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Abstract: In this work, solid-state polymer supercapacitor (SSC) was assembled using
poly(3,4-ethylenedioxythiophene/carbon paper (PEDOT/CP) as an electrode and ionic liquid
(1-butyl-3-methylimidazole tetrafluoroborate)/polyvinyl alcohol/sulfuric acid (IL/PVA/H2SO4) as a gel
polymer electrolyte (GPE). The GPE was treated through freezing–thawing (F/T) cycles to improve the
electrochemical properties of PEDOT SSC. Cyclic voltammetry (CV), galvanostatic charge–discharge
measurements (GCD) and electrochemical impedance spectroscopy (EIS) techniques and conductivity
were carried out to study the electrochemical performance. The results showed that the SSC based on
ionic liquid GPE (SSC-IL/PVA/H2SO4) has a higher specific capacitance (with the value of 86.81 F/g at
1 mA/cm2) than the SSC-PVA/H2SO4.The number of F/T cycles has a great effect on the electrochemical
performance of the device. The energy density of the SSC treated with 3 F/T cycles was significantly
improved, reaching 176.90 Wh/kg. Compared with the traditional electrolytes, IL GPE has the
advantages of high ionic conductivity, less volatility, non-flammability and wider potential window.
Moreover, the IL GPE has excellent elastic recovery and self-healing performance, leading to its great
potential applications in flexible or smart energy storage equipment.

Keywords: poly(3,4-ethylenedioxythiophene); 1-butyl-3-methylimidazolium tetrafluoroborate;
gel polymer electrolyte; solid state supercapacitor

1. Introduction

Recently, electrochemical energy storage devices have received much attention due to the increasing
population and the sharp depletion of fossil fuels [1–4]. Supercapacitors (SCs) are a promising green
energy storage device because of their high power density, fast charge–discharge rate, long-cycle
stability, and eco-friendliness [5–10]. These attractive properties have prompted their use in electric
vehicles, wearable electronic and medical electronic devices, and military equipment [11–13].

Electrolyte and electrode materials are the important components of SCs. Different types of
electrolytes, including liquid, solid state electrolytes, and gel polymer electrolyte, have been widely
used for SCs. Compared with the conventional liquid electrolyte, solid-state polymer electrolytes
(SPEs) and gel polymer electrolytes (GPEs) have the advantages of avoiding liquid leakage and
corrosion problems, having a simple packaging and manufacturing process, good electrochemical
stability, etc. [14–16]. However, SPEs are restrictively applied, due to their low conductivity and
poor elastic or flexible properties, which limit the applications of SPEs in flexible or stretchable
devices. GPEs are basically a liquid electrolyte (an ionic salt dissolved into an organic solvent or ionic
liquids (ILs)) trapped inside a polymer network, which possess both the properties of solids and the
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diffusive transport properties of liquids [17,18]. They have the advantages of high ionic conductivity,
easy design configuration, flexibility or self-healing [19], which provides promising ways to design
high-performance and multi-functional SCs. However, despite the great progress which has been
made with GPEs, their low energy density and specific capacitance are still major issues that limit their
practical applications.

ILs, one typical room temperature (RT) molten salt, are used in GPEs to improve the properties of the
SCs. Because IL mainly consists of organic cations and anions, it has the advantages of high conductivity,
high electrochemical stability over a wide electrochemical window, non-volatility, and good thermal
stability [20–22]. It is the attractive candidate or “green electrolytes” used in energy storage devices.
Recently, the development of non-volatile, high-performance GPEs, referred to as ion gels, with various
copolymer gelators, including block [23–25], random [26,27] and star copolymers have been extensively
reported [28]. Among them, 1-butyl-3-methylimidazole tetrafluoroborate (BMIMBF4) has been added
into GPE due to its high conductivity, low viscosity, and easy synthesis [18,29], which can effectively
improve the characteristics of the solid-state polymer supercapacitor (SSC). For instance, Wang et al.
prepared several GPEs based on a copolymer matrix poly-(methoxy/hexadecyl-poly(ethylene glycol)
methacrylate) (PMH) and BMIMBF4 by solution casting method [30]. The GPEs with 60 wt%
BMIMBF4 had good thermal stability, excellent mechanical properties, good compatibility with metallic
lithium and high ionic conductivity. Jeong et al. used spray coating technology to prepare reduced
graphene oxide/acid-treated, single-walled carbon nanotubes (rGO/ASWCNTs) composite electrode.
The flexible supercapacitor was fabricationed using polyvinyl alcohol/1-butyl-3-methylimidazolium
tetrafluoroborate (PVA/BMIMBF4) as GPE [20]. The specific capacitance of the flexible supercapacitor
(unbent) was 62.4 F/g, decreasing to 55.7 F/g (capacitance retention rate was 89.3%) after 1000 cycles.
The capacitor retained 64.6% of its initial capacitance after 300 bending and 4000 GCD cycles. Adding
IL to GPE improves the ionic conductivity and specific capacitance of SSC. Although some studies have
reported the symmetrical supercapacitors based on IL GPE and their electrochemical performance,
most of them used inorganic active carbon materials or metal oxides as electrodes.

As is well known, carbon materials, conducting polymers, and transition metal oxides are the
three categories of the electrode materials of the supercapacitor. Using inorganic active carbon (AC)
electrodes is beneficial to the high power density and long cycle life of SCs [31], however, the fabrication
process is complex. The preparation of active carbon SCs requires an adhesive, and the assembled layers
tend to be non-uniform. Additionally, the low energy density of AC limits its application. Thus, the
fabrication of SSC using conductive polymers as the electrode and GPE as the electrolyte is of particular
interest. Conductive polymers, including polyaniline, polypyrrole, and polythiophene, have been
studied extensively as SCs’ electrode materials due to their rapid doping/dedoping processes and good
intrinsic auto-conductivity [32]. Among them, poly(3,4-ethylenedioxythiophene) (PEDOT) attracts
great attention for its high conductivity [33,34], good chemical stability, and high operating potential.
However, its lower power density and the capacity fading during the continuous charge/discharge
processes limits its application. Therefore, in recent years, the electrochemical properties of SCs based
on PEDOT have been studied and improved by modifying electrode materials, designing electrolytes
or developing flexible or functional SCs to improve the electrochemical performances [35–37].

In this study, PEDOT-based SSCs were assembled using poly(3,4-ethylenedioxythiophene)/carbon
paper (PEDOT/CP) as symmetrical electrodes and ionil liquid/poly(vinyl alchohol)/sulphuric acid
(IL/PVA/H2SO4) as a GPE. Doping BMIMBF4 in PVA/H2SO4 GPE is expected to improve the
pseudocapacitance and energy density of the SSC. The symmetric PEDOT-based SC-IL/PVA/H2SO4

has better electrical conductivity and a wider potential window than SC-PVA/H2SO4. The IL GPE was
treated with freezing–thawing (F/T) cycles to improve the electrochemical performance. The effect
of F/T cycles on the performances of SSC was studied using cyclic voltammetry (CV), galvanostatic
charge–discharge (GCD) testing, and electrochemical impedance spectroscopy (EIS). The PEDOT SSC
exhibited high energy and power densities (170.90 and 21.27 kW/kg, respectively), as well as a specific
capacitance of 86.81 F/g at the discharge current of 1 mA/cm2. Furthermore, the IL GPE has excellent
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elastic recovery, mechanical properties and self-healing ability. It has great potential applications in
small, flexible, and smart energy-storage devices.

2. Experimental

2.1. Materials

All chemicals were analytical grade. 3,4-ethylenedioxythiophene (EDOT, 99%) and lithium
perchlorate (LiClO4·3H2O) were purchased from Aladdin Reagent Co., Ltd. Shanghai, China). H2SO4

was purchased from Chengdu Kelong chemical reagen, Chengdu, China. PVA-1799 was purchased
from Shanxi Sanwei Chemical Co. Ltd., hongtong, China. BMIMBF4 was received from Lanzhou
institute of chemical physics, Lanzhou, China. Ethanol absolute was obtained from Tianjin Damao
chemical reagent factory, Tianjin, China. Carbon paper (CP, Toray 060 type) was provided by Shanghai
Hesen Electric Co. Ltd., Shanghai, China.

2.2. Preparation of PEDOT/CP Electrode Material

CP substrate (2 × 1 cm) was soaked in ethanol absolute and deionized water, respectively, followed
by ultrasonic treatment 30 min before electrodeposition to remove the impurities on the surface of
CP. After that, 0.01 M EDOT monomer was added to 0.1 M LiClO4·3H2O electrolyte, stirring for
60 min. The three electrodes were inserted into the above solution, with pretreated CP as the working
electrode, platinum plate (Pt) as the counter electrode, and saturated calomel electrode (SCE) as
the reference electrode. PEDOT film was coated on CP by unipolar pulse electro-deposition [38].
Finally, the PEDOT/CP electrode was rinsed several times with deionized water and dried at 50 ◦C for
24 h. Parameters of the unipolar pulse electro-deposition were set as: voltage value: 1.1 V, on time:
0.1 s, off time: 1.0 s, pulse time: 700 times. The mass of PEDOT active materials on CP substrate is
~0.8–1.0 mg cm−2, which was measured with an AL104 electronic balance (Shanghai Mettler Toledo
Instrument Co. Ltd., Shanghai, China).

2.3. Fabrication of Gel Polymer Electrolytes and Solid-State Supercapacitors

IL/PVA/H2SO4 electrolyte was prepared by the following method [39]: H2SO4 (2 g) was added to
deionized water (20 mL) with magnetic stirring, then PVA (2 g) was added, stirring for 1 h at 85 ◦C to
form a homogeneous, clear and viscous solution. Subsequently, 50 wt% BMIMBF4 (relative to the mass
of PVA) was added, stirring for 15 min. After cooling to RT (20 ◦C), it was frozen at −20 ◦C for 10 min.
A pipette was used to evenly distribute IL/PVA/H2SO4 GPE on one side of the PEDOT/CP electrodes,
After 10 min, the SSC were assembled by facing two symmetrical PEDOT/CP electrodes distributed
with GPE, followed by freezing at −20 ◦C and thawing at RT for 24 h with different numbers of F/T
cycles, recorded as F/T-n (n = 1, 2, 3, 4). PEDOT SSC based on gel electrolyte without BMIMBF4, i.e.,
PVA/H2SO4, was fabricated using the same method for comparison.

2.4. Electrochemical Performance Test

The electrochemical tests of PEDOT SSC were performed on multi-channel VMP3 electrochemical
workstation controlled by EC-Lab software (Princeton Applied Research, Princeton, NJ, USA). The
mass of PEDOT films were measured by AL104 electronic balance (Shanghai Mettler Toledo Instrument
Co., Ltd., Shanghai, China). The electrochemical performances of SSC were evaluated by CV, GCD,
and EIS test in ambient condition. The mass specific capacitance (Cs) value of SSC was calculated from
charge/discharge curves, according to Equation (1)

Cs =
I × td

∆V ×m
(1)

where, I (A) is the discharge current, m (g) is the mass of electroactive materials, td (s) is the discharge
time and ∆V (V) represents the operating voltage window of the device.
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Energy density (E, Wh/kg), power density (P, kW/kg) were calculated from the following equations

E =
1
2

Cs∆V2 (2)

P =
E
td

(3)

The electrical conductivity of the IL/PVA/H2SO4 GPE films was measured at RT by the SZT-2A
four-point probes resistivity measurement system (Suzhou Tongchuang Electronics Co. Ltd., Suzhou,
China). For each sample, at least five replicates were tested, and the results were presented as
the average.

2.5. Differential Scanning Calorimetry (DSC)

DSC analysis was conducted on a NETZSCH DSC 204 (Selb, German) under a nitrogen atmosphere.
IL/PVA/H2SO4 GPE were dried at 80 ◦C under vacuum oven; small pieces were then sliced for the DSC
tests. Measurements were carried out from -60 to 290 ◦C at a heating rate of 10 ◦C/min.

3. Results and Discussion

3.1. Macrographs and SEM images of CP and PEDOT/CP

Figure 1A,D show macrographs of the CP and the PEDOT/CP electrode. The detail preparation of
PEDOT/CP electrode was stated in our previous work [38]. The long and smooth fibers of CP orient
randomly and are densely packed, forming the porous structure (Figure 1B,C) [3,40], which is help
for the coating of PEDOT and provides the channel for the ion migration. Figure 1E,F shows that the
CP coated with PEDOT films (PEDOT/CP) retained the loose, porous microstructure of electrode and
that there are lots of spindle-like multi-sized PEDOT distributing uniformly over individual carbon
fibers. In 0.5 M H2SO4 liquid electrolyte, the prepared PEDOT/CP electrode presents a high specific
capacitance of 126.24 F/g at 1 mA/cm2 and good cycling stability, with 80.57% retention of its initial
capacitance over 5000 cycles. Thus, we choose the PEDOT/CP electrode to assemble SSC using GPE
and study its electrochemical properties. As illustrated in the macroscopical digital images and the
illustration in Figure 1G, the two GPE-coated electrodes were assembled face to face into SSC. Its
electrochemical performances were studied using CV, GCD, and EIS in the following.
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Figure 1. Macrographs and SEM images of the carbon paper (A–C) and PEDOT/CP (D–F), and the
illustration of PEDOT solid-state polymer supercapacitor (G).

3.2. The Cyclic Voltammetry Test of SSC Based on Different Electrolytes

Figure 2A shows the CV curves of SSC based on two different electrolytes at 5 mV/s. The rectangular
shapes of the CV curves indicate their excellent capacitive behaviors. The SSC-IL/PVA/H2SO4 has
larger CV area than SSC-PVA/H2SO4, which indicates that embedding BMIMBF4 to PVA/H2SO4 can
effectively improve the capacitive performance of the device. Figure 2B shows that the CV area
gradually increases when the voltage window expands from 1.6 V (−0.8~0.8 V) to 2.0 V (−1.0~1.0 V); the
shape of all CV curves are close to rectangular. However, there are distinct and sharp peaks at the end
of the CV curves at a maximum operating voltage of 1.2 V; this indicates that higher electrochemical
potential will cause the decomposition of water [17,41–43]. Thus, we choose −1.0–1.0 V as the optimal
operating voltage window for SSC. The rectangular shape is generally retained even when the scan
rate is increased to 100 mV/s, which indicates the good rate performance of SSC.
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Figure 2. Cyclic voltammetry (CV) curves of solid-state polymer supercapacitor (SSC) based on
different gel polymer electrolyte (GPE) at 5 mV/s (A), SSC-IL/PVA/H2SO4 at 20 mV/s within different
electrochemical windows (B), SSC-PVA/H2SO4 (C) and SSC-IL/PVA/H2SO4 (D) at different scan rates.

3.3. The Galvanostatic Charge–Discharge Test

GCD tests were carried out to further evaluate the performance of SSC based on the two kinds
of electrolytes, and the results are shown in Figure 3. It can be seen that the discharging time of
SSC-IL/PVA/H2SO4 is obviously longer than that of SSC-PVA/H2SO4, indicating the former has a better
supercapacitive performance [14]. The IL GPE can provide electro-active ions (BMIM+ and BF4

−) for
the electrode and electrolyte interface, thereby enhancing specific capacitance [20]. The GCD curves
in Figure 3B,C indicate that the charge–discharge time is approximately equal and the coulombic
efficiency is close to 100%, which means the two SSCs have good electrochemical reversibility [9,44,45].
The specific capacitances calculated from the GCD curves according to Equation (1) are plotted as
a function of the discharge current density (Figure 3D). Compared with the SSC-PVA/H2SO4, the
SSC-IL/PVA/H2SO4 has better electrochemical behavior; the specific capacitance increases by two times
with the introduction of IL. The capacitance of SSC-IL/PVA/H2SO4 decreases from 86.81 to 52.15 F/g
with the gradual increase in current density from 1 to 5 mA/cm2. The slight fading of the capacitance
up to a high current density is attributed to the fast redox at the electrode/electrolyte interfaces.
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Figure 3. Galvanostatic charge–discharge (GCD) curves of the SSC based on different GPEs at
1 mA/cm2 (A), GCD curves of SSC-IL/ PVA/H2SO4 (B) and SSC-PVA/H2SO4 (C), as well as the specific
capacitances (D).

3.4. The Electrochemical Impedance Spectroscopy Test

The EIS results of the two SSCs are shown in Figure 4, and the corresponding impedance fitting
data are listed in Table 1. Rs is the internal resistance related to the ionic resistance of the electrolyte, and
the contact resistance at the interface of the electrode/electrolyte. Rct is the charge transfer resistance
occurring at the electrode/electrolyte interface during the charging–discharging process. The Rs and
Rct values are calculated from the results EIS. Compared with SSC-PVA/H2SO4, the Rs and Rct of
SSC-IL/PVA/H2SO4 is relatively smaller because IL can be used as an ion source to obtain more carriers
in IL-PVA/H2SO4, including imidazole cations BMIM+ and BF4

− apart from H+ and SO42− [14]. The
four-point probe method result also confirms that the conductivity of IL/PVA/H2SO4 (90.09 mS/cm)
polymer gel is better than that of PVA/H2SO4 (38.36 mS/cm). With the recent great progress in polymer
gel, some work focuses on how to improve its conductivity. Peng [46] reported the graphite oxide (GO)
doped PVA/KCl/GO hydrogel had a high ionic conductivity of 47.5 mS/cm (2.3 wt% GO) compared
with bare B-PVA/KCl hydrogel (32.6 mS/cm). Ramesh group [47] showed the ionic conductivity of
solid polymer electrolytes based on PVA incorporated with sodium salt and ionic liquid improved
the conductivity from 4.87 × 10−3 to 2.31 mS/cm. Hashaikeh and coworkers [48] showed the sulfated
cellulose/PVA composites as proton-conducting electrolyte for capacitors activated with 0.25M H2SO4

show a high ionic conductivity of 250 mS/cm. These studies suggest that the introduction of IL or
H2SO4 has a great contribution to the ionic conductivity of the PVA-based gel. Therefore, the high
conductivity of SSC-IL/PVA/H2SO4 can be attributed to the coefficient of all ions, including BMIM+,
BF4−, H+ and SO4

2−.
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Figure 4. Electrochemical impedance spectra of the SSC based on IL/PVA/H2SO4 and PVA/H2SO4

GPEs and a magnified view of the high-frequency region.

Table 1. Resistance values of the SSC based on IL/PVA/H2SO4 and PVA/H2SO4.

Electrolyte Rs (Ω·cm2) Rct (Ω·cm2) Conductivity (mS/cm)

PVA/H2SO4 8.38 0.010 38.36
IL/PVA/H2SO4 7.90 2.608 × 10−3 90.09

Rs: Resistive properties of the electrolyte and electrode. Rct: The interfacial charge transfer resistance of
electroactive materials.

3.5. The Energy Density and Power Density Test

Energy density (E) is an important influence parameter for SSC in practice. The E and power
density (P) of SSC based on the two electrolytes are evaluated and the results are shown in Figure 5A.
The SSC-IL/PVA/H2SO4 shows a much higher E and P than SSC-PVA/H2SO4. The maximum P is
21.27 kW/kg at a current density of 5 mA/cm2, and the optimal energy density is up to 176.90 Wh/kg at
1 mA/cm2, which is about 3.1 times higher than that of SSC-PVA/H2SO4 (57.11 Wh/kg). This indicates
that adding BMIMBF4 to PVA/H2SO4 electrolyte can improve the capacitive behavior. The values
of E and P are comparable to many recently reported PEDOT electrodes-based SCs. For example,
Pandey and coworkers studied the electrochemical energy storage performance of SCs fabricated
using PEDOT-coated carbon fiber paper electrodes and IL GPE in acetone [13]. It had a maximum
specific capacitance of 154.4 F/g and the specific power and energy values were found to be 11.3 and
6.5 Wh/kg, respectively. Compared to this, the specific power and specific energy in this work have
been improved. Moreover, we use aqueous IL-GPE rather than organic solvent base IL-GPE; the
assembled SSC-IL/PVA/H2SO4 is nontoxic, green or eco-friendly, and more promising. The cycling
stability is one of the most important parameters for the supercapacitor. As Figure 5B shows, the
capacitive retention rate of SSC-IL/PVA/H2SO4 decreases to 71.61% after 1000 cycles. The capacitance
fading is mainly attributed to the slightly decreased electroactivity of PEDOT.
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Figure 5. Ragone plot of the SSC based on two GPEs (A) and the capacitance retention rate of
SSC-IL/PVA/H2SO4 (B) at 5 mA/cm2.

3.6. The Effect of Freezing–Thawing Cycles on the Electrochemical Properties of SSC

Due to the regularly arranged hydroxyl groups along the PVA chains, PVA hydrogels are commonly
prepared through the strong physical crosslinking points generated by the repeated F/T method [18,49].
The physical crosslinking is constructed through the crystallite region and the hydrogen bond inter-
or intro-PVA chains. Therefore, it is expected that the two conducting polymer electrodes can be
assembled as SSCs using a PVA-based ionic liquid gel as the electrolyte. The number of F/T cycles is one
important condition that must be taken into account for the structure and properties of PVA hydrogel.
A higher number of F/T cycles will increase the physically crosslinked PVA macromolecules, which are
bound into a network, thus improving the stability and elastic properties of the hydrogel [18,50,51]. To
obtain the excellent properties, herein we study the effect of the number of F/T cycles on the SSC.

Figure 6A shows that the CV curves of SSC-IL/PVA/H2SO4 applied with different F/T cycles have
quasi-rectangular shapes. The CV area and the response current slightly increase firstly and then
decrease with the higher F/T cycles. The F/T-3 has the optimum performance. The Nyquist curves in
Figure 6B show that the internal resistance of SSC depends on the number of F/T cycles. The device
subjected to three F/T cycles has the minimum internal resistance, as listed in Table 2, because the stable
network of GPE with three F/T cycles can provide effective channels for the ions’ transportation. The
corresponding Rct is relatively large, which is due to the formation of ion layers on the electrode surface
during the embedding/embedding process, resulting in the increasing impedance [52]. However, too
many physical crosslinking points will generate in the GPE when the F/T is more than three cycles,
which will hinder the ion transportation. Figure 6C shows that all GCD curves display good symmetry,
indicating that the SSCs have excellent electrochemical reversibility. In addition, the nearly linear
discharge behavior exhibits the good capacitive performance of SSCs. The charge–discharge time and
specific capacitance gradually increase, and then decrease with the F/T cycles, reaching a maximum
value of 53.73 F/g at three F/T cycles.
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Figure 6. Cyclic voltammetry curves (A), electrochemical impedance spectra (B) of SSC-IL/PVA/H2SO4

with various freezing-thawing cycles at 5 mV/s, galvanic charge–discharge curves (C), and the specific
capacitance (D) at 1 mA/cm2.

Table 2. Resistance values of SSC-IL/PVA/H2SO4 underwent different freezing–thawing (F/T) cycles.

F/T Cycles Rs (Ω·cm2) Rct (Ω·cm2) Cp (F/g) Tm (◦C) Conductivity (mS/cm)

1 13.00 1.013 × 10−7 34.47 175.19 68.81
3 7.90 2.608 × 10−3 53.73 197.11 90.09

Rs: Resistive properties of the electrolyte and electrode. Rct: The interfacial charge transfer resistance of electroactive
materials. Rs and Rct were determined from the results of EIS. Tm: Melting Temperature F/T: Freezing–thawing.
Tm is from the DSC result, and Conductivity is from the four-point probe method.

3.7. The Effect of Freezing–Thawing Cycles on the Thermal Properties of SSC-IL/ PVA/H2SO4

The intermolecular interaction increases between pendant hydroxyl groups, forming a crystallite
region, and generating a three-dimensional polymer gel network, where the crystallites and the
polymer chains entanglement act as knots [53,54], while the pores are filled by the ionic liquid, H2SO4

and free water. The polymer network is not stable or perfect when the SSC is subjected one F/T cycle.
Upon increasing the number of F/T cycles to three, the numbers of hydrogen bond in the gel increases,
and the physical cross-linking points also increase due to the polymer chains’ entanglement, forming a
gel with stable crosslinking network as shown in Figure 7A [55], which allows ionics to transfer in
the electrolyte. A higher degree of crystallinity, present in the PVA hydrogen with higher F/T cycles,
is confirmed by DSC thermograms of IL/PVA/H2SO4 GPE subjected to one or three F/T cycles. For
sample F/T-1, the peak observed at 100 ◦C is considered as a chain movement caused by water or acid,
IL molecules release or movement. The peak at 175.19 ◦C is the melting temperature caused by the
limited crystal region. For sample F/T-3, the peak present at 171.15 ◦C becomes weak and the main
melting peak shifts to a higher temperature, implying that the increasing degree of crystallization is
due to the increasing F/T cycles.
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Figure 7. The structure illustration (A) and DSC thermogram (B) of IL/PVA/H2SO4 GPE subjected to
different freezing–thawing cycles.

3.8. The Mechanical Properties and Function of Ionic Liquid-Based Polymer Gel

The GPE was sandwiched between the two PEDOT/CP electrodes. It is not convenient to study
the appearance, elasticity recovery, mechanical properties or other functional characteristics, so we
fabricated the film and rod shape of the GPE sample using the same preparation method to directly
observe the mechanical properties. The mechanical property of the GPE is the critical parameter that
will affect the applications [56]. Figure 8A,B shows the IL/PVA/H2SO4 gel film or road sample is soft
and flexible, and it has excellent recovery elasticity. It can be easily stretched at least two times or
twist under extra force and fully recover to its original shape just like rubber, indicating that GPE has
excellent mechanical properties. What is interesting is the IL GPE has excellent self-healing properties,
as shown in Figure 8C; the road sample was cut in the middle and it can recover to its original state after
5 min in air at RT, and we can pick up the self-healed sample with tweezers. The self-healing can be
attributed to the hydrogen bonding interaction during the formation of the IL polymer gel. Although
the hydrogel electrolytes have made great progress, they rarely present self-healing behavior [46].
Furthermore, it still faces great challenges to assemble the flexible SCs with good specific capacity, long
life cycles, high ionic conductivity and excellent self-healing when suffering damage [57]. This will
open a window for studying the flexible and self-healing smart supercapacitor or other multi-functional
electrical devices. Future work will focus on this and will be carried out continuously in this field.
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4. Conclusions

In this paper, the symmetrical SSC was fabricated using PEDOT/CP prepared by the unipolar
pulse method as electrodes, GPE based on IL/PVA/H2SO4 as GPE. IL/PVA/H2SO4 GPEs were prepared
by F/T cycle. The electrochemical performances of SSC were tested by CV, GCD, and EIS. Compared
with the SSC-PVA/H2SO4, the mass specific capacitance of SSC-IL/PVA/H2SO4 was improved by two
times, reaching 86.81 F/g. And its energy density was also significantly improved to reach 176.90 Wh/kg.
In addition, the SSC-IL/PVA/H2SO4 had good cycle stability, which retained 71.61% of the initial
capacitance after 1000 GCD cycles. Therefore, adding IL (BMIMBF4) to PVA/H2SO4 GPE can effectively
improve the capacitive performance and energy density of SSC. Furthermore, IL/PVA/H2SO4 GPE also
exhibits good elastic recovery and self-healing, which gives it significant application value in light,
thin and wearable flexible devices due to its excellent mechanical properties.
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