng et al. have identified a 
signature of seven- lncRNA to predict the OS of patients 
with AML.6 Compared with those studies, the WGCNA 

used in our study has a unique advantage in dealing with 
gene expression data because it allows us to gain insight 
into the connection between coexpression modules and 
clinical characteristics of the disease. Moreover, our risk 
signature can distinguish between low- risk and high- risk 
patients in different clinical subgroups, regardless of their 
age, sex, cytogenetic risk, NPM1, DNMT3A, and FLT3 
mutation status. Alrisk signature can be used to predict 
the responsiveness of patients with AML to ICB therapy. 
ICB therapy is a breakthrough in cancer treatment, but its 
clinical benefit is restricted to a limited range of patients. 
Therefore, based on our risk signature, we predict a poten-
tial therapeutic strategy with drugs that target the gene ex-
pressions associated with high- risk populations. This may 
reveal potential features for developing a comprehensive 
treatment regime for AML patients in near future.

Although our study provides insight into the impact 
of immune responses in AML, it had several limitations. 
First, the predictive risk signature was generated based on 
data obtained from TCGA and GEO, and complete infor-
mation for all potentially relevant parameters could not 
be obtained for each patient. Second, clinical information 
and expression profile data were obtained from different 
sources, and differences in analysis processes may have 
affected the accuracy of the study results. Third, our re-
search results were derived from the analysis of public 
data, and these results were not validated at the cellular 
and molecular levels using in vitro/in vivo experiments 
with active patient samples.

5  |  CONCLUSION

In summary, we identified a promising immune- related 
prognostic biomarker for AML. The newly established 
AML subtypes and biomarkers are potential predictive 
indicators for the response to ICB therapy; however, in- 
depth studies are needed to validate these findings.
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