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Introduction

The binding of a small molecule (ligand) to a macromol-
ecule (usually a protein) is a key process in biology and 
the most common mechanism for pharmaceutical drugs 
to act. A long-term goal of computational chemistry has 
been to accurately predict the binding free energy of a 
given protein–ligand pair. Several rigorous methods have 
been developed, which in principle are only limited by the 
accuracy of the underlying energy model (force field). These 
methods are typically based on molecular dynamics (MD) 
and include potential-of-mean-force methods, in which the 
ligand is physically dragged in or out of the binding cav-
ity, as well as alchemical perturbation methods, in which an 
unphysical path is applied.

In practice, most of these methods require the knowledge 
of the structure of the protein–ligand complex, the binding 
pose, to converge in a reasonable time [1]. Thus, predict-
ing an unknown binding pose is an important computational 
challenge in itself. The most common approach, molecular 
docking (or simply docking), typically involves a combina-
tion of a conformational search method and a scoring func-
tion that approximates the binding affinity for a given candi-
date. The receptor is usually considered rigid and the ligand 
flexible. However, some methods take the flexibility of the 
side chains in the receptor into account [2–4], for example by 
using “soft” scoring functions, which tolerates some overlap 
between the ligand and the protein [5, 6], or scanning rota-
mer libraries to simulate side chain movements [7].

Given the limitations of both conformational search 
methods and scoring functions, there is a growing interest 
in more rigorous approaches to the binding pose prediction 
problem. The direct use of MD simulations to find the bind-
ing pose has been tested for several systems [8–10]. In prin-
ciple this approach can take into account both sidechain and 
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backbone movements, but very long simulation times and 
multiple runs are typically required to obtain statistically 
valid results. Various types of enhanced-sampling methods 
have been applied to the problem to decrease the computa-
tional cost. One example is reconnaissance metadynamics, 
which uses a machine-learning approach to apply a local 
bias potential that helps escaping the free-energy basins in 
the conformational space [11]. In a previous work, we used 
reconnaissance metadynamics to find favorable binding 
poses for a rigid ligand binding to trypsin [12]. Methods 
capable of handling more flexible ligands have been devel-
oped based on other enhanced-sampling approaches, such 
as replica-exchange MD [13].

A more common application of MD simulations is to 
validate a binding pose obtained by docking [14]. The pur-
pose of such investigations ranges from only confirming the 
kinetic stability of the pose in MD simulations [15], to esti-
mating the binding free energy through approximate expres-
sions like Molecular mechanics with Poisson–Boltzmann (or 
Generalized Born) and surface-area solvation (MM-PBSA 
or MM-GBSA) [16], or linear interaction energy (LIE) [17]. 
The results from such studied have been mixed and highly 
system-dependent [18–20]. Enhanced sampling has some-
times also been used to improve docking poses [21, 22], 
as well as to more thoroughly investigate the binding free 
energy landscape for a single ligand [23].

To assess the isolated pose-prediction problem, a crystal 
structure of the complex is needed, but then, on the other 
hand, there is a risk that studies get influenced by this knowl-
edge. Therefore, blind challenges, in which there exists accu-
rate experimental data for validation but the data is kept 
secret during the prediction phase, play a very important 
role. The first Drug Design Data Resource (D3R) Grand 
Challenge was conducted in 2015, with a first stage dedi-
cated to pose prediction and ability to rank compounds by 
binding affinity with minimal structural data, and a second 
stage dedicated to ranking compounds when at least a subset 
of the binding poses were known. A conclusion from the 
challenge was that the accuracy of pose-prediction methods 
depends on several extrinsic factors, such as which protein 
structure was used for the docking, how protein structures 
were prepared, and other aspects of the protocol [24]. A sec-
ond, similar challenge involving a new data set, D3R Grand 
Challenge 2, was initiated in 2016. In the first stage of this 
challenge, the goal was to determine the binding pose for 
36 different ligands to the farnesoid X receptor (FXR) with 
computational methods. FXR is a ligand-activated transcrip-
tion factor, attributed to many bodily functions, e.g. regula-
tion and maintenance of bile acid synthesis, reduction of 
plasma cholesterol and triglycerides, glucose homeostasis 
and improvement of insulin sensitivity [25].

The aim of our participation in the D3R Grand Challenge 
2 is to investigate whether rigid docking into a multitude of 

crystal structures, followed by extensive MD simulations, 
can solve some of the problems for which one would other-
wise expect more advanced flexible docking methods to be 
required. In particular, we anticipate that the simulations, 
with their more accurate treatment of e.g. water, can refine 
resonable docking poses and bring them closer to the experi-
mental structure. In light of previous research, we do not 
expect the MD simulations to be able to repair mis-docked 
poses in a reasonable amount of simulation time. Therefore 
we also include a third round of calculations, in which we 
apply an enhanced-sampling approach, namely reconnais-
sance metadynamics, to explore the generation of diverse 
binding pose candidates.

Methods

Overview

The pose prediction part of the D3R Grand Challenge 
2 (which will simply be denoted the challenge in the fol-
lowing) involved predicting the binding pose of 36 ligands 
binding to FXR. One of the ligands (33) was subsequently 
discarded from the data set due to experimental problems; 
thus it will not be included in this manuscript.

After the submission of the blind predictions, we have 
continued the investigation to collect more statistics and get 
a more complete understanding of the merits and problems 
with the applied methods. In some cases, we have used the 
experimental data published after the submission deadline 
(which we will denote “secret data”) to analyze the results 
or guide the selection of computations to perform. How-
ever, because the aim of the study was to develop “blind” 
methods, we will clearly mention when and why the secret 
data was used.

Preparation of the ligands

The preparation and parametrization of the ligands were 
done in a blind manner (i.e. without using secret data) and 
kept constant throughout the study. First, hydrogen atoms 
were added at pH 7.4 to the 2-dimensional molecular struc-
tures using Open Babel [26] followed by geometry optimi-
zation in vacuum using the MMFF94 force field [27, 28] 
with Open Babel’s obconformer tool. The antecham-
ber [29] tool integrated with Amber 14 was utilized to 
parameterize the ligands with the Generalized Amber force 
field (GAFF) [30]. Partial charges were assigned using the 
AM1-BCC procedure [31]. Missing parameters were added 
by the automatic Amber tool parmchk2 without further 
optimization [32].
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Preparation of the proteins

An apo conformation of FXR was given at the start of the 
challenge, and was used as a template for the submission of 
binding poses. To account for the known conformational 
variation in the protein, a set of 18 ligand-bound crystal 
structures of FXR from the Protein Data Bank were prepared 
alongside the apo-protein (see Table S1 in the Supplemen-
tary material).

For each crystal structure, chain A was isolated by remov-
ing all water molecules as well as any redundant protein 
chains. To eliminate the dependence of the results on par-
ticular crystallographically motivated mutations in the 
various structures, all protein structures were modified by 
point mutations using the ’swapaa’ command in UCSF Chi-
mera [33] until they had exactly the same sequence as the 
apo-protein (see Table S3 in the Supplementary material).

The apo structure was analyzed with the web server 
H++ [34], which predicted the protonation state for the 
receptor at pH 7.4. All histidines were found to be singly 
protonated on the N�, and all other amino acids were in their 
typical protonation state. These protonation choices were 
then transferred to the other crystal structures, so that all 
the final prepared structures contained exactly the same set 
of atoms.

For the a posteriori analysis, a similar procedure was 
used to prepare the new (secret) crystal structures for simu-
lations, as detailed in Table S3 in the Supplementary mate-
rial [35, 36]. Owing to a greater crystallographic sequence 
variation, we did not enforce a completely identical sequence 
for these structures in the simulations.

Docking

Molecular docking was performed by Autodock Vina, which 
is an open source docking programme widely used by many 
research groups for docking and virtual screening studies. It 
employs an empirical scoring function [37] which is inspired 
by X-score [38].

Autodock Vina uses a fixed grid box wherein it tries to 
place the different conformations of the ligand. In our case, 
the previously published crystal structures of FXR–ligand 
complexes indicated a single well-defined binding site. The 
AutoDock Tools [39] were used to create a grid box for each 
protein structure with a grid spacing of 1.0 Å, a size of 15 × 
15 × 15 Å, and with the grid centered on the center of mass 
of the removed co-crystallized ligand.

The docking was performed with the “exhaustiveness” 
set to 8. Increasing the exhaustiveness would increase the 
probability of finding the global minimum, but we preferred 
to set it to a typically used value. As the docking procedure 
involves random seeds, different results are obtained in every 
run; we simply used the first set of results that we obtained.

Each ligand was docked with every crystal structure, 
including the apo-protein, in total 35 × 19 docking runs. 
After the secret data was revealed, we extended the dock-
ing study to include the new crystal structures. Again, each 
ligand was docked into all available crystal structures and 
all parameters of the docking protocol were kept identical.

MD simulations

For each ligand, the top-predicted docking pose, i.e. the 
prediction with the best score among all included crystal 
structures, was used as the starting point for an MD simu-
lation. The Amber ff14SB force field [40] was used for the 
protein and the GAFF force field was used for the ligand, 
as described above.

All simulations were run with GROMACS 4.6.2 [41]. 
The acpype script [42] was used to prepare GROMACS-
compatible files. Using the standard GROMACS tools, the 
complex was placed in a truncated octahedron box, with a 
minimum distance from the complex to the box boundary 
of 8 Å, and solvated with water modeled by the TIP3P 
force field. Energy minimization was performed for each 
complex using a steepest-descent integrator for 200 steps. 
Each system contained one protein–ligand complex and ∼ 
12000 water molecules.

A 1 ns NPT equilibration (constant composition, pres-
sure, and temperature), with positional restraints on the C� 
atoms of the receptor and the heavy atoms of the ligand 
(using a force constant of 120 kcal mol

−1
nm

2), was per-
formed to allow the water to relax around the complex. A 
non-bonded cut-off of 9 Å was used and the long-range 
electrostatics were treated using Particle mesh Ewald 
(PME) summation [43] using a grid spacing of 0.12 nm. 
The pressure was maintained at 1 bar using the Berendsen 
barostat. A leap-frog integrator algorithm with a time step 
of 2 fs was used, and all bond lengths were constrained 
using the LINCS algorithm. The temperature was kept 
constant at 310 K (i.e. the temperature in the human body) 
using the velocity–rescaling algorithm [44].

The production MD simulation was performed with the 
same settings as the previous equilibration, but without 
any restraints. In order to check the stability of the binding 
pose, an RMSD calculation was performed after each ns of 
MD simulation to see whether the ligand position deviated 
too much from the starting position. If the RMSD of the 
ligand (after alignment of the C� atoms of the protein) at 
any frame exceeded 2.5 Å from the average structure of 
the first nanosecond of free simulation, or 4 Å from the 
starting pose, the simulation was terminated; otherwise it 
was run for 50 ns.
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Reconnaissance metadynamics simulations

Reconnaissance metadynamics (RMD) simulations were 
performed for all the complexes subjected to MD simula-
tions, using the end points of the MD simulations as start-
ing points for the RMD simulations. RMD is a self learn-
ing algorithm for enhanced sampling which is capable of 
handling a larger number of collective variables (CVs) 
than ordinary metadynamics and related methods [11]. The 
RMD calculations were performed using version 1.3 of the 
PLUMED plugin for free-energy calculations [45] patched 
with GROMACS.

The complete set of rotable bonds in each ligand was 
determined manually and the corresponding dihedrals were 
used as CVs in the RMD algorithm. The RMD simulations 
were performed with the same settings as the previous MD 
simulations except that they were performed in the NVT 
ensemble (constant composition, volume, and temperature) 
to avoid technical issues. The bias deposit stride was set 
to 1 ps with a gaussian width of 1.5 (in the dimensionless 
local metric defined by the covariance matrix) and a gauss-
ian height of 0.239 kcal/mol. The basin tolerance was set to 
0.2 the basin expand parameter to 0.3 and the basin initial 
size to 1.5. The RMD clustering stride was 100 ps, with 
1000 data points collected during this period. RMD simula-
tions were run for 20 ns and the results were interpreted by 
a clustering approach, as described below.

For some ligands, we also ran an RMD simulation with 
the ligand dihedrals and seven additional CVs intended to 
increase the fluctuation of the protein sidechains in the active 
site. These were the dihedral angle around the C�–C� bond 
for seven active-site side chains: Leu-291, Met-294, His-
298, Met-332, Ser-336, Leu-352, and Ile-356.

For ligand 5, we also ran an RMD simulation with the 
ligand dihedrals and three additional CVs intended to 
promote rotation of the ligand with respect to the protein. 
These were again dihedral angles, but each connecting two 
C� atoms in rigid parts of the protein with two atoms of the 
ligand. The atoms were manually selected by visual inspec-
tion of the docked binding pose, in order to represent three 
different modes of rotation of the ligand (see Fig. S1 in the 
Supplementary material for details).

RMSD analysis and clustering

Two types of RMSD analysis were performed in this 
study. To analyze the difference between various poses, 
perform clustering, and analyze the stability of a simula-
tion, the standard GROMACS tools were used, with the 
RMSD calculated for the heavy atoms of the ligand after 
alignment of the C� atoms of the protein. To analyze the 
deviation from experiment, we instead used the official 
script provided by the D3R team, which takes into account 

symmetry-equivalent atoms by using the maximum common 
substructure procedure [46] to match ligand atoms between 
the prediction and the reference structure in such a way that 
the RMSD is minimized. Chain A of the experimental struc-
tures was used as the reference structure, except in some 
cases where a slightly lower RMSD was obtained if using 
chain C. If several alternative conformations were present in 
the reference structure, we used the set of coordinates that 
gave the lowest RMSD.

Cluster analysis was performed with the GROMACS tool 
g_cluster using the GROMOS algorithm [47] with the 
RMSD distance metric defined above. Snapshots from the 
trajectory were taken out with a period of 20 ps, the RMSD 
cut-off was set to 2.0 Å, and only clusters containing at least 
ten structures were considered to be significant.

Selection of poses for submission

For preparing the docking submission to the challenge, all 
poses for a given ligand were ranked according to their score, 
and any duplicate poses were removed by going through the 
sorted list of poses and discarding a pose if a similar pose 
with better score had already been selected, possibly based 
on another crystal structure. The criterion for similarity was 
that the RMSD between the poses was below 2 Å. The top 
five poses for each ligand were submitted in the challenge, 
ranked according to their score.

For preparing the MD submission to the challenge, the 
clusters of the MD trajectory were ranked according to size 
(i.e. the number of snapshots). The center of the largest clus-
ter was used as the top pose. In most cases, only one sig-
nificant cluster was obtained, and in the few cases in which 
several (up to four) significant clusters were obtained, the 
extra clusters were found to be uninteresting and will not be 
further discussed.

When preparing the RMD submission to the challenge, 
only three ligands were ready. The poses for these ligands 
were selected by manually combining data from RMD and 
additional MD simulations, as described in Table S2 in the 
Supplementary material. For all other ligands, the MD sub-
mission was reused.

Results and discussion

For computationally predicting binding poses to FXR, we 
investigated the performance of a rigid but multi-targeted 
docking method and further refinement by MD and enhanced 
sampling, all in a blind-challenge context provided by the 
D3R Grand challenge 2. Our long-term goal is to develop a 
useful combination of these methods which can be applied 
to protein–ligand complexes with unknown structure. The 
results will be presented and analyzed step-wise, beginning 
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with docking results, continuing with results from MD sim-
ulations, and ending with the results from reconnaissance 
metadynamics.

Docking results

To account for the known flexibility of FXR and increase the 
probability of finding the correct binding pose despite using 
a rigid docking method, each ligand was docked into a series 
of crystal structures from the Protein data bank, as described 
in the method section. In the analysis stage, this set of pro-
tein structures was further extended by the 35 new crystal 
structures and a similar docking procedure was performed.

Our docking submission (0lxp5) consisted of five pre-
dicted poses for each ligand, ranked according to their 
score. The evaluation results (RMSD towards experiment) 
are shown in Table 1. The column “first” gives the RMSD 
for our top-predicted pose, whereas the column “best” gives 
the smallest RMSD among the five predicted poses. Both 
these measures were included in the official evaluation of 
the challenge; the “best” measure primarily tests a method’s 
ability to find the binding pose, whereas the “first” measure 
also tests the ability to rank the poses.

Using an RMSD threshold of 2 Å for classifying a pose as 
“correct”, the docking procedure included the correct pose 
among the five submitted poses for 21 out of 35 ligands. 
However, only for 13 of these ligands, the correct pose was 
submitted as the “first” pose (i.e. having the best score), 
although for the remaining eight cases the difference in score 
was always smaller than 1 kcal/mol (0.44 kcal/mol on aver-
age; see Table 1). Statistics for other threshold values are 
given in Table 2 and show similar trends. The distribution 
of the number of correct poses over all D3RGC2 submis-
sions are shown in Fig. 1 (data extracted from the official 
web server [48]).

The “globally best” column in Table  1 contains the 
results of the analysis stage, in which the experimental 
protein structure was included among the docking targets 
(i.e. secret data was used, but still no information about the 
ligand pose). In this case, 29 ligands were correctly docked 
(again with a threshold of 2 Å), i.e. including 8 ligands 
that were not correctly docked in the first stage. Thus, as 
expected, having the correct protein structure greatly helps 
when performing rigid docking. This is especially true for 
ligand types not represented in the set of old crystal struc-
tures. In fact, 6 of the 8 improved ligands belonged to the 
isoxazoles, spirocycles, and miscellaneous groups, and these 
groups also showed a substantial improvement in average 
RMSD when going from the first to the analysis stage, as 
shown in Table 3. However, the results do not reveal whether 
the major advantage comes from having a correct global 
structure of the protein (e.g. positions of helices) or from 
having the sidechains in exactly the correct conformation 

for optimal interaction. From the data in Table 2, we can 
conclude that the advantage increases if the threshold is 
decreased (e.g. it is even more important to have the cor-
rect protein structure if one aims at an RMSD below 1 Å), 
but this fact concurs with both the two explanations (global 
structure and sidechain conformations) and thus does not 
discriminate between them.

To analyze the performance of the scoring function, we 
posed the question of whether our multi-targeted docking 
approach would have picked out the correct pose if the chal-
lenge had included the secret crystal structures of the pro-
teins (but no information about binding poses or which pro-
tein structure corresponded to the particular ligand). More 
precisely, we extracted the RMSD towards experiment for 
the single pose having the best score among all the dockings 
to old and new crystal structures. The results are given in 
Table 1, in the column “globally first”, and summarized in 
Table 2. Compared to the “first” results, which were obtained 
in the same manner but without the new crystal structures, 
the number of correctly predicted poses increased from 13 
to 19. The discrepancy between this number (19) and the 
“globally best” (29) shows the difficulty for the scoring func-
tion to select the correct binding pose. The selection is actu-
ally slightly easier if, for each ligand, only its own protein 
structure is used for docking (22 correct poses; see Table S4 
in the Supplementary material for details). However, it is 
noteworthy that this result is still worse than for some blind 
submissions to the challenge (cf. Fig 1). Moreover, in a 
real application, the exact protein structure is typically not 
known, and there appears to be no significant advantage of 
restricting the set of protein structures to those involving 
the same type of ligand (20 correct poses; see Table S4); in 
contrast, the inclusion of many structures is often beneficial 
because it reduces the method’s sensitivity to both experi-
mental errors and scoring function deficiencies.

With this larger set of data, it is interesting to know 
whether the difference in docking score between the correct 
pose and the top-predicted but wrong pose is always small, 
as was indicated by the data for the old crystal structures 
(see above). We thus defined the correct pose as the globally 
best-scored pose with an RMSD below 2 Å, and excluded 
ligands for which no such pose was found. The detailed 
results are shown in Table S5 in the Supplementary material. 
Out of the 10 ligands for which the top-predicted pose was 
wrong, 5 displayed a score difference smaller than 0.5 kcal/
mol, which can be considered well within the accuracy 
limit of the scoring function; one should probably consider 
all poses equally likely if their scores differ by such small 
amount. On the other hand, for the remaining 5 ligands, the 
difference was greater than 1 kcal/mol and in one case, for 
ligand 18, as high as 3.4 kcal/mol. This suggests that these 
interactions are quite complex and not well modeled by the 
scoring function. However, part of the reason for the failure 
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of the scoring function might be that the “correct” poses 
were not perfect; only one of the 5 ligands with large score 
difference had an RMSD below 1 Å towards experiment. In 
particular, the best found docking pose of ligand 18 (RMSD 
1.2 Å) had one amide group oriented in the wrong direction, 
thus preventing the formation of a hydrogen bond with His-
451; this can probably explain the rather poor score and the 
resulting prediction of an unrelated pose (RMSD 8.8 Å) as 
the best one (see Fig. S2 in the Supplementary material).

For comparison, the results for the two best submissions 
in the challenge (7ltme and ixnzu) have been included in 
Table 2. When preparing these submissions, the authors 
used two commercial docking programmes, GLIDE/GOLD 
and ICM Dock, respectively. Interestingly, previous com-
parative studies of docking programmes have indicated that 
both these programmes out-perform Autodock Vina for pose 

prediction [49, 50], thus the results for the FXR system seem 
to be consistent with previous results.

MD refinement

A subset of the docking poses were selected for refinement 
using classical MD simulations, followed by clustering, 
as described in the method section. Originally, this subset 
included the top-predicted pose of each ligand; the cluster 
centers of these simulations were submitted as a separate 
entry (byf51) in the challenge, but with no improvement rela-
tive to the docking results. Later, the set of MD simulations 
was extended to include all docking poses that were within 
3 Å of the experimental structure, regardless of their initial 
rank. This enabled us to collect more statistics on the pos-
sible use of MD for refinement of reasonably correct poses, 

Table 1   Results of the docking Ligand Type RMSD (˚ )lom/lack(erocS)A
First FirstBest Gl. first Gl. best Best Gl. first Gl. best

1 misc 5.32 2.97 0.65 0.65 -9.7 -9.1 -10.7 -10.7
2 misc 6.86 5.39 6.86 2.69 -10.5 -10.1 -10.5 -9.1
3 misc 4.70 4.70 4.92 3.03 -10.0 -10.0 -11.6 -7.6
4 isox 3.82 3.82 0.69 0.69 -11.2 -11.2 -12.0 -12.0
5 misc 6.48 5.84 6.21 2.57 -10.5 -9.6 -11.3 -8.5
6 benz 0.42 0.42 0.42 0.41 -12.2 -12.2 -12.2 -12.0
7 benz 1.20 1.20 1.12 0.68 -12.8 -12.8 -13.9 -13.5
8 benz 5.49 0.92 5.55 0.81 -10.9 -10.8 -11.4 -11.0
9 benz 0.54 0.54 0.44 0.44 -12.9 -12.9 -13.2 -13.2
10 spir 4.96 4.96 9.03 1.50 -10.4 -10.4 -10.9 -7.9
11 spir 4.32 4.32 9.68 2.55 -9.6 -9.6 -10.7 -4.4
12 spir 4.31 2.78 9.22 1.64 -10.9 -10.4 -11.3 -9.7
13 benz 7.95 7.29 0.38 0.38 -12.5 -10.4 -14.9 -14.9
14 benz 0.87 0.87 0.87 0.57 -12.0 -12.0 -12.0 -11.3
15 sulf 9.48 4.25 1.23 0.64 -11.5 -10.6 -12.0 -10.8
16 sulf 8.16 1.25 1.74 0.91 -9.5 -9.1 -10.6 -9.4
17 sulf 1.47 1.47 1.47 1.07 -11.2 -11.2 -11.2 -7.9
18 misc 8.83 8.46 8.83 1.21 -12.4 -10.8 -12.4 -9.0
19 benz 1.30 1.30 1.40 1.06 -11.7 -11.7 -12.2 -10.2
20 benz 6.96 0.60 0.72 0.57 -12.8 -12.3 -12.9 -12.2
21 benz 6.27 0.95 4.93 0.68 -12.2 -12.1 -12.7 -11.5
22 benz 0.92 0.92 2.15 0.69 -11.3 -11.3 -12.1 -11.8
23 isox 7.63 3.39 7.63 1.48 -11.7 -11.2 -11.7 -9.4
24 benz 6.52 1.18 4.86 0.72 -12.1 -11.5 -13.1 -11.3
25 benz 1.65 0.98 0.49 0.46 -13.3 -11.3 -13.3 -12.9
26 benz 7.89 1.23 8.10 1.00 -11.5 -11.4 -12.7 -11.5
27 benz 1.25 1.25 1.25 0.64 -13.7 -13.7 -13.7 -13.5
28 benz 0.77 0.77 1.15 0.63 -12.8 -12.8 -13.0 -12.9
29 benz 0.79 0.79 0.50 0.50 -12.9 -12.9 -12.9 -12.9
30 benz 6.43 1.82 7.42 0.97 -10.6 -9.7 -11.4 -10.3
31 benz 1.60 1.60 1.60 0.65 -12.3 -12.3 -12.3 -11.5
32 benz 4.04 2.08 3.96 2.02 -11.6 -11.2 -11.7 -9.2
34 misc 11.03 5.64 11.03 3.85 -11.8 -11.2 -11.8 -9.5
35 benz 0.40 0.40 0.40 0.40 -13.5 -13.5 -13.5 -13.5
36 benz 8.12 1.37 0.66 0.56 -12.6 -11.8 -13.9 -13.5

Avg 4.54 2.51 3.64 1.12

Evaluation of the RMSD towards experiment for the top-predicted pose (first), best of the five sub-
mitted poses (best), best of all poses found in the analysis stage of the docking including the new 
crystal structures (globally best), and top-predicted pose when both old and new crystal structures 
were used (globally first). The docking score of each pose is also given. For improved readability, 
the entries for “best” are shown in bold face if they are not identical to “first”. The shaded table 
entries represent poses with an RMSD below 2  Å. The ligands are classified into types listed in 
Table 3
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as we did not expect MD to repair the mis-docked ones. In 
total, 48 simulations starting from docking poses were run 
(but the one for ligand 33 was discarded). For comparison, 
a series of simulations starting from the experimentally 
obtained binding pose for each ligand were also performed 
(35 additional simulations).

The results of all the simulations are given in Table 4. 
The MD simulations were remarkably stable; only four of 
the simulations (for ligands 3, 5, 10, and 16) diverged sub-
stantially from the initial pose (according to the definition 
in the method section). This means that not only were all the 
simulations starting from a pose close to experiment stable, 
but also a great majority of the simulations starting from a 
totally wrong binding pose. Apparently, the docking method 
did well in predicting poses that were at least kinetically 
stable, and our simple MD refinement procedure was not 
able to further pinpoint the poses which are most stable in a 
thermodynamic sense. Plots of the RMSD along all trajec-
tories are given in Fig. S3 in the Supplementary material.

On average, the RMSD towards experiment changed 
insignificantly (by 0.06 Å) in the MD refinement, reflect-
ing an almost equal probability of improvement (60%) and 
deterioration (40%). The individual variation is shown 
in Fig. 2, where a red circle marks an improvement if it 
is below the diagonal line. Several ligands whose docking 
poses had RMSDs in the range 1–1.5 Å were improved to 
RMSDs below 1 Å, indicating a potential usefulness of the 
approach, but, as already mentioned, several poses instead 
became worse. Running multiple simulations from each 
starting point would obviously have increased the probabil-
ity of improving each pose, but without a reliable way of 
picking out the correct candidate from the simulations, such 
protocol would not have helped in a blind-challenge context.

The results for the simulations that were started from the 
experimental structures are also given in Table 4. Interest-
ingly, 32 of the ligands gave the correct pose as the main 
cluster center. In other words, for only 3 of the ligands (10, 

Table 2   Summary of the 
docking results

Each line reports the number of ligands for which the various docking strategies in Table 1 found the “cor-
rect” pose, if evaluated by a given RMSD cutoff threshold. Just as in Table 1, the “first” pose is the submit-
ted top-scored pose, the “best” pose is the pose that retrospectively was the best of the five submitted poses, 
the “globally best” is the retrospectively best pose among the dockings to all (including secret) crystal 
structures, and the “globally first” pose is the top-scored pose among the dockings to the whole set of pro-
tein structures. For comparison, the corresponding best-pose results are shown for the two best submissions 
in the challenge: ixnzu and 7itmc. The 2 Å threshold is the default used throughout this study

Cutoff (Å) Number of correct poses

First Best Globally first Globally best ixnzu 7itmc

1.0 7 11 11 22 17 18
1.5 11 19 17 27 23 21
2.0 13 21 19 29 26 26
2.5 13 22 20 30 28 26
3.0 13 24 20 33 29 26

Table 3   Average RMSD in Å for the various types of ligands using 
the best docking result from the blind stage (old) and the analysis 
stage (global), respectively

Group Old Global

Benzimidazoles (benz) 1.36 0.71
Sulfonamides (sulf) 2.32 0.87
Isoxazoles (isox) 3.61 1.09
Spirocycles (spir) 4.02 1.90
Miscellaneous (misc) 5.50 2.33
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Fig. 1   Performance of the submissions to D3RGC2. The upper panel 
shows the distribution of the number of correctly predicted ligand 
poses (out of 35) over all the submissions, if the best of up to five 
poses was considered. The lower panel shows the corresponding 
results when only the first (top-predicted) pose was considered. The 
filled rectangles show the performance of our docking submission. 
Any pose with RMSD less than 2 Å towards the crystal structure was 
classified as correct
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11, and 17) the simulation diverged more than 2 Å from the 
experimental (starting) structure, and none of them more 
than 3 Å. For one of these (ligand 17), the set of clusters 
actually included a pose close to the experiment (RMSD 
0.6 Å), but it was not the largest cluster and was visited only 
in the beginning of the simulation. Ligand 11 will be further 
discussed in a separate section. For some ligands, the MD 
simulation starting from the experimental pose resulted in 
a cluster center with slightly higher RMSD towards experi-
ment than the simulation starting from a docking pose. This 
apparent paradox is most likely an effect of randomness; 
independent simulations started from both structures would 
presumably have given a similar range of structures.

The reason for the experiment-based simulation poses 
deviating from the experiment for some ligands is probably 
the limited accuracy of the force field, which is caused by the 
use of generic torsional parameters as well as the intention-
ally “blind” preparation of partial charges for each ligand 
(i.e. not exploiting any knowledge of the experimental pose).

On the other hand, the reason for most simulations staying 
close to the starting structure despite force field deficiencies 
is most likely the relatively short simulation times, which 
did not allow for larger rotation of the ligand in the binding 
site. Indeed, both the docking-based and experiment-based 
simulations showed a similar distribution of the RMSD dur-
ing the simulations (see Fig. 3), and a similar average RMSD 
between the main cluster center and the initial structure 
(1.20 Å for docking-based, 1.19 Å for experiment-based).

Finally, we tested whether the MD trajectories could 
instead be used in a MM-PBSA context to help ranking the 
binding poses. More specifically, we selected six example 
ligands, for which the Autodock Vina scoring function mis-
ranked the poses. For these ligands, we investigated whether 
MM-PBSA provided sufficient precision to discriminate 

between various binding poses and, in such case, whether 
it ranked the poses in agreement with their RMSD towards 
experiment. The details of this investigation, including a 
thorough discussion of the results, are given in the section 
MM-PBSA analysis of MD trajectories in the Supplemen-
tary material. In summary, the method correctly predicted 
the experimental pose to have the most negative binding 
free energy for all six tested ligands (see Table S7 in the 
Supplementary material) and thus seems to be useful for 
this particular purpose. However, especially for the charged 
ligands, it was difficult to estimate the systematic error in 
applying the method to different poses, and thus further 
investigation would be needed to establish the significance 
of the results [51].

Reconnaissance metadynamics simulations

To investigate whether reconnaissance metadynamics 
(RMD) can be used to enhance the sampling and thereby 
explore new binding poses, we performed RMD simula-
tions using the dihedral angles of the rotable bonds in each 
ligand as collective variables (CVs). During the blind chal-
lenge, only three systems (ligands 22, 27, and 32) were sub-
jected to RMD simulations due to the limited time, and no 
improvement was obtained for these (in fact two of them 
turned out to be already in the correct binding pose). Later, 
we extended the RMD investigation to include all the MD-
simulated systems (i.e. those started from docking poses as 
well as from experimental poses) to obtain better statistics.

The results of the RMD simulations are summarized 
in Table 4 next to the corresponding MD simulations. To 
mimic the typical blind usage of the method, only the set of 
significant cluster centers (as defined in the method section) 
were evaluated, i.e. not the full set of simulation frames. 
From the set of cluster centers, the table reports the mini-
mum RMSD towards the experimental structure, as well 
as the maximum RMSD towards the starting structure. To 
enable fair comparisons with the MD results, the starting 
structure of the MD simulation was used as the reference in 
both cases, and the RMSD was computed “atom by atom” 
without taking account of symmetry.

On average, a minor improvement in the RMSD towards 
experiments was obtained (by 0.6 Å). More importantly, 
the RMSD of the “farthest” RMD cluster was significantly 
higher than that of the MD cluster for all ligands (the aver-
ages being 6.1 and 2.5 Å, respectively). From the overall 
distribution of the RMSD shown in Fig. 3, it can be seen 
that the difference is not caused by a single pose with high 
RMSD, but the whole RMSD distribution is shifted; clearly, 
the RMD simulations explore binding poses much farther 
from the initial pose than MD simulations of a correspond-
ing length. Two examples of the typical exploration are 
shown in Fig. 4. As can be seen, the far-lying poses can 
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Fig. 2   Scatter plot showing the resulting RMSD towards experiment 
for the main cluster in the MD simulation (red) and the best cluster 
in the RMD simulation (blue), for a given RMSD of the initial pose. 
The line represents no change in RMSD. The right plot is merely a 
magnification showing the range 0–2.8 Å, corresponding to “reason-
ably good” initial poses. The right plot also includes the simulations 
started from experimental poses (which all have an initial RMSD of 
zero but are slightly displaced along the x axis to avoid cluttering)
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Table 4   Summary of the MD 
and RMD simulations. For 
each ligand, up to three initial 
poses are considered. For each 
pose, the table gives the PDB 
ID of the crystal structure used 
as starting structure for the 
protein, the RMSD between 
the initial pose and experiment 
(init/exp; same as in Table 1), 
the RMSD between the MD 
main cluster and experiment 
(MD/exp), the RMSD between 
the MD cluster and the initial 
pose (MD/init), the minimum 
RMSD between a RMD cluster 
and experiment (RMD/exp), the 
maximum RMSD between a 
RMD cluster and the initial pose 
(RMD/init), and the number of 
clusters obtained in the RMD 
simulation. All RMSDs towards 
the experimental structure 
were calculated by the official 
script taking into account 
symmetry-equivalent atoms, 
whereas the rest of the RMSDs 
were calculated atom by atom 
(thus the MD/exp and MD/
init values may differ even for 
the simulations started from 
experiment). In all cases, the 
RMSD was calculated for all 
non-hydrogen atoms of the 
ligand after aligning the C� 
atoms of the protein. All RMSD 
values are given in Å

Lig Pose PDB init/exp MD/exp MD/init RMD/exp RMD/init # Clusters

1 First 3OMK 5.32 5.15 0.76 3.62 5.20 26
Best 3OLF 2.97 3.84 3.06 2.93 5.37 20
Exp 0.82 0.76 1.43 2.90 7

2 First 3OMM 6.86 7.79 0.57 6.37 6.30 19
Exp 0.43 0.45 0.98 7.30 25

3 First 3P88 4.70 4.57 2.38 4.40 7.50 7
Exp 1.54 1.85 0.91 2.60 4

4 First 3P88 3.82 3.77 1.42 3.79 6.60 30
Exp 1.26 1.32 1.40 6.00 15

5 First 3OMM 6.48 7.15 3.09 4.34 7.40 13
Exp 0.33 0.33 0.53 5.30 5

6 First 3OMK 0.42 0.57 0.54 1.05 6.50 15
Exp 0.65 0.60 1.05 5.40 9

7 First 3OMM 1.20 0.72 0.71 0.85 5.80 16
Exp 0.83 1.34 1.31 5.30 9

8 First 3OMM 5.49 5.19 1.12 4.97 5.50 14
Best 3OMM 0.92 1.04 1.02 1.03 5.02 5
Exp 0.92 1.44 0.98 8.60 13

9 First 3OMK 0.54 0.37 0.49 0.69 4.70 12
Exp 0.46 0.97 1.03 8.40 21

10 First 1OSH 4.96 3.81 1.18 3.68 13.30 32
Exp 2.02 1.81 2.68 5.60 10

11 First 1OSH 4.32 3.73 1.62 3.54 10.70 33
Exp 2.12 2.16 1.93 6.80 16

12 First 1OSH 4.31 4.73 2.47 4.67 12.90 28
Best 3FLI 2.78 2.48 1.56 1.83 4.58 15
Exp 2.00 2.68 2.03 4.50 14

13 First 3OLF 7.95 7.71 1.28 6.66 6.20 18
Exp 0.50 0.48 1.34 7.10 9

14 First 3OLF 0.87 0.68 1.32 0.63 6.90 25
Exp 0.72 0.63 0.88 7.60 13

15 First
∗ 3OMM 7.48 7.04 0.71 4.49 16.80 49

Exp 1.49 1.76 1.57 4.30 10

16 First 3DCU 8.16 7.84 1.59 7.93 9.20 18
Best 3FLI 1.25 1.94 1.62 0.95 4.33 10
Exp 1.53 1.76 1.58 6.30 13

17 First 3FLI 1.47 1.92 1.85 1.82 3.70 10
Exp 2.21 2.25 2.03 5.40 14

18 First 3OOF 8.83 8.59 1.43 7.08 8.10 20
Exp 0.92 0.88 0.93 8.80 19

19 First 3OMM 1.30 0.90 0.70 1.23 7.60 26
Exp 0.96 1.29 1.01 6.10 7

20 First 3OMM 6.96 6.31 1.05 4.96 7.60 24
Best 3OMK 0.60 0.67 0.55 1.31 5.42 11
Exp 0.70 1.01 0.97 8.60 18
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be either closer to or farther from the experimental pose, a 
seemingly random behavior. For almost all ligands, a signifi-
cant number of distinct poses are explored (see Table 4). For 
one ligand (35), only one cluster was obtained and its RMSD 

towards the starting structure was within 1.5 Å, regardless 
of whether starting from the docking pose or the experi-
mental structure). Visual inspection of the RMD trajectory 
revealed that, although many configurations of the seven 

∗The simulation was started from another docking pose than that given in Table 1, but with similar score
#These simulations crashed, probably due to the RMD bias pushing some dihedral angles into ranges where 
the force field is numerically unstable when used with GROMACS 4.6.2

Table 4   (continued) Lig Pose PDB init/exp MD/exp MD/init RMD/exp RMD/init # Clusters

21 First 3OMK 6.27 6.25 0.56 4.73 5.90 16
Best 3OMM 0.95 0.79 1.15 1.28 5.85 8
Exp 0.67 1.11 1.13 7.90 18

22 First 3OMM 0.92 1.22 0.66 1.04 5.20 13
Exp 1.38 1.64 1.14 5.00 13

23 First 3HC6 7.63 7.53 0.66 5.72 8.60 39
Exp 1.03 0.89 1.21 8.10 25

24 First 3OMK 6.52 6.39 0.75 4.87 6.10 13
Best 3OMM 1.18 0.64 1.00 1.30 5.93 9
Exp 0.69 1.07 1.33 7.40 11

25 First 3OMM 1.65 1.73 0.68 N/A
#

N/A
#

N/A
#

Best 3OMM 0.98 0.46 1.35 N/A
#

N/A
#

N/A
#

Exp 0.47 0.60 N/A
#

N/A
#

N/A
#

26 First 3OMK 7.89 7.66 1.48 6.23 4.90 8
Best 3OMM 1.23 1.24 1.10 1.39 5.67 5
Exp 0.81 0.89 0.99 4.90 6

27 First 3OMM 1.25 1.33 0.81 0.93 6.00 15
Exp 0.74 1.20 0.50 5.20 8

28 First 3OMM 0.77 0.57 0.92 0.83 6.00 17
Exp 0.62 1.05 1.02 7.30 13

29 First 3OMM 0.79 0.92 0.71 0.96 7.00 15
Exp 0.60 1.01 0.91 4.30 7

30 First 3OMK 6.43 6.45 0.78 4.65 4.30 12
Best 3OLF 1.82 1.62 1.02 1.92 5.70 6
Exp 0.78 1.03 0.78 5.70 9

31 First 3OMM 1.60 1.71 0.60 0.87 2.30 3
Exp 0.59 0.99 1.33 5.10 12

32 First 3OMM 4.04 4.29 1.32 4.04 3.30 9
Best 3OMM 2.08 2.27 1.25 0.93 4.33 11
Exp 0.80 1.16 1.12 5.10 16

34 First
∗ 3OLF 5.64 5.52 1.47 5.48 12.60 15

Exp 1.59 1.56 1.39 7.50 12

35 First 3OOF 0.40 0.77 1.48 1.14 1.20 1
Exp 0.44 0.90 1.19 1.40 1

36 First 3OMM 8.12 7.82 1.24 6.80 6.40 13
Best 3OMM 1.37 0.90 1.16 1.04 5.81 3
Exp 0.92 0.93 1.06 6.30 5
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rotable bonds were explored, the chemical groups of the 
ligand were held in place by on average ∼ 5 hydrogen bonds 
(see Fig. S4 in the Supplementary material), thus causing 
the ligand to “wriggle” at its position instead of exploring 
fundamentally new binding poses.

For three ligands (5, 13, and 15), we performed additional 
RMD simulations with an extended set of CVs including 
seven dihedral angles of protein sidechains that were identi-
fied by visual inspection as possibly restricting the ligand 
movement. The purpose of these simulations was to see 
whether the exploration of new poses would be stimulated 
if the enhanced sampling of the ligand dihedrals was accom-
panied by enhanced sampling of these selected sidechain 
dihedrals. For example, one could imagine that a certain 

rotation of the ligand could, due to steric hindrance, only 
take place when a certain sidechain adopts a particular con-
formation. Covariance between the two types of fluctuations 
could then in principle be detected by the RMD algorithm, 
with the applied bias increasing the probability of the two 
movements to occur simultaneously.

Interestingly, the introduction of sidechain CVs actually 
decreased the fluctuation of the ligand (see Fig. S5 in the 
Supplementary material). The reason for this counterintui-
tive behavior is probably that RMD is designed to find the 
path with the lowest energy barrier out of a given basin. 
If the sidechain CVs are “softer” degrees of freedom with 
lower energy barriers between the local minima than the 
ligand dihedrals, the algorithm will seek the “easy way out” 
and predominantly enhance the fluctuations of the sidechain 
CVs, thus exploring the conformational space of the ligand 
at a lower pace than without the sidechain CVs. Indeed, 
the obtained poses were less varied in the simulation with 
sidechain CVs, as demonstrated in Fig. S6, S7 in the Sup-
plementary material.

Finally, for one ligand (5), we tested to include three CVs 
related to the orientation of the ligand relative to the protein 
(see Fig. S1 in the Supplementary material), in addition to 
the ligand dihedral CVs (but no sidechain CVs). The pur-
pose of the orientational CVs was to enhance the rotational 
movement of the ligand, thereby counteracting the steric 
restrictions imposed by the surrounding amino acids. The 
results show that the ligand rotated much more when these 
CVs were included (see Fig. S5 in the Supplementary mate-
rial). Moreover, the RMSD towards the starting structure 
grew faster and the number of explored poses increased, 
as illustrated in Fig. 4, although it should be emphasized 
that the variation among individual runs was large, as can 
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Fig. 3   Distribution of RMSD from the initial structure over all MD 
simulations started from docking poses (dock) or experimental struc-
tures (exp), as well as all RMD simulations started from the experi-
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Fig. 4   Example of the behavior of RMD for the arbitrary ligands 
1 and 2, and for the various choices of CVs for ligand 5. The scat-
ter plots show the RMSD towards the initial pose versus the RMSD 
towards experiment for each of the RMD clusters (blue), as well as 
for the MD cluster (red) and the initial docking pose (green), for ref-
erence. For ligand 5, results for three RMD variants are shown: the 
standard settings with only ligand dihedrals (blue), the inclusion of 

sidechain CVs (magenta), and the inclusion of rotation-promoting 
CVs (cyan). In addition, the results for an independent simulation 
with the standard settings are shown (black); the latter is used for the 
analysis in Table 4. Note that the simulation with rotational CVs was 
only run for 8 ns due to technical problems; significantly more clus-
ters would probably have been visited if it had been run for 20 ns like 
all the others
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be seen for the two equivalent runs with standard settings. 
A visual inspection of the explored poses also confirmed 
that the poses became more diverse when rotational CVs 
were included (see Fig. S8 in the Supplementary material). 
Unfortunately, this simulation became unstable and crashed 
frequently, probably because the biasing forces pushed the 
ligand into regions of the conformational space in which 
the rings of the molecule were strained and the force field 
parameters inadequate. Still, the preliminary results are 
promising and we intend to explore this possibility further 
in the future.

Binding pose analysis of a typical ligand

Ligand 11 was selected for a more detailed investigation 
because it diverged more than 2 Å during the MD simulation 
starting from the experimental crystal structure. The best 
cluster of the RMD simulation had slightly smaller RMSD 
(1.9 Å), so it is interesting to investigate not only how the 
simulated poses differed from the experimental pose in terms 
of interactions, but also what caused the slight improvement 
in the RMD pose. From a visual inspection (see Fig. 5b), it 
is evident that the complex obtained from MD simulation 
had a flipped tetrazole group compared to the experimental 
structure. In the RMD pose, on the other hand, the tetrazole 
group adopted a similar orientation as in the experiment 
despite differences in the neighboring parts of the molecule. 
In both the MD and RMD poses, the terminal thiophene ring 
was arranged slightly differently compared to experiment, 
thus contributing to the high RMSD.

A protein–ligand interaction analysis for these three com-
plexes further highlighted these differences. In the experi-
mental structure, the tetrazole ring of the ligand formed 
two hydrogen bond interactions with Gln-267 and Arg-268, 
respectively (Fig. 6a). However, in the MD pose, due to 
the flipped orientation of the tetrazole ring, it did not form 
any hydrogen bond interactions with Gln-267 or Arg-268; 

instead it formed a new hydrogen bond with a neighbouring 
residue, Pro-270 (Fig. 6b). During the enhanced sampling 
in the RMD simulation, the ligand restored the hydrogen 
bond interaction with Gln-267, but instead of Arg-268 it 
formed a new hydrogen bond with Met-294 (Fig. 6c). Some 
changes in the interaction pattern were also seen around the 
thiophene ring due to its different orientation.

Visual inspection of the MD trajectory showed that the 
tetrazole ring “wiggled” for a very short period of time and 
visited a “flipped” conformation but mostly remained in the 
same conformation, that of Fig. 6b. In the RMD simula-
tion, the thiophene and the tetrazole rings visited different 
conformations due to the bias applied to the rotable bonds, 
but mostly remained close to the conformation of Fig. 6c, 
which was stabilised by hydrogen bonds and hydrophobic 
interactions.

Conclusions

Our stepwise approach allowed us to draw several conclu-
sions on the performance of molecular docking, molecular 
dynamics (MD) and reconnaissance metadynamics (RMD) 
when used as pose-prediction methods for this particular 
system.

The procedure to use multiple protein structures for 
docking to account for the known conformational variation 
worked very well in this case, allowing us to find correct 
binding poses for 21 of the 35 ligands and placing our dock-
ing submission in the upper half of the submissions to the 
D3R Grand challenge 2. However, for 8 of these successful 
ligands, the correct pose was not predicted as the top pose, 
which suggests room for improvement in the scoring func-
tion used in Autodock Vina. Inclusion of the new (secret) 
protein structures in the docking set would have increased 
the number of correct poses to 29, but still 6 ligands would 

Fig. 5   Protein–ligand complex 
for ligand 11 from experiment 
(cyan), MD simulation (green) 
and RMD simulation (orange) 
superimposed over each other 
(a). The magnification shows 
only the ligand of these three 
complexes and highlights the 
difference in binding pose 
among them (b)
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have remained mis-docked, most of them classified as mis-
cellaneous. This confirms the data set as rather difficult.

The MD refinement of the docking poses did not pro-
vide any significant improvement; in fact the RMSD 
towards experiment increased in almost half of the cases. 
The simulations showed a remarkable kinetic stability for 
almost all of the docking poses, regardless whether they 
were correct or not. Thus, stability in MD simulations of 
length ∼ 30 ns can not be used as a discriminator for the 
correctness of binding poses. A complementary set of MD 
simulations, started directly from the experimental binding 

poses, revealed some force field deficiencies, but overall 
the automatic GAFF parametrization seemed to work well 
for these ligands and most of them remained close to the 
experimental structure.

The subsequent RMD simulations were successful in 
exploring new binding poses, but never visited the experi-
mental structure if started from a mis-docked pose. One of 
the problems seems to be that by only applying bias poten-
tials on the internal dihedrals of the ligand, one does not 
promote rotation of the ligand with respect to the protein. 
Another problem is that the tight environment around the 

Fig. 6   2D ligand interaction 
map of complexes for ligand 
11 from experiment (a), MD 
simulation (b) and RMD 
simulation (c). Hydrogen bonds 
are depicted as dashed lines 
between the atoms involved, 
whereas hydrophobic contacts 
are represented by an arc with 
spokes radiating towards the 
ligand atom. Protein–ligand 
interaction analysis was per-
formed using UCSF Chimera 
and LigPlot [52] software. 
LigPlot automatically generates 
schematic diagrams for protein–
ligand interaction for a given 
geometry
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binding site sterically restricts the ligand’s exploration 
of conformational states. Preliminary tests were made to 
include collective variables that tackle each of these prob-
lems, but further development is needed to accomplish this 
task. In the future, we believe that such carefully devised col-
lective variables may contribute towards a reliable method 
for improving docking poses by simulations. An important 
problem that remains, however, is how to reliably identify 
the most stable pose from trajectories of a limited length.
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