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Abstract Rapid development of high-throughput technologies has permitted the identification of an increasing number of
disease-associated genes (DAGs), which are important for understanding disease initiation and developing precision
therapeutics. However, DAGs often contain large amounts of redundant or false positive information, leading to difficulties
in quantifying and prioritizing potential relationships between these DAGs and human diseases. In this study, a network-
oriented gene entropy approach (NOGEA) is proposed for accurately inferring master genes that contribute to specific
diseases by quantitatively calculating their perturbation abilities on directed disease-specific gene networks. In addition, we
confirmed that the master genes identified by NOGEA have a high reliability for predicting disease-specific initiation
events and progression risk. Master genes may also be used to extract the underlying information of different diseases, thus
revealing mechanisms of disease comorbidity. More importantly, approved therapeutic targets are topologically localized in
a small neighborhood of master genes in the interactome network, which provides a new way for predicting drug-disease
associations. Through this method, 11 old drugs were newly identified and predicted to be effective for treating pancreatic
cancer and then validated by in vitro experiments. Collectively, the NOGEAwas useful for identifying master genes that
control disease initiation and co-occurrence, thus providing a valuable strategy for drug efficacy screening and re-
positioning. NOGEA codes are publicly available at https://github.com/guozihuaa/NOGEA.
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Introduction

The onset and progression of most complex diseases often
involve the dysfunction of thousands of genes as well as
certain altered interactions among them. High-throughput
technologies such as gene expression profiling and whole-
genome sequencing have permitted the identification of an
increasing number of disease-associated genes (DAGs) [1],
which may provide valuable insights into mechanisms of
disease initiation and progression. However, as the existing
DAGs are usually derived from multiple sources, they often
contain large amounts of redundant or false positive in-
formation [2] due to collection bias and noise, such that
causal relationships among these genes in most cases re-
main elusive. Therefore, identifying master genes that
control disease state transitions from large numbers of
DAGs plays a critical role in understanding the mechanisms
of disease initiation. In addition, complex diseases show
considerable comorbidity [3]. The defects of master genes
in one disease may initiate interaction cascades that lead to
the co-occurrence of multiple diseases in a given patient.
Pharmacological targeting of the DAG module in the hu-
man interactome has proven to be a valuable strategy for
drug efficacy screening [4]. At present, it is unclear whether
the identification of master genes will further facilitate the
network-based drug repositioning.

Recent trends in omics technologies and complex bio-
logical networks have led to a proliferation of attempts to
find the master genes for different diseases. For example,
genome-wide association studies (GWAS) have emerged as
a powerful tool for detecting sequence variations associated
with many human traits and diseases [5]. Due to the low
frequency of many mutations, GWAS usually require large
cohort size to attain sufficient statistical power. More im-
portantly, GWAS identify only the genetic risk factors as-
sociated with the disease rather than the master genes of the
disease phenotypes, because patient genomes contain a
certain proportion of “passenger mutations” [6] and the
initiation of many diseases is often triggered by the inter-
play between genetic and non-genetic factors. Tran-
scriptome analysis is considered to be an effective
complement of GWAS due to its ability to capture non-
genetic perturbations to the organism. Yet variations in
mRNA expression are sometimes caused by aberrant pro-
tein activities of upstream regulators such as transcription
factors, making it difficult to directly identify the master
gene set using transcriptome profiling [7].

Recently, gene co-expression-based approaches have
been proposed to construct context-specific regulatory net-
works [8], and a local network entropy measure has been
developed based on co-expression networks for identifying
master genes [9]. While these approaches provide new ways

to find master genes, building a highly confident co-
expression regulatory network often requires large sample
size, which is usually not available for relatively rare
diseases. To overcome this limitation, protein–protein
interaction (PPI) network-based approaches have been
developed to infer master genes that are important for
disease-related biological processes, such as predicting
therapeutic targets [10] or driver genes [11]. Some topo-
logical parameters such as the degree and betweenness
centrality of the nodes are usually used as important mea-
sures to screen master genes [12]. However, current ap-
proaches are based mainly on the constant global undirected
interactome, ignoring the fact that disease initiation and
therapeutics are frequently context-dependent, depending
on specific tissues or pathological microenvironments [13].
Therefore, some genes that exhibit important topological
properties on the interaction network, such as the hub
genes [14], will be automatically selected as key regulators
for disease state initiation and maintenance, leading to a
possible increase in false-positive master genes. Con-
versely, some classes of genes presenting as upstream regu-
lators of a signaling cascade, such as the G protein-coupled
receptors [15], may be identified as dispensable genes due
to their relatively low degrees in the interactome, thus de-
creasing the sensitivity for distinguishing core ones from
the giant pool of DAGs.

In this study, we developed a network-oriented gene
entropy approach (NOGEA) to quantify the perturbation or
regulatory ability of each DAG in distinct disease contexts
by assembling and interrogating disease-specific regulatory
networks. For each disease, genes exhibiting high entropy
values by our in silico method were identified as master
genes, whose altered expression was considered to be suf-
ficient for disease state transitions; these master genes were
further adopted to investigate comorbidity and causal re-
lationships among different diseases. We further confirmed
that existing effective drugs are most likely to target the
local module of master genes in the interactome, and
identified 11 old drugs as potent anti-cancer agents for
pancreatic cancer treatment.

Method

Dataset collection

The DAGs for all diseases analyzed in this study were ob-
tained from four publicly available databases, including
KEGG Disease [16], Comparative Toxicogenomics Data-
base [17], Therapeutic Target Database [18], and
PharmGKB [19]. All disease names and their corresponding
IDs were standardized by mapping to Medical Subject
Headings (MeSH; https://www.nlm.nih.gov/mesh/), and
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official gene symbols for these DAGs were retrieved from
GeneCards (http://www.genecards.org/). We then con-
ducted a disease filtering process to ensure disease speci-
ficity. We first removed diseases with levels < 2 on the
MeSH trees, such as “nervous system diseases” and
“cardiovascular diseases”, as these disease types are too
broad. Tanimoto similarity (ratio of the number of shared
DAGs to the number of joined DAGs) was then computed
for each disease pair and used to remove diseases showing
high similarity (> 0.50) with its descendant diseases. The
weighted directed PPI network was constructed using data
from a previous study [20], which consisted of 13,684
weighted interactions among 6082 proteins. The DAGs
were then mapped to corresponding proteins in the PPI
network, and those diseases with at least 15 DAGs in the
human interactome were retained, because they are likely to
induce a module on the network. As a result, we obtained
11,414 disease–gene associations between 274 diseases and
2848 protein-coding genes. For each disease, we manually
extracted drug–disease associations from the drug indica-
tion information in DrugBank [21]. In addition, we obtained
drug–target interactions for all FDA-approved drugs from
DrugBank. To construct a disease comorbidity network, we
retrieved disease pairs with comorbidity relationships from
a previous study [3] of 665 diseases and their corresponding
genes extracted from Online Mendelian Inheritance in Man
(OMIM) [22].

Construction of NOGEA

Construction of a flux matrix based on the expectation of
the Bernoulli distribution

To construct the directed disease-specific gene networks,
DAGs are mapped to the directed PPI network. For any
given disease D, whose m DAGs can be mapped to the
directed PPI network, an initial DAG vector

{ }V V V V= , … , , … ,D D
i

D
m

D( )
1
( ) ( ) ( ) is generated to represent

the disease, where Vi
D( ) is the i-th DAG. The directed

shortest path between two DAGs of disease D is calculated
using the “igraph” package [23] based on the R 3.32 en-
vironment (r-porject.org). For a given DAG pair of Vi

D( )

andV j
D( ), I i j( , ) is a random variable that obeys the Bernoulli

distribution and represents the interaction or information
transferring from Vi

D( ) toV j
D( ). The distribution function of

I i j( , ) is defined as

( )p I a d e e= ; , = ( ) (1 ) (1)i j i j
d a d a

( , ) ( , )
× × 1

i j i j( , ) ( , )

where a = 1 or 0, indicating whether signal transduction
exists between the paired nodes Vi

D( ) and V j
D( ), and is a

scale parameter to adjust the likelihood for different

distances. In addition, d i j( , ) is the directed distance between

the given paired nodes Vi
D( ) and V j

D( ), i.e., the number of
edges in a directed shortest path connecting them, and is
calculated using the “igraph” package based on Dijkstra’s
algorithm, reflecting the possibility of the pairwise regu-
latory relationship from Vi

D( ) and V j
D( ). The details for

determining the optimal scale parameter are presented in
File S1 and Figures S1 and S2. Therefore, the space of
“possible” values assumed by I i j( , ) is {0, 1}, and if a = 1,

( )p a d; ,i j( , ) represents the likelihood that there is a sig-

naling flux between the paired nodes. In the field of net-
work communication, it is widely accepted that the success
rate of signal propagation decays exponentially with in-
creasing distance [24]. In addition, previous studies have
demonstrated that exponential decay is a popular kernel to
characterize the network influence between two nodes [25].
Previously, we have used the exponential component to
evaluate the association between two nodes in PPI net-
works [26]. Thus, we believe that the success probability of
signal transduction between two proteins decays ex-
ponentially with the increase of their distance, and the
exponential component e d× i j( , ) is useful for representing
the success probability. In this way, the stochastic in-
formation flux matrix for a given disease is obtained by a
simplified equation

{ }( )P I d p I d

e

( ; , ) = = 1; ,

= { } (2)

i j i j
m m

d
m m

( , ) ( , )
( × )

×
( × )

i j( , )

And, ( )p I d= 1; ,i j i j( , ) ( , ) is equal to the expectation of I i j( , ),

where

( )( )E p I d e; , = (3)i j i j
d

( , ) ( , )
× i j( , )

The expectation is subsequently used to estimate the
distribution of signaling flux. For a given disease D with m
DAGs, the biological signals may be transmitted between

any paired nodes/DAGs Vi
D( ) and V j

D( ). We then assume

that the edge (or the node pair) through which signals are
passed is a random variable F, and its event space is

{ }
{ }

f i m i m i j

f f f

| 1 , 1 ,

= , … , , … , (4)

i j

i j m m

( , )

(1,2) ( , ) ( , 1)

where f i j( , ) represents signals that may be transmitted from

Vi
D( ) and V j

D( ).

Normalization of the flux matrix

The probability distribution of signal flux is estimated from
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( )( ) ( )p F f Z E p I d Z e= = 1 × ; , = 1 × (5)i j i j i j
d

( , ) ( , ) ( , )
× i j( , )

where Z is the normalization constant or partition function,
and

Z e= (6)
i

m

j j i

m
d

=1 =1,
× i j( , )

to ensure that the sum of the probability is 1.

Definition and calculation of disease gene entropy

Based on the probability distribution of signal flux, we
calculate the entropy for a given disease S D( ) in terms of the
weighted Shannon entropy formula, which can be inter-
preted as the degree of disorder or complexity for the
disease-specific context

( ) ( )
S

p f k Logp f

m k
=

× ×

( 1)
(7)D i

m
j j i
m

i j j
out

i j

j
m

j
out

( ) =1 =1, ( , ) ( , )

=1

where k j
out is the out-degree of node V j

D( ) in the directed
PPI network, which is calculated using the “igraph” pack-
age. Interestingly, we find that the disease entropy S D( ) can
be factorized as shown in Equation (8)

S S= (8)D
i

m

i
D( )

=1

( )

where Si
D( ) is the gene entropy of DAG Vi

D( ), which is
obtained by

( ) ( )
S

p f k Logp f

m k
=

× ×

( 1)
(9)i

D j j i
m

i j j
out

i j

j
m

j
out

( ) =1, ( , ) ( , )

=1

Therefore, Si
D( ) is a sub-entropy of disease entropy S D( ),

and is considered as the “disorder contribution” to a disease-
specific context.

Gene entropy value normalization

Through the aforementioned procedure, a gene entropy map
is established for 274 diseases. For any given disease D, the
gene entropy Z-scores are calculated, making the gene en-
tropy values of different diseases comparable

( )
( )ZS

S µ S

S
= (10)i

D i
D

i
D

i
D

( )

( ) ( )

( )

where ( )µ Si
D( ) and ( )Si

D( ) are the estimation of the ex-

pectation and standard deviation of Si
D( ) for disease D, re-

spectively. In addition, to assess the disturbance capability
of a gene in a disease-specific network in a more intuitive
manner, the rank scores for all DAGs are calculated
according to their entropy values, which range from 0 to 1
and reflect their likelihood as master genes.

Rank score calculation of gene entropy

The gene entropy values for disease D are sorted in an
ascending order, and a rank list is generated

{ }( ) ( ) ( )RL rl S rl S rl S= , … , , … , (11)D D
i

D
m

D( )
1
( ) ( ) ( )

where the ( )rl Si
D( ) is the rank score of Si

D( ). Note that those

genes that possess equal entropy values have the same rank

scores. For example, if there are k genes { }V V, … ,i
D

i k
D

+1
( )

+
( )

possessing equal entropy values{ }S S, … ,i
D

i k
D

+1
( )

+
( ) , their rank

scores are determined by Equation (12)

( )( ) ( )rl S rl S
po S

k= … = = (12)i
D

i k
D j

k
i j

D

+1
( )

+
( ) =1 +

( )

where ( )po Si j
D

+
( ) is the position of Si j

D
+
( ) in the ascending

entropy value list. Based on the rank list, rank score vector
RS D( ) is generated by Equation (13)

( ) ( )
RS

rl S min RL S

max RL min RL=
( )

( ) ( ) (13)D i
D D

D D

m

( )

( ) ( )

( ) ( )

(1× )

where max RL( )D( ) and min RL( )D( ) are the maximum and
minimum values of RL D( ), respectively.

Disease–gene classification based on the gene entropy
values

To comprehensively explore the biological meaning of the
entropy, we divide all DAGs into three (i.e., master, interim,
and redundant) groups based on their entropy values using
an adaptive approach. Briefly, we create an entropy value
curve for each disease, and identify two inflection points in
the curve as thresholds. Specifically, for each disease D, we
rank each gene entropy value (Si

D( )) in ascending order.
Then we map each entropy value onto a two-dimensional
coordinate system, such that the lowest entropy value (S D

1
( ))

becomes coordinate (1,S D
1
( )), the second lowest value be-

comes (2,S D
2
( )), and so on, until the maximum entropy value

(Smax
D( )) is reached. Two inflection points are identified in the

entropy value curve from the intervals of 10th–50th per-
centile and 51st–90th percentile of all entropy values, re-
spectively, which are separately defined as the threshold
points of most rapid increase from the low to the medium
and from the medium to the high entropy values. The en-
tropy values corresponding to the two inflection points are
used as the adaptive disease-specific classification
thresholds. Master genes of all diseases are then merged and
adopted as the whole master gene set to explore their
common biological meanings. Interim and redundant genes
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from different diseases are treated in the same way to obtain
the whole interim and redundant gene sets, respectively.
Some genes may belong to all three gene sets (master, in-
terim, and redundant), because they play different roles in
distinct disease contexts.

Disease comorbidity relationship evaluation

We first construct a real human disease comorbidity net-
work (HDCN), where nodes represent diseases and edges
represent the reported comorbidity relationships, respec-
tively. Then, five different types of inferred disease co-
morbidity networks are built to compare with the HDCN: 1)
a master gene-based disease network (M-GDN), where
edges link two different diseases only if they share at least
one high-entropy gene, 2) a redundant gene-based disease
network (R-GDN), 3) an interim gene-based disease net-
work (I-GDN), 4) an all DAG-based disease network
(A-GDN), and 5) a traditional hereditary disease network
(THDN). A Tanimoto coefficient is used to evaluate the
similarity between different networks as shown in Equation
(14)

T A B E A E B
E A E B E A E B( , ) = ( ) ( )

( ) + ( ) ( ) ( ) (14)

where A and B are different networks, E( ) represents the
edge set of a given network and E( ) is the number of edges
in the network. To assess the significance of the similarity of
different networks, a random gene-based disease network
(R-GN) is randomly generated 1000 times and compared
with the HDCN using Equation (14). In the R-GN, each
disease involves a randomly sampled gene set with the same
size as the disease in A-GDN.

Previous research has demonstrated that cellular intera-
ction links result in statistically significant comorbidity
patterns [3]. Therefore, we believe that the directed intera-
ction strength from the DAGs of one disease to another in
the directed cellular network can reflect the causal re-
lationship between the two diseases. To evaluate whether a
causal relationship exists between two diseases, we estimate
the significance of the interaction strength between the
DAGs of the disease pairs using the Monte Carlo method.
We first define a raw causal relationship score (RCRS) for
two given diseases D1 and D2

( )( ) ( )
RCRS D D

p I d p I d

( 1 2) =

; × ; (15)
i D j D i j i j i j i j1, 2 ( , ) ( , ) ( , ) ( , )

where ( )p I d;i j i j( , ) ( , ) is calculated by Equation (1), d i j( , ) is the

directed distance between a paired master genes Vi
D( 1) and

V j
D( 2), and ( )( )p I d;i j i j( , ) ( , ) is an indicator function. In ad-

dition, p( ) is calculated as

p
p p
p p( ) =

1,
0, < (16)cut

cut

where pcut is a threshold, below which the probability is
discarded and considered not contributive to the overall
interaction, and pcut is determined according to a pre-
vious study [27]. We then use a normalized causal re-
lationship score (NCRS) to quantify the risk that disease
D1 will induce disease D2. The NCRS is defined in
Equation (17)
NCRS D D

RCRS D D µ RCRSS D D
RCRS D D

( 1 2)

= ( 1 2) ( ( 1 2))
( ( 1 2)) (17)

where µ RCRS D D( ( 1 2)) and RCRS D D( ( 1 2)) are
the estimation of the expectation and standard deviation of
RCRS under the same condition, respectively. Then, Monte
Carlo simulation was performed 1000 times to estimate
µ RCRS D D( ( 1 2)) and RCRS D D( ( 1 2)) by ran-
domly sampling the same number of genes asD1 andD2. In
each simulation, the values and the mean and standard de-
viation of RCRS are calculated. To assess whether the
causal relationship from disease D1 to D2 is significant, the
P value of RCRS D D( 1 2) is further calculated as shown
in Equation (18)

p RCRS D D
n

N( ( 1 2)) =
+ 1

+ 1 (18)RCRS random RCRS D D

total

( )> ( 1 2)

where Ntotal is the total number of simulations, and
nRCRS random RCRS D D( )> ( 1 2) is the number of random RCRS
values that are larger than RCRS D D( 1 2). The
significance for RCRS is set to P < 0.01. Finally, for a
disease pair D1 and D2, if both RCRS D D( 1 2) and
RCRS D D( 2 1) are significant (P < 0.01), the two disea-
ses are considered to be co-occurrent; whereas, if only one
is significant (P < 0.01), we determine that a causal re-
lationship exists between the two diseases.

Calculation of drug disturbance entropy

To quantify the effects of a drug on each disease based on
the gene network entropy, we apply an ensemble approach,
referred to as drug disturbance entropy (DDE), to evaluate
the relationship between drug targets and disease-associated
proteins (encoded by DAGs) in the interactome. We first
evaluate the linkage strength between each DAG and drug
target in the interactome, which is then transformed to a
probability. The perturbation value for each target and DAG
is defined as the product of the strength probability and the
DAG entropy

( )T p I d S= = 1; × (19)t i t i t i i( , ) ( , ) ( , )

where ( )p I d= 1;t i t i( , ) ( , ) represents the strength probability
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between drug target t and DAG Vi
D( ), Si is the entropy value

of DAG Vi
D( ), and d t i( , ) is the distance between drug target t

and DAG Vi
D( ). The raw DDE, which represents an esti-

mate of a drug’s therapeutic effects through distinct targets,
is defined as

( )ET T V T T( , ) = × (20)D
t T i G t i t i

( )
, ( , ) ( , )

where T t i( , ) is the perturbation entropy between target t and

DAG Vi
D( ), and ( )T t i( , ) is an indicator function as shown

in Equation (21)

( )T
T T
T T

=
1,
0, <

(21)t i
t i cut

t i cut
( , )

( , )

( , )

where Tcut is a cut-off threshold of the perturbation values,
which is determined by extensive sampling, and relation-
ships with a perturbation value below this threshold are
discarded. The remaining values are summed as the raw
DDE of the drug to the disease. The advantage of this
procedure is that weak relationships are eliminated, which
greatly reduces noise and improves the robustness of the
measure. By sampling across the range of Tcut choices, the
threshold that leads to the highest ROC AUC is chosen. We

obtain the proper Tcut as ( )max T0.89 × t i( , ) by evaluating the

performance of predictions of drug–disease associations.
Detailed information for determining Tcut is depicted in
File S1.

To avoid possible high DDE that may be caused by a
large number of drug targets and DAGs, we convert raw
DDE to a size-bias-free value using the mean and standard
deviation of raw DDE modeled from sets of random mo-
lecules, so that the potential therapeutic effects between
distinct drugs and diseases could be evaluated under the
same metric. The raw DDE score is transformed to a size-
bias-free score under Equation (22)

( )
( )

( ) ( )
( )ET T V

ET T V µ ET T V

ET T V
( , ) =

, ,

,
(22)D

D D

D
* ( )

( ) ( )

( )

where T and V D( ) are the drug target set and the DAG set,
respectively; µ ET T V( ( , ))D( ) and ET T V( ( , ))D( ) are the
estimation of the expectation and standard deviation of
DDE under this condition, respectively.

The estimation procedures of µ ET T V( ( , ))D( ) and

ET T V( ( , ))D( ) are as follows: for each pair of T V( , )D( ) , we

construct 1000 random set pairs with T| | targets and V D( )

DAGs, preserving the degree distribution of the randomized
targets and disease-associated proteins. To avoid repeatedly
choosing the same nodes during the degree-preserving
random selection, we use a binning approach as described

ina previous report [4].

Cell culture and viability assays

A human pancreatic adenocarcinoma cell line, moderately
differentiated BxPC3, was obtained from the American
Type Culture Collection (Manassas, VA, USA). Cells were
maintained at 37 °C under 5% CO2 air atmosphere in Dul-
becco’s Modified Eagle Medium supplemented with 10%
fetal bovine serum. The BxPC3 cells were plated in 96-well
tissue culture microtiter plates at a density of 5 × 103

cells/well and treated with the selected drugs for at least five
different concentrations. Cytotoxic effects of drugs on cells
were determined by the MTT assay. The absorbance was
recorded on a microplate reader (Catalog No. DNM-9602,
Beijing Pulang New Technology, Beijing, China) at a wa-
velength of 490 nm. The maximum drug effects on cell
viability were experimentally observed at the endpoint, and
the IC50 value was determined after 72 h of treatment. All
experiments were performed in quadruplicate and repeated
three times.

Results and discussion

Computation and characterization of gene entropy in
disease networks

To identify master genes in distinct disease contexts,
NOGEA model was developed (Figure 1A and B). Briefly,
Shannon entropy theory was applied to quantify the amount
of disorder within intracellular signals in each disease-
specific context, which was subsequently factorized as the
summation of contribution of each DAG. First, directed
disease-specific gene networks for 274 diseases were con-
structed to reflect the distinct disease contexts by mapping
all DAGs (Table S1) to a previously established directed
PPI network (Table S2) [20]. A directed network visualizes
the hierarchy of intracellular signal transduction between
the interacting proteins, and hence clearly reflects the im-
portance of each DAG in a certain physiological and pa-
thological context. The regulation likelihood between each
pair of DAGs was then calculated based on the directed
distance on the PPI network to generate a probability-based
signaling flux matrix (Figure 1A). Finally, the perturbation
ability of each DAG in a disease-specific context was cal-
culated by the network-oriented gene entropy metric
(Figure 1B; see Method). The distribution of entropy values
for all DAGs is illustrated as a histogram in Figure S3, and
the perturbation ability of each DAG was then ranked based
on their entropy values (Table S1).

To efficiently explore the biological features of entropy
distribution for each disease, all DAGs were classified as
“Master”, “Interim”, and “Redundant” genes which
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represent high-, medium-, and low-entropy genes,
respectively. We created an entropy value curve for each

disease and then identified two inflection points as
thresholds to separate the low-, medium-, and high-entropy

Figure 1 Computation and characterization of gene entropy in disease networks
A. Construction of directed disease-specific gene networks by mapping DAGs to the directed PPI network and normalizing the interaction strength. B.
Calculation of the perturbation ability (gene entropy) of each gene. C. Venn plot of the DAGs from different classes. Master, interim, and redundant
represent master, interim, and redundant genes, respectively. D. and E. Enrichment results of master, interim, and redundant genes in the context of OMIM,
cancer, and essential genes (D) and in the context of kinase, MR, and TF (E). F. Comparison of NOGEA performance with other methods for DAG
prioritization using AUROC and AUPRC. G.–J. Correlations between gene entropy values and their connective in-degree (G), connective out-degree (H),
connective degree (I), and betweenness centrality (J) in the primary directed PPI network. Connective degree, sum of in-degree and out-degree. K.
Assessment of the association between gene entropy and four commonly used network topology parameters. DAG, disease-associated gene; PPI, protein–
protein interaction; MeSH, Medical Subject Headings; T2DM, type 2 diabetes mellitus; OMIM, Online Mendelian Inheritance in Man; MR, membrane
receptor; TF, transcription factor; AUROC, area under the receiver operating characteristic curve; AUPRC, area under the precision-recall curve; AUC,
area under the curve.
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genes, respectively (see Method). We then merged the
master genes of all diseases into a whole master gene set.
Interim and redundant genes from different diseases were
treated in the same way to obtain the whole interim and
redundant gene sets, respectively. As a result, 770 master,
1894 interim, and 1332 redundant genes were obtained
(Figure 1C; Table S3).

In order to verify whether the master genes play a key
role in disease initiation and development, enrichment
analyses were performed using several well-established
gene sets (Table S4). We observed that there was an over-
representation (enrichment Z-score = 22.61) of master
genes in the OMIM gene set, which was higher than the
enrichment Z-scores of both interim and redundant genes
(Figure 1D). The “essential” genes were demonstrated to
play critical roles in human diseases [28], and master genes
were enriched in the “essential” gene set, whose Z-score
was two times larger than that of the redundant genes
(Figure 1D). More importantly, we found that master genes
were highly enriched in the cancer-associated gene set;
however, redundant genes showed less enrichment
(Figure 1D). Further KEGG analysis of the master genes
showed that these genes were mainly enriched in pathways
with close relationships with cancer initiation and pro-
gression (Figure S4). For example, PI3K-Akt signaling
pathway (has:04151), which is commonly perturbed in
cancers, was found among the top 5 enriched pathways (P <
10E−30). In a recent study, genes in the interactome were
classified into different node types, in which “indis-
pensable” nodes were found to be key players in mediating
the transition of disease states. As shown in Figure S5A, we
found that master genes were highly enriched in the “in-
dispensable” gene set, but redundant genes were enriched in
the “dispensable” gene set. Consistent with these observa-
tions, master genes were highly enriched in the “critical”
gene set that acted as driver nodes in all control config-
urations (Figure S5B) [26]. Further dissection of all dif-
ferent functional classes within signaling proteins revealed
that master genes were most likely enriched in the “kinase”
and “membrane receptor (MR)” gene sets (Figure 1E). In
summary, these results indicate that the master genes are
preferred key regulators in disease initiation and develop-
ment, reflecting the reliability of the NOGEA method.

Traditional network topology parameters, such as the
connective degree and betweenness centrality, are com-
monly used as baseline methods for characterizing the im-
portance of nodes in biological networks [29]. To validate
the effectiveness of NOGEA, we compared it with four
baseline methods (connective degree, connective in-degree,
connective out-degree, and betweenness centrality-based
methods) and four newly proposed methods (Katz [30],
Catapult [30], HANRD [31], and GPS [32]), all of which are
network-based methods for prioritizing DAGs. We first

compared the area under the receiver operating characteri-
stic curve (AUROC) values between different methods (see
Method) and found that NOGEA significantly out-
performed both the baseline methods and the newly pro-
posed methods (Figure 1F). We further evaluated the area
under the precision-recall curve (AUPRC) for each method.
NOGEA consistently surpassed all other methods, over-
matching the second-best method by ~ 10% (Figure 1F).

Correlations between gene entropy values and four tradi-
tional network topology parameters were assessed using
Pearson’s correlation coefficients (PCCs). For most diseases,
we observed that the PCCs between gene entropy values and
network topology parameters were relatively small (< 0.25;
Figure S6A). Nonetheless, significant correlation was
observed between the connective in-degree (R = 0.2254, P <
1.0E−15; Figure 1G), connective out-degree (R = 0.5239,
P < 1.0E−15; Figure 1H), connective degree (sum of in-
degree and out-degree; R = 0.3942, P < 1.0E−15; Figure 1I)
and betweenness centrality (R = 0.1774, P < 1.0E−15;
Figure 1J) for genes in the primary directed PPI network
versus gene entropy values. Fisher’s exact test was then
applied to further determine whether gene entropy is asso-
ciated with these four traditional network topology para-
meters. Specifically, we constructed a contingency table to
classify the DAGs into different bins based on their entropy
values and network parameter values (Figure 1K). We
found that gene entropy was significantly associated with
traditional network topology parameters, including con-
nective degree (P < 0.01), connective in-degree (P < 0.01),
connective out-degree (P < 0.01), and betweenness cen-
trality (P < 0.01). All these results demonstrate that master
genes prefer to possess high topology parameter values,
indicating relative consistency between gene entropy and
the four network topology parameters.

To investigate variation of the regulatory role of a specific
gene in different diseases, we calculated the divergence-
degree of gene entropy across diseases using the coefficient
of variation (CV) (Table S1; Figure S6B). The results show
that up to 60% of the DAGs have a high CV (> 0.15),
indicating that these DAGs play distinct roles in different
disease contexts. We then examined the entropy value
variation of the shared DAGs in different diseases, and
observed that these DAGs usually exhibited similar entropy
values in distinct diseases within the same disease category.
For example, corticotropin-releasing hormone receptor 1
(CRHR1) is related to several mental health-associated
diseases with similar entropy rank scores (rank > 0.80),
including anxiety and depressive disorders (Table S1),
which is consistent with its major role in mental
disorders [33]. We also observed a low entropy rank score
for CRHR1 in pulmonary disease (rank = 0.55), indicating
variation in its regulatory role in distinct disease contexts.
Further, we found that ~ 15% of DAGs have approximately
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equal rank scores in their associated diseases. For instance,
among these DAGs, both interleukin 4 receptor (IL4R) and
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic
subunit alpha (PIK3CA) have high rank scores in their as-
sociated diseases (Table S1), especially for neoplasms,
suggesting their crucial roles in these diseases. Taken to-
gether, NOGEA provides a new way to explore the regu-
latory roles of each DAG in distinct disease contexts.

NOGEA for exploring disease comorbidity

Exploration of the underlying mechanisms of comorbidity,
which refers to the co-occurrence of multiple diseases or
disorders, is difficult due to complex interactions among
environmental, lifestyle, and treatment-related factors [34].
In addition, disease comorbidity includes not only the co-
occurrence of multiple diseases, but also the potential
cause-and-effect relationships among these diseases. Thus,
uncovering the underlying mechanisms of disease co-
occurrence and causal relationships is of great significance
for their prevention and treatment. Using experiment-based
approaches or mathematical models, previous studies ex-
plored the molecular features of disease comorbidity for
several diseases, including from gastritis to gastric cancer [35]
and from diabetes to cancer [36]. However, existing
experiment-based methods for exploring the underlying
mechanisms of co-occurrence and causal relationships re-
main costly and labor-intensive, and sometimes focus on a
small fraction of molecular features. Comparatively, mathe-
matical models provide novel ways to reveal disease co-
morbidity using multi-omics data; however, these models
are difficult to apply in other diseases, due to the lack of
multi-scale information for these diseases.

The results discussed above demonstrate that NOGEA-
inferred master genes are closely associated with disease
initiation and development, prompting us to investigate
whether the network entropy-based approach would be
capable of uncovering the molecular basis of disease co-
occurrence. Therefore, we constructed M-GDN, where an
edge would link two different diseases if they share at least
one master gene (Table S5). For comparison, we con-
structed five other disease comorbidity networks: R-GDN,
I-GDN, A-GDN, THDN, and R-GN.

To test whether the M-GDN would provide an accurate
picture of disease comorbidity, we evaluated the Tanimoto
similarities between these networks and the HDCN, which
was extracted from the Medicare Claims Database and
constructed in a previous study [3]. The M-GDN showed
the highest similarity with the HDCN (higher than that of
R-GDN and THDN) and remarkably higher level than the
average of random similarity values (Figure 2A), which
indicates that genes most associated with disease co-
morbidity tend to be master genes with high entropy rather

than arbitrary DAGs. In contrast to previous THDNmodels,
M-GDN considers genetic factors as well as genes that re-
spond to environmental, lifestyle, and/or treatment-related
factors, thus providing a more comprehensive solution for
exploring disease comorbidity. Furthermore, in view of the
impact of cellular network interactions on disease co-
morbidity, we extended our result to a PPI-based M-GDN
(Table S6), where two diseases were linked if the master
gene of one disease directly interacted with genes of the
other disease in the PPI network. Consistent with the
aforementioned results, the PPI-based M-GDN demon-
strated the best predictive ability in identifying disease co-
morbidity. We then observed that the inferred underlying
molecular mechanisms of disease comorbidity are in ac-
cordance with current pathobiological knowledge (Figure
2B). For example, M-GDN confirmed the conclusion that
AKT1 mutations lead to schizophrenia and type 2 diabetes
mellitus (T2DM) [37], with entropy rank scores of 0.96 and
0.94 in schizophrenia and T2DM, respectively. We also
observed that in the M-GDN, ADRB2mutations may lead to
asthma and obesity with entropy rank scores of 0.95 and
0.97 in asthma and obesity, respectively, which is consistent
with a previous study [38]. Previous reports have suggested
that mutations in the IRS1 gene are closely related to the
comorbidity of T2DM and obesity [39], and PTGS2 influe-
nces the inflammatory response and is also closely con-
nected with the comorbidity of T2DM and obesity [40].
Here, M-GDN also revealed that IRS1 and PTGS2 plays a
crucial role in the comorbidity of T2DM and obesity. Ano-
ther example revealed in M-GDN is the comorbidity of
leukemia and cardiomyopathy, whose underlying mechani-
sms remain unclear. Interestingly, FAS is involved in the
regulation of cell apoptosis, which affects left ventricular
function [41], while PRKCA enhances cell resistance [42],
regulates cardiac contractility, and has been implicated in
increased risk for heart failure. More importantly, the FAS–
PRKCA interaction has been identified as the top connected
cross-talk PPI by in situ proximity ligation assays [43].
These results demonstrate that the interaction between FAS
and PRKCA may account for the comorbidity of leukemia
and cardiomyopathy. Taken together, these results suggest
that M-GDN helps bridge the gap between bench-based
biological discoveries and bedside clinical solutions, and
thus may provide new insights into the mechanisms of
disease comorbidity.

Next, we investigated the molecular basis of disease
causal relationships from the perspective of directed bio-
logical networks. As an illustration, we constructed a di-
rected comorbidity network (Figure 2C; Table S7) centered
on Parkinson’s disease. We observed high co-occurrence
risks between Parkinson’s disease and other diseases in-
cluding Alzheimer’s disease. Recent research suggests that
these diseases are related to the accumulation of common
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proteins in the brain, such as alpha-synuclein protein [44].
Using alcoholism and Parkinson’s disease as an example,
we observed a significant directed interaction from alco-
holism to Parkinson’s disease (P < 0.01; see Method), but
not vice versa. This result is consistent with recent clinical
studies, which suggest that alcoholism may an inducer of
Parkinson’s disease [45]. A subsequent network analysis
further discovered that the aberration of alcoholism-
associated master genes may lead to the modification of
most Parkinson’s disease-associated master genes (Figure
2D). Collectively, NOGEA is potentially useful for in-
vestigating mechanisms underlying disease comorbidity as
well as their causal relationships.

NOGEA can infer drug–disease associations

Recently, several state-of-the-art network-based methods
have been proposed to investigate the relationships between
drugs and diseases, such as the network proximity approach
(NPA) and network inference algorithm (NIA) [4,46]. In

this study, we assessed relationships between DAGs and
drug targets based on the gene network entropy to evaluate
the effects of drugs on each disease. For each drug–disease
relationship, we calculated the DDE parameter, which re-
presents potential therapeutic effects of the drug (Tables
S8–S10; see Method). To further investigate DDE’s effec-
tiveness, we evaluated the correlation between the DDE
score and the number of hits for known drug–disease in-
teractions (DDIs), and found that the occurrence number of
known DDIs in each bin increased with increasing DDE
scores (Figure 3A). Consistent with previous research [4], a
highly significant correlation occurred between the average
DDE score of each bin and the enrichment fold of hits for
known DDIs (R2 = 0.75, P = 2.2E−16; Figure 3B), in-
dicating a high likelihood that a drug will successfully treat
a disease if the drug is capable of strongly perturbing the
local module of master genes in the interactome.

To validate the utility of DDE for distinguishing known
drug–disease pairs from the unknown ones, we compared
the AUROC values for different drug–disease association

Figure 2 Exploration of disease comorbidity using NOGEA
A. Distribution of Tanimoto similarities between HDCN and other disease comorbidity networks (M-GDN, I-GDN, R-GDN, A-GDN, THDN, and R-GN).
B. The inferred molecular basis of disease comorbidity relationships. Brown and blue nodes represent master genes inferred by NOGEA; green nodes
represent diseases. C. The comorbidity of Parkinson’s disease with other diseases. The width of the edge represents the likelihood of disease comorbidity;
the arrows represent the inferred causative disease–disease associations; the color of the nodes depicts the disease category from MeSH. D. The molecular
basis of the comorbidity between Parkinson’s disease and alcoholism. The nodes represent the disease-associated master genes, and the directed links
describe the direction from the directed PPI network. HDCN, human disease comorbidity network; M-GDN, master gene-based disease network; I-GDN,
interim gene-based disease network; R-GDN, redundant gene-based disease network; A-GDN, all DAG-based disease network; THDN, traditional
hereditary disease network; R-GN, random gene-based disease network.
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prediction methods (see Method). To obtain a robust
AUROC estimation, the drug–disease set was split into a
training set and a testing set according to a given fraction
coefficient for developing and validating the model,
respectively (Figure S7). We compared the DDE’s perfor-
mancewith several other state-of-the-art methods [4,46],
including NIA, NPA, network kernel approach (NKA),

network shortest approach (NSA), network center approach
(NCA), and network separation approach (NSEA). As
shown in Figure 3C, DDE exhibited the best performance
(average AUROC = 0.70) in discriminating known and
unknown drug–disease pairs. Interestingly, NIA appeared to
be the second-best method (average AUROC = 0.68), which
was also able to construct a directed disease-specific gene

Figure 3 Drug–disease association inference based on NOGEA
A. The number of possible drug–disease pairs hitting known DDIs in each bin. All possible drug–disease pairs are ranked by normalized DDE scores, and
each bin contains 1000 possible drug–disease pairs. B. The correlation between the average DDE score of each bin and the enrichment fold of hits for
known DDIs. C. Comparison of DDE performance with other drug–disease prediction methods by AUROC. D. The interaction between drug targets and
pancreatic cancer-associated genes. The thickness of the link, the shade of the pancreatic cancer-associated gene node, and the size of the node describe the
interaction strength, entropy value, and degree of each node in the human interactome, respectively. E. The heat map showing the shortest distance between
the drug targets and pancreatic cancer-associated genes of four drugs (left) and the entropy value rank plot of pancreatic cancer-associated genes (right).
DDI, drug–disease interaction; DDE, drug disturbance entropy; NPA, network proximity approach; NIA, network inference algorithm; NCA, network
center approach; NKA, network kernel approach; NSEA, network kernel approach; NSA, network shortest approach.
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network and identify master genes before predicting the
drug–disease associations. A compressive comparison be-
tween the two methods demonstrated their connection and
difference (File S1; Figure S8; Tables S11 and S12). Col-
lectively, these results suggest that DDE is effective for
predicting drug–disease associations.

Pancreatic cancer is a refractory malignant carcinoma of
the digestive tract with a 5-year survival rate of ~ 4% [47],
and it modestly responds to very few existing chemotherapy
treatment options. Revisiting the complex interaction pat-
tern between drug targets and pancreatic cancer-associated
genes in a systemic manner is essential for developing more
effective therapeutic regimens. Therefore, we used pan-
creatic cancer as an example to explore the utility of NOGEA
for drug–disease association inference. By measuring the
entropy of each pancreatic cancer-associated gene in the
pancreatic cancer-specific network (Figure 3D and E), we
found that those genes with high entropy such asMET, KDR
(VEGFR-2), ERBB2, CD44, and EGFR may play more
important roles than the lower-entropy genes for pancreatic
cancer treatment. As reported in a previous study [48],
EGFR-mediated signaling is involved in the tumorigenesis
of pancreatic cancer, and the preclinical data support EGFR
inhibition as a potential treatment strategy for pancreatic
cancer. In addition, c-Met protein, which is encoded by the
MET gene, is a marker of pancreatic cancer stem cells and
thus a therapeutic target [49]. KDR is known to be crucial
for embryonic vasculature development by modulating en-
dothelial cell proliferation and migration [50]. Moreover,
CD44 is a potentially interesting prognostic marker and
therapeutic target in pancreatic cancer [51].

To investigate differences in the targeting patterns be-
tween effective drugs and other less-effective drugs from a
network-based perspective, we constructed a gene entropy
map for pancreatic cancer. We first calculated the linkage
strength between drug targets and pancreatic cancer-
associated genes for two FDA-approved drugs: axitinib and
erythromycin (Figure 3D). Axitinib targets FLT4, FLT1, and
KDR, among which KDR was identified as a pancreatic
cancer master gene by NOGEA. The DDE score of axitinib
to pancreatic cancer was 37.6, suggesting that targets of
axitinib are more closely related to pancreatic cancer-
associated genes than expected by chance. Conversely, the
DDE score of erythromycin (whose efficacy remains un-
known) to pancreatic cancer was 1.1. Even though this drug
inhibits ABCB1, ALB, and KCNH2, they are not closely
related to pancreatic cancer-associated genes than expected
by randomly selecting gene sets. However, some drugs that
do not directly inhibit the pancreatic cancer-associated
master genes may still have the potential to be effective
drugs. For example, sirolimus, which is currently in phase II
clinical trials, targets three proteins (FKBP1A, FGF2, and
MTOR) but no known pancreatic cancer-associated genes.

Nevertheless, sirolimus had a high DDE score of 12.1 to
pancreatic cancer due to the relatively strong perturbation of
high-entropy genes such as CD44 and EGFR (Figure 3E) via
FGF2. Drugs (e.g., pravastatin, DDE = −0.7) were predicted
to be ineffective pancreatic cancer drugs due to their weak
perturbation of nearly all pancreatic cancer-associated genes
(Figure 3E). Collectively, these results suggest that NOGEA
may be capable of identifying the core genes among many
DAGs that provide the basis for rational drug discovery.

Screening of potential drugs for pancreatic cancer
treatment

Due to the encouraging performance of the DDE metric for
accurately inferring drug–disease associations, we screened
potentially effective drugs for pancreatic cancer treatment.
We first calculated and prioritized DDE scores for all FDA-
approved drugs (Tables S13 and S14). From top 10% of
these drugs, we selected 19 molecules that were not known
to be associated with pancreatic cancer for further experi-
mental validation. The half-maximal inhibitory concentra-
tion (IC50) of a molecule, an important metric to measure its
response to a certain cancer cell line, has been widely ap-
plied in the screening of potential anti-proliferative agents
in preclinical cancer pharmacogenomics. The BxPC3 hu-
man pancreatic cancer cell line, which has been frequently
used in the studies of pancreatic cancer and screening of
chemo preventive agents [52], was used in our in vitro study
to evaluate its response to the candidate drugs. We identified
11 candidate drugs that inhibited BxPC3 cell line in a dose-
dependent manner and exhibited low IC50 values (< 100 μM;
Figure 4A–C, Figure S9), demonstrating their efficacies for
inhibiting pancreatic cancer cell proliferation and potentials
for pancreatic cancer therapy in vivo. One drug for example,
vinorelbine, is a drug that has already been approved for
non-small-cell lung cancer treatment [53]. In our study,
vinorelbine exhibited a low IC50 value of 1.55 nM (Figure
4A). Interestingly, some non-classical anti-cancer drugs
also displayed acceptable suppressive effects on BxPC3. For
example, saquinavir (mainly used with other medications for
HIV/AIDS treatment or prevention [54]) and celecoxib
(mainly used for treatment of pain and inflammation in adults
[55]), showed low IC50 values of 22.63 μM (Figure 4B) and
45.36 μM (Figure 4C), respectively. These results indicate
that our model has the capacity to predict proper drug
candidates for disease therapy.

Transcriptional expression analysis was conducted to
validate our hypothesis that efficient drugs tend to perturb
the master genes directly or through their targets. We first
identified 1335 differentially expressed genes (DEGs)
after saquinavir treatment (referred to as SAQDEGs)
(Figure S10A; Table S15). Then, we identified 849 most
possibly affected pancreatic cancer-associated master genes
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aftersaquinavir treatment (named as SAQPAGs; Table S15),
and further incorporated them with their corresponding
neighbor genes in the interactome. Finally, a hypergeo-
metric test was used to assess the overlap between SAQ-
DEGs and SAQPAGs. The results showed that the
SAQDEGs were significantly enriched for SAQPAGs (P <
0.01, Figure 4D). Results for celecoxib treatment were similar
to those for saquinavir treatment (Figure 4E, Figure S10B),
suggesting a close relationship between genes perturbed by
the efficient drugs and the local module of master genes.

Finally, to demonstrate the reliability of the DDE ap-
proach for extensive screening of pancreatic cancer can-
didate drugs, we further conducted a literature mining
analysis to evaluate the therapeutic potential of the top 10%
FDA-approved drugs ranked by DDE scores (drugs with-
out clear pharmacological category were excluded; n =
108) as described in our previous report [56] (see Method).
We observed that 9 of the top 10 selected drugs were
antineoplastic agents (ANAs) and showed significant cor-
relation with pancreatic cancer (P < 0.01, Table S16). In

addition, most selected drugs belonging to ANAs (27/31,
87.1%) were significantly associated with pancreatic can-
cer (Figure 4F; Table S16), suggesting the sensitivity of
this model. Interestingly, an analysis of the categories of
these candidate drugs revealed that the largest proportion
(41/108, 38.0%) was assigned to central nervous system
agents (CNSAs) (Figure 4F). For example, celecoxib,
which is sensitive to the BxPC3 cell line as mentioned
above (Figure 4C), also acts as a CNSA. In general, these
results indicate that DDE provides a rational strategy for
drug repurposing due to its capacity to quantify drug tar-
geting tendency in the interactome.

Conclusion

Disease phenotypes typically result from interactions
among multiple complex environmental and genetic factors.
The onset, development, and treatment of a disease usually
involve hundreds of genes [29]. In this study, we propose

Figure 4 Screening of potential drugs for pancreatic cancer treatment
A.–C. Cell inhibition rate curves for vinorelbine (A), saquinavir (B), and celecoxib (C) against BxPC3, respectively. D. Venn plot showing the overlap
between SAQDEGs and SAQPAGs. E. Venn plot showing the overlap between CELDEGs and CELPAGs. F. Number of potentially efficient pancreatic
cancer drugs (the top 10% FDA-approved drugs ranked by DDE scores) in each category. Number in red box indicates the number of drugs significantly
associated with pancreatic cancer in literature mining analysis (P < 0.01, hypergeometric test); number in blue box indicates the number of selected drugs
not significantly associated with pancreatic cancer in literature mining analysis. IC50, half-maximal inhibitory concentration; SAQDEG, differentially
expressed gene after saquinavir treatment; SAQPAG, possibly affected pancreatic cancer-associated master gene after saquinavir treatment; CELDEG,
differentially expressed gene after celecoxib treatment; CELPAG, possibly affected pancreatic cancer-associated master gene after celecoxib treatment;
AIA, anti-inflammatory agent; AIANS, anti-inflammatory agent (non-steroidal); ANA, antineoplastic agent; ARA, antirheumatic agent; CVA, cardio-
vascular agent; CNSA, central nervous system agent; ISA, immunosuppressive agent; PNSA, peripheral nervous system agent; SSA, sensory system agent.
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NOGEA for accurately inferring master genes that con-
tribute to specific diseases by quantitatively calculating
their perturbation abilities on directed disease-specific gene
networks. Our results confirm that master genes are en-
riched in gene sets that account for disease onset and de-
velopment. This may imply that at a molecular level, master
genes with high entropy are the underlying start points of
the disease state, impacting those redundant genes with low
entropy through a directed disease-specific gene network.
Interestingly, the comorbidity prediction model built using
the master genes shows the best agreement with the in-
dependent clinical dataset compared to the model estab-
lished using the whole disease gene set. This indicates that
our method may decrease the influence of noise and im-
prove the efficiency for extracting more important genes
from massive genomic datasets. Finally, through this
method, 11 old drugs were newly identified and predicted to
be effective for treating pancreatic cancer and then validated
by in vitro experiments. However, it remains challenging to
simulate the complex contents of the tumor microenviron-
ment in vitro, making it difficult to comprehensively
evaluate drug response using IC50. Therefore, despite our
encouraging results, future work focusing on in vivo vali-
dation before clinical use is needed.

Although the identified master genes may be important
for elucidating mechanisms of disease progression and drug
screening, we acknowledge that it is difficult to directly
evaluate the accuracy of NOGEA for identifying master
genes at this stage due to the lack of ‘gold standard’ re-
ference datasets. Nevertheless, the availability of more
personal genome data in the future will allow for con-
struction of patient-specific networks, and NOGEA will
provide new opportunities to identify patient-specific mas-
ter genes and promote the development of personalized
medicine. Emerging deep learning methods may become
powerful techniques for exploring poly-pharmacy side ef-
fects [57] and discovering disease–gene associations [58]
from massive datasets [59]. Because gene entropy values
can be used as novel disease feature data, we expect that
integrating deep learning with NOGEA will significantly
improve the accuracy for determining disease–drug or
disease–disease associations. Extending the systematic
approach presented here from signal drugs to multiple drugs
may pave the way toward a better understanding of drug
combinations.

Code availability

The source code and a detailed usage guide of NOGEA are
freely available on GitHub at https://github.com/guozihuaa/
NOGEA.
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