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Abstract 
Current prognostic scores in multiple myeloma (MM) currently rely on disease burden and a 
limited set of genomic alterations. Some studies have suggested gene expression panels may 
predict clinical outcomes, but none are presently utilized in clinical practice. We therefore 
analyzed the MMRF CoMMpass dataset (N=659) and identified a high-risk group (top tertile) 
and a low-risk group ( bottom tertile) based on WEE1 expression sorted in descending order. 
The tyrosine kinase WEE1 is a critical cell cycle regulator during the S-phase and G2M-
checkpoint . Abnormal WEE1 expression has been implicated in multiple cancers including 
breast, ovarian, and gastric cancers, but has not until this time been implicated in MM. PFS was 
significantly different (p <1e-9) between the groups, which was validated in two independent 
microarray gene expression profiling (GEP) datasets from the Total Therapy 2 (N=341) and 3 
(N=214) trials. Our results show WEE1 expression is prognostic independent of known 
biomarkers, differentiates outcomes associated with known markers, is upregulated 
independently of its interacting neighbors, and is associated with dysregulated P53 pathways. 
This suggests that WEE1 expression levels may have clinical utility in prognosticating outcomes 
in newly diagnosed MM and may support the application of WEE1 inhibitors to MM preclinical 
models. Determining the causes of abnormal WEE1 expression may uncover novel therapeutic 
pathways.  
 
Introduction 
Multiple myeloma (MM) is a hematologic malignancy associated with a malignant proliferation of 
plasma cells [1]. Although the disease is usually responsive to upfront therapies, MM remains 
incurable even in patients who achieve undetectable levels of disease, with relapse considered 
largely inevitable [2]. The genomic makeup of MM is highly heterogeneous, and different studies 
have identified multiple subtypes associated with varying prognostic outcomes using different 
data modalities [1,3–5]. Standard methods to prognosticate the length of progression-free 
survival (PFS) include the International Staging System (ISS) [6], Revised ISS (R-ISS) [7], and 
the Second Revision of the ISS (R2-ISS) [8]. These tools rely on surrogates for disease burden 
and identification of specific tumor cytogenetic abnormalities. These scoring systems each have 
a PFS concordance index (c-index) below 60%, leaving room for improvement [9,10].  
 
In addition to providing genomic information, scoring systems informed by gene expression 
have been proposed for prognostication, including GEP70 and SKY92 [11,12]. These 
expression-based signatures have shown potentially complementary information to ISS staging 
[13]. In [5], we conducted a large unsupervised genomic network study where we applied a 
novel measure of network connectivity, Ollivier-Ricci curvature (ORC), to RNA-sequencing 
(RNA-seq) and copy number alteration (CNA) data from newly diagnosed MM (NDMM) patients. 
We examined patterns of gene-gene interactions in MM and identified novel pathways and 
genes associated with poor prognosis. By examining the impact of gene expression via a 
network, we identified a novel eight-gene signature: BUB1, MCM6, NOSTRIN, PAM, RNF115, 
SNCAIP, SPRR2A, and WEE1. Of these eight genes, WEE1 was the only gene that was 
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included in a previously published gene signature, GEP70 [14]. Furthermore, WEE1 was the 
most prognostic for PFS, suggesting it might play a role in MM. However, the role of the WEE1 
in MM has not been thoroughly studied, and much remains unknown about its prognostic 
significance with respect to known biomarkers of MM.  
 
WEE1 is a tyrosine kinase involved in multiple aspects of the cell cycle process, including the 
G1-S checkpoint, S phase, and G2-M checkpoint [15,16], but believed to exert its most 
significant clinical impact in the G2-M checkpoint . For non-cancerous cells, DNA damage is 
often repaired at the G1-S checkpoint. In cancerous cells, the G1-S checkpoint may be 
deficient, and therefore, cancerous cells rely on the G2-M checkpoint for DNA damage repair 
[17]. In the G2-M checkpoint, WEE1 regulates cyclin-dependent kinase 1 (CDK1) [18–20], with 
high WEE1 expression suppressing CDK1 expression and maintaining the cell in a DNA repair 
state [21,22]. Conversely, low WEE1 expression correlates with a rise in CDK1 expression, 
which allows the cell to enter mitosis [18].  
 
WEE1 inhibition has been shown to dysregulate the cellular machinery associated with the first 
stage of mitosis in the G1-S transition [23], and can induce apoptosis by forcing mitotic entry 
[24]. For a cell to successfully complete the cell cycle, WEE1 expression levels must rise and 
fall in relation to each stage of the cycle. High WEE1 expression has recently been shown to be 
associated with disease aggressiveness in some solid tumors including breast cancer [25], 
ovarian cancer [26], and melanoma [27–30]. Several WEE1 inhibitors are currently in phase 2 
clinical trials; these trials are evaluating the therapeutic efficacy of WEE1 inhibition [31,32]. 
WEE1 inhibitors have also shown promise in other cancer types including sarcomas [33] and 
breast cancers [34], as well as hematological malignancies [35].  
 
In MM, preclinical  studies have shown promising results when inhibiting WEE1 in cell lines and 
mouse models in conjunction with other factors [36–40]. WEE1 inhibitors, in combination with 
bortezomib, can induce apoptosis in MM cell lines more efficiently than bortezomib alone 
[36,37]. further, in [38], the authors show that bortezomib in combination with a DNA damage 
response (DDR) inhibitor targeting ATM/ATR/WEE1 triggers apoptosis. In [39], the authors 
examine the relationship between WEE1 and CHK1 in MM, and report that targeting both 
kinases induces apoptosis in MM cell lines. In [40], the authors suggest targeting CTPS1 in 
conjunction with either CHEK1, ATR, or WEE1 inhibition can induce apoptosis in MM cell lines.  
 
In this study, we show that high WEE1 expression defines a high-risk subtype of MM, 
independent of both known markers of MM and treatment types. WEE1 expression has 
comparable prognostic value as compared to the traditional MM  ISS. Additionally, high WEE1 
expression is not reflected by corresponding changes in expression throughout the 
transcriptome. The high WEE1 expression subtype is characterized by dysregulation of the P53 
pathway. Together, this work suggests that in a subpopulation of MM patients, WEE1 may play 
an outsized role and should be studied as a potential therapeutic target.  
 
Methods 
In this study, we applied a variety of bioinformatic and machine learning-based methods to MM 
datasets to examine the role of WEE1 in MM. 
 
CoMMpass data  
The RNA-seq and copy number alterations (CNA) data used is from the Multiple Myeloma 
Research Foundation’s CoMMpass dataset, release version 19. Further information on the data 
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collection and curation methods has previously been published [41,42]. The details of the 
patients selected for this study along with the preprocessing and feature computations are 
described in detail in [5]. Briefly, for inclusion in this study, subjects must have RNA-Seq and 
CNA data extracted from the bone marrow plasma cells before the start of treatment and both 
demographic and survival information available (N=659). Gene inclusion was based on overlap 
with the Human Protein Reference Database (HPRD) [43].  
 
Gene expression profiling (GEP) data  
The GEP data used is from the University of Arkansas’s Total Therapy 2 (TT2, N=341) and 
Total Therapy 3 (TT3, N=214) trials. The details of these trials are described in [44,45]. Briefly, 
the plasma cells were collected via a bone marrow biopsy of newly diagnosed MM patients 
before treatment and gene expression profiling data was collected. TT2 & TT3 were different 
treatment regimens. Note that for this dataset, event-free survival (EFS) was reported.  
 
High-risk group membership  
For each data modality — RNA-seq and GEP — patients’ WEE1 expression values were sorted 
in descending order and the top tertile was labeled as WEE1-high and the bottom tertile was 
labeled as WEE1-low. The center third was not considered in this study.  
 
Prognosis and confounder analysis  
The prognosis was modeled using Kaplan Meier (KM) survival curves for progression-free 
survival (PFS). To determine the effect of WEE1 relative to known biomarkers of MM, we used a 
multivariate Cox proportional hazards model [46] with the RNA-Seq data to predict PFS. In it, 
we modeled nine markers: hyper APOBEC, chromothripsis, hyperdiploidy, MAF translocation, 
MYC translocation, t(4;14), t(11;14), TP53 mutation, and gain 1q21. As outlined in [5], 
hyperdiploidy was defined by more than 2 gains involving >60% of the chromosome affecting 
chromosomes 3, 5, 7, 9, 11, 15, 19, or 21. Mutational signatures were assessed using mmsig 
(https://github.com/UM-Myeloma-Genomics/mmsig), a fitting algorithm designed for MM to 
estimate the contribution of each mutational signature in each sample [47]. APOBEC-mutational 
activity was calculated by combining SBS2 and SBS13, with the top 10% being defined as 
hyper-APOBEC [48,49]. The complex structural variant chromothripsis was defined by manual 
curation according to previously published criteria [50]. High-risk and low-risk groups were 
analyzed separately to see which factors differed between the groups. To show the prognostic 
effect of WEE1, irrespective of known biomarkers, KM survival curves for PFS stratified by each 
factor were plotted.  
 
Machine learning analysis  
We used random survival forests [51] to determine the prognostic value of WEE1, its gene 
network neighbors, and ISS. Briefly, random survival forests offer the advantages of random 
forests with the addition of incorporating survival information including event duration and 
censorship information. WEE1 neighbors were extracted from the STRING database [52]. 
WEE1 neighbors were defined as genes which have a known interaction with WEE1 with a 
probability greater than 0.7. The neighboring genes were considered to see if changes in WEE1 
expression were reflected by changes in expression of known interacting genes. ISS staging 
was provided by the CoMMpass dataset. We used the concordance index (c-index) as the 
evaluation metric. WEE1 expression was predicted using random forest regression models to 
see if neighboring genes contained signal relevant to the abnormal increase in WEE1 
expression. Feature importances were computed using the permutation importance method in 
sci-kit-learn and the fifteen most importances are reported [53]. The full parameter details of the 
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models used are available on GitHub (www.github.com/aksimhal/WEE1-in-MM). Models were 
evaluated using five-fold cross-validation repeated ten times. 
 
Differential gene expression analysis  
To see differences in patterns of gene expression between the WEE1-high and WEE1-low 
cohorts, we computed the differential gene expression using DESeq2 [54]. The p-values from 
this analysis were corrected for multiple hypothesis testing using BH-FDR method. Genes with a 
corrected p-value less than 0.05 and an absolute log2 fold change greater than two were 
considered significant. To see which pathways become dysregulated in WEE1-high, we used 
the Gene Set Enrichment Analysis tool to evaluate the selected genes [55,56]. The utilized 
pathways are from the hallmark gene set collection from the human molecular signatures 
database (MSigDB) [57]. 
 
Data and code availability  
The code and instructions for how to use them are available for download at 
www.github.com/aksimhal/WEE1-myeloma. The Multiple Myeloma Research Foundation’s 
CoMMpass data is available for download at www.research.mmrf.org. TT2 and TT3 are 
available at GSE24080. 
 
Results 
 
Data overview  
Genomic and clinical characterization of MM outcomes were stratified by WEE1 expression 
using the CoMMpass dataset (N=659). The mean age was 62.5 ± 10.7 years and 60% were 
male; ISS distribution was 35/35/30%, and 53% received an autologous stem cell transplant 
(ASCT). An overview of the differences between the WEE1-high and WEE1-low groups is 
provided in Table 1. While some of the known markers of MM are significant between the two 
groups, including age, hyperdiploidy, t(11;14), MAF and MYC translocations, chromothripsis, 
hyper APOBEC, gain 1q21, and TP53 mutational status, ISS is not. For the validation datasets, 
TT2 and TT3, baseline clinical data and gene expression data were available. For TT2, the 
mean age was 56.3 ± 9.8 years and 57% male; for TT3, the mean age was 58.6 ± 8.8 years and 
67% male.  
 
WEE1 is prognostic for outcomes in RNA-seq and GEP datasets  
In the RNA-seq data from the CoMMpass dataset, differences in PFS between WEE1-high and 
WEE1-low cohorts are statistically significant (p <1e-9), as shown in Figure 1A. These results 
are validated in the TT2 and TT3 datasets (Figures 1B, 1C). Note this effect is not observed in 
the CNA data from the CoMMpass dataset. 
 
Multivariate modeling shows that WEE1 is an independent prognostic factor in MM 
Multivariate Cox proportional hazards modeling shows that the prognostic effect of WEE1 is 
independent of known MM markers, including those shown to be significant in Table 1. The 
prognostic effect is independent of hyperdiploidy, t(4;14), t(11,14), TP53 status, as well as 
emerging risk factors, the complex structural variant chromothripsis and APOBEC mutational 
activity, shown in Figure 2A and Supplemental Table 1A. When examining only the WEE1-high 
cohort, none of the markers significantly predicted PFS (Figure 2C, Supplemental Table 1B). 
Similarly, in the WEE1-low, none of the markers significantly predicted PFS (Figure 2B, 
Supplemental Table 1C).  
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WEE1 is prognostic for outcomes independent of known biomarkers  
The WEE1-high and WEE1-low cohorts have statistically significantly different PFS outcomes 
when stratifying for each known MM marker. KM plots show significant separation when looking 
at groups defined by the presence of hyperdiploidy, t(11;14), MAF & MYC translocations, 
chromothripsis, and TP53 deletion (Figure 3, Supplemental Figure 1). KM plots were also 
significant when looking at the groups defined by the lack of a known MM marker (Figure 3, 
Supplemental Figure 2). WEE1 cohort membership differentiates outcomes by an average of 
1.98 years in cohorts with a marker, and 2.18 years in cohorts without the marker (Table 2).  
 
WEE1 is prognostic for outcomes independent of treatment type  
The WEE1-high and WEE1-low cohorts have statistically significantly different PFS outcomes 
when stratifying the treatment options listed in the CoMMpass dataset. Autologous stem cell 
transplant (ASCT), bortezomib/immunomodulatory agents (IMIDs), bortezomib, and 
carfilzomib/IMIDs cohorts were all significantly different when stratified by WEE1-high and 
WEE1-low (Figure 4). The mean difference in PFS is 1.91 years.  
 
WEE1 expression has comparable prognostic value as ISS 
RNA-seq based WEE1 expression has comparable prognostic value (c-index: 0.58 ± 0.04) as 
ISS (c-index: 0.61 ±0.03). Combining WEE1 and ISS has a c-index of 0.63±0.03.  
 
WEE1-high cohort is 3.2x less predictable than the WEE1-low cohort 
As WEE1 expression increases, the relationship between WEE1 and genes known to interact 
with WEE1 becomes dysregulated. When modeling WEE1 expression with known interacting 
genes, the prediction error increases by 3.2 times between the WEE1-high and WEE1-low 
cohorts. In the WEE1-low cohort, the known interacting genes that contribute more than 5% to 
the prediction are CDK1, CHEK1, CDT1, AURKB, and PLK1 (Figure 5A). In the WEE1-high 
cohort, the genes are CDC25B, HSP90AA1, CDK6, PLK1, CDR2, SKP2, and CDK2 (Figure 
5B).  
 
P53 pathway-related genes are differentially expressed between WEE1-high & WEE1-low 
cohorts  
A differential gene expression analysis between the WEE1-high and WEE1-low groups 
identified 146 overexpressed genes and five underexpressed genes. Overexpressed genes are 
part of three pathways: P53, downregulated UV response, and mitotic spindle. Only five genes 
were under-expressed: FPR1, IFNA5, LRP2, POU2F3, and RAB11FIP1.  
 
Discussion 
Prognostic markers in MM rely on either assessment of tumor burden or specific cytogenetic 
abnormalities; transcriptional characteristics of myeloma are not currently considered in this 
setting. Here, we have identified that high WEE1 expression represents an independent 
biomarker prognostic of poor outcomes in newly diagnosed MM, and that this effect is 
independent of known cytogenetic risk factors and treatment strategies (Figures 1-3). This 
includes the common metric of staging — ISS. Random survival forest modeling showed that 
WEE1 expression alone has as much prognostic power as ISS staging. These findings were 
seen both retrospectively using the CoMMpass dataset and independently validated in two 
prospective MM data sets. Differential gene expression analysis showed that the P53 pathway 
is the most significantly affected pathway in the WEE1-high cohort.  
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Random forest modeling of the local WEE1 genomic network showed that the overexpression of 
WEE1 is not correlated with an increase or decrease in any genes locally connected with 
WEE1. Increased WEE1 expression was not reflected in a rise in the expression of any other 
cell cycle kinases, such as PLK1 or CDK1. Random forest modeling of the low-risk group 
showed an association with CDK1, which follows known biology. In our defined high-risk group, 
CDK1 was not in the top 15 genes most associated with the high-risk WEE1 signal. In this 
group, CDC25B, a phosphatase-encoding gene, replaces CDK1 as the most influential marker. 
This further suggests that WEE1 expression represents an independent prognostic marker that 
is likely not merely reporting on another known cytogenetic risk factor.  
 
WEE1 is a key player during the cell cycle, and its specific roles in the S phase and the G2M 
checkpoint are well documented. WEE1 acts as a tumor suppressor gene in certain types of 
breast cancer. However, for the majority of solid and blood cancers, such as ovarian cancer and 
acute lymphoblastic leukemia, WEE1 acts as an oncogene. Further work is needed to 
understand the role of increases in WEE1 expression in MM as these findings can enable new 
WEE1 directed treatments in MM patients with MM and other malignancies. 
 
Of note, differences in PFS among patients with TP53 deletions when stratifying by WEE1 
expression were remarkably large. Patients with TP53 deletions often have the poorest clinical 
outcomes with MM treatment across multiple published datasets. Additionally, differential gene 
expression analysis between the high-risk and low-risk groups showed that genes associated 
with the hallmark P53 pathway were differentially expressed. TP53 regulates DNA damage in 
the G1-S checkpoint. Faulty P53 function may lead to a larger reliance on WEE1 activity to 
maintain genomic integrity. If both TP53 and WEE1 are abnormal, it is possible that DNA repair 
becomes dysfunctional.  
 
We have demonstrated that stratification of MM patients with TP53 deletions by MM cell WEE1 
expression may represent an alternative method of risk stratifying patients. Additionally, our 
data suggests that WEE1 inhibition may be especially effective in patients with altered P53 
pathways, though further investigation is needed to identify if the observed association is 
causal. There are currently five WEE1 inhibitors in clinical trials [58] for other cancer types 
which will advance our understanding of the efficacy of WEE1 inhibition, the exact mechanism 
of its actions, as well as a possible new treatment option for MM patients. Further investigation 
into the apparent centrality of WEE1 in predicting outcomes, especially at a biological level, is 
required to validate it as a critical biomarker.  
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TABLES  

 WEE1-low (N=218) WEE1-high (N=224) FDR p-value 
Age 63.4 61.1 3.31E-02 
Sex M: 114; F: 104 M: 139; F: 85 5.22E-02 
ISS (I): 75; (II): 88; (III): 48 (1): 79; (2): 73; (3): 69 8.77E-02 
Treatment combined BTZ/IMiDs-

based: 124; BTZ-based: 
38; combined IMiDs/CFZ-
based: 21; IMiDs-based: 
14; CFZ-based: 11; 
combined BTZ/IMiDs/CFZ-
based: 9; combined 
BTZ/CFZ-based: 1 

combined BTZ/IMiDs-
based: 89; combined 
IMiDs/CFZ-based: 50; 
BTZ-based: 45; CFZ-
based: 20; IMiDs-based: 
11; combined 
BTZ/IMiDs/CFZ-based: 9 

- 

Hyperdiploidy  151/189 58/170 9.53E-18 
t(4;14) 22/204 20/181 1.00E+00 
t(11;14) 11/204 69/181 4.30E-15 
MAF translocation 4/204 22/181 1.48E-04 
MYC translocation 39/204 19/181 3.31E-02 
Chromothripsis 42/204 56/181 2.57E-02 
Hyper APOBEC 6/204 25/179 2.04E-04 
Gain 1q21 (0): 141; (1): 47; (2): 1 (0): 105; (1): 46; (2): 19 1.39E-04 
TP53 aberration (0): 157; (1): 15; (2): 0 (0): 114; (1): 22; (2): 13 1.48E-04 

 
Table 1 — Difference in CoMMpass data patient characteristics between WEE1-high and 
WEE1-low cohorts. The majority of MM markers differ significantly between the two groups; 
however, ISS does not.  Key: for gain 1q21, 0 = diploid, 1 = gain (3 copies), 2 = amplification (4 
or more copies). For TP53 aberration, 0 = diploid, 1 = either deletion or mutation, 2 = biallelic 
loss. Certain markers not available for all subjects. BTZ: Bortezomib, CFZ: Carfilzomib. 
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Table 2. The difference in median progression free survival (PFS) is based on a given 
biomarker. “Positive” indicates the cohort which has the listed feature. “Negative” indicates the 
cohort which does not have the listed feature. The difference is calculated as the median PFS of 
the WEE1-low group minus the median PFS of the WEE1-high group. ND is defined as “no 
data” and indicates that the LR group did not reach the median PFS mark.    
 

Feature name WEE1-high  
PFS (years) 

WEE1-low 
PFS (years) 

Hyperdiploidy 1.838 2.685 
t(4;14) 1.115 2.436 
t(11;14) ND 1.956 

MAF translocation ND 1.921 
MYC translocation 2.121 2.436 

Chromothripsis 2.427 2.427 
Hyper APOBEC 2.378 1.942 
TP53 deletion ND 1.608 
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Figure 1. Prognostic value of WEE1 expression from RNA-seq and GEP data. A) 
Progression free survival (PFS) based on CoMMpass RNA-seq data showing the two-year 
difference in median PFS with a p-value of less than 1e-9. B & C) Event free survival of the 
Total Therapy 2 and Total Therapy 3 cohorts gene expression profiling (GEP) data, 
respectively, showing diverging outcomes with a P<0.05.  
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Figure 2. Cox proportional hazards (CPH) modeling of MM markers and WEE1 
expression. A) Coefficients of the multivariate CPH model show WEE1 to be the most 
significant prognosticator. B & C) Within the WEE1-high and WEE1-low cohorts, none of the 
markers are significant for PFS after FDR-BH correction. TP53 aberration status — 0 = diploid, 
1 = either deletion or mutation, 2 = biallelic loss. Certain markers not available for all subjects.  
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Figure 3. Kaplan Meyer curves stratified by MM markers show the prognostic signal in 
WEE1 expression. WEE1 expression defines prognosis regardless of marker type. The top row 
represents the cohort with a given feature, and the bottom row represents the cohort without the 
given feature. In both cases, WEE1 defined low-risk and high-risk groups as separate outcomes 
with a median PFS difference of two years.  
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Figure 4. Kaplan Meyer curves show the effect of WEE1 expression on treatment type. 
The top row is the cohort that received a treatment type, and the bottom row is the cohort that 
did not receive the treatment type.  
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Figure 5. Random forest feature importance plots. RF modeling of WEE1 expression in the 
WEE1-high cohort is 3.2x more inaccurate than WEE1 expression modeling in the WEE1-low 
cohort. A) Feature importance plot showing the informative features for predicting WEE1 RNA-
seq in the WEE1-low group. B) Feature importance plot showing the informative features for 
predicting WEE1 RNA-seq in the WEE1-high group. 
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