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In the present work, we focus on the longitudinal model of microtubules (MTs) proposed by Satarić 
et al. (1993) [12], and that considers MT cells to have ferroelectric properties (behaviors) due to 
dipolar oscillations of dimers within MTs, i.e., a displacive ferrodistortive system of heterodimers 
in MTs and usually referred to as 𝑢-model of MTs. It has been shown that during the hydrolysis 
of guanosine 5’- triphosphate into guanosine 5’-diphosphate, the energy released is transferred 
along the MTs through kink-like solitons. Substantially, we propose to theoretically investigate 
the dynamic of MTs by intrinsically taking into account the effect of oriented molecules of 
polarized cytoplasmic water and enzymes surrounding the MT. In this regards, we introduce a 
cubic nonlinear term in the electric potential characterizing the polyelectrolyte features of MTs 
and show that in addition to the kink and anti-kink dynamics, asymmetrical bright and dark 
solitons, and discrete modes can also propagate along the MTs. These results are supported by 
numerical analysis. The investigation shows us that the nonlinear dynamics of MTs is strongly 
impacted by the intrinsic electric field, the polyelectrolyte and the viscous effects. Moreover, new 
solitonic dynamics and discrete solitary modes might aid in the discovery of novel microtubulin 
system phenomena.

1. Introduction

As well known, MTs which have been extensively investigated in the literature, both experimentally and theoretically, are major 
components of cytoskeletal biopolymers (protein), whose biological functions depend largely on their mechanical properties [1–9]. 
Indeed, in conjunction with actin and intermediate filaments, MTs yield both static and dynamic frameworks that preserve cell 
structures, and are implicated in or the triggers of some specific myocardial cell functions such as intracellular transport of motor 
proteins and organelles, force generation for motor proteins, regulation of contraction, cells proteins ion channel function, receptor 
recycling, cells division and movement, etc [10–17]. Thus, within the framework of various experimental techniques and theoretical 
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approaches [18–33], all eukaryotic cells have MTs; and their association with microfilaments and actin filaments form the cell’s 
cytoskeleton which is a network of long protein fibers that compose the structural framework of the cell.

Microtubules are cylindrical-like assembly of a set of tubulin proteins through the formation of 13 longitudinal protofilaments 
(PFs) covering its cylindrical wall, that has an outer and inner radii of 25 nm and 15 nm, respectively, and each PF appears as a 
string of proteins composed of 𝛼 − 𝛽 tubulin heterodimers [1–8]. During the mechanism of formation of MTs, there is a continuous 
binding or conformational change of molecules of tubulin dimers caused by one tubulin monomer shifting its orientation by 29◦ off 
the dimer’s vertical axis as a result of the hydrolysis of the guanosine 5’- triphosphate (GTP) and guanosine 5’-diphosphate (GDP) 
molecules [12–15,17,18], and accompanied by a continuous high consumption of energy, making this process dissipative as their self-
organization is energy-intensive [9–11]. Based on their structural and functional characterization, MTs can therefore be thought of as 
reaction-diffusion systems, and as such they are very dynamic tubulin dimers’ polymers associated in a chain-like manner [6,7,9–13].

Also, MTs appear as a good candidates for dynamic information processing since it was shown that the brain’s storage, processing, 
and transduction of biological information are primarily or fundamentally controlled by neuronal MTs [2–6,14,21]. More specifically, 
there is evidence that the dynamic coupling of the cytoskeleton polymers, which is mediated by mechanical energy, could store and 
process information, and mechanical properties of MTs involving bending or buckling MTs are largely responsible of most of their 
biological functions [19–24]. Beside their mechanical role as a part of the cytoskeleton, MTs act as highways for several motor proteins, 
including kinesin and dynein, which travel along MTs for microtubule-based delivery of cargo molecules in- vivo to particular synapses 
and locations (sites) [2,25–29].

Among other things, MTs are known to undergo a tread-milling phenomenon [5,12–15,17–20]. In this regards, as far as their 
structure polarities are concerned with positive and negative ends, they undergo various activities of rapid polymerization due to 
their assembly in the positive (+) end, and depolymerization due to their disassembly in the negative (-) end [5,19,20]. Moreover, MTs 
control the internal organization of the cells and their shapes. They also undergo various activities such as the intracellular transport 
of biological materials, cellular mobility, cytoplasmic transport and mitosis [21,30]. Hence, it is still crucial to have a panoramic 
understanding of their mechanisms.

Indeed, taking into account the strong intrinsic nonlinear complex interactions in MTs such as their non-equilibrium dynamic 
has led to the development of mathematical models supported by theoretical analysis to understand the intrinsic properties and 
behaviors of the PFs. In this regards, following various purposes associated with the excitability and the propagation of nonlinear 
ionic waves in MTs, some theoretical studies have considered electrophysiological features of MTs, and modeled the MTs as an 
electric circuit with nonlinear resistance [31–33]. For example, an existing electrical model was upgraded to study the ionic currents 
propagating in narrow layer along MTs [32], while another electrical model was proposed and applied for the investigation of the 
amplification, infratrasmission and supratransmission of electrical signal in MTs [33]. For the later model, it was discovered that the 
system considerably increased the input signal’s amplitude, validating some known experimental findings. In addition, considering 
the capability of the PFs to behave like an excitable structure, another electrical model was also proposed that encapsulate various 
excitability features of PFs, and the description of the developmental and informative processes taking place on the subcellular scale 
may be of significant relevance to the study, according to the hypothesis [31].

On the other hand, in various studies describing the MTs nonlinear dynamics, a well-known mathematical model based on the 
ferroelectric-like behavior of MTs is usually considered, namely the so-called 𝑢-model. The 𝑢-model, firstly introduced by Satarić et 
al. [12], and later on improved and used in various works [11,22,26–28], is mainly associated with the nonlinear dynamics of dimer 
dipoles in the ordered PF structures that covers the cylindrical walls of MTs. In fact, only one degree of freedom of dimer motion 
within the PF is assumed by the 𝑢-model, namely the longitudinal oscillations of dimers along the PFs aligned in directions parallel 
to the MT axes. Accordingly, the longitudinal displacement of a dimer dipole at a given point 𝑛, represented by the symbol 𝑢𝑛, is the 
only degree of freedom per dimer that the 𝑢-model takes into account, making it the oldest and most well-known nonlinear model 
to date for explaining complex dynamics of MTs. More specifically, the coordinate 𝑢𝑛 is a projection of the top of the dimer on the 
direction of PF, and the 𝑢-model depends on an essential angular degree of freedom because of angular dipolar oscillations carried 
out by dimers within the MT [12,26,28]. The nearest adjacent approximation is utilized in this model, which has been the subject of 
much research, to describe the interaction between dimers that belong to the same PF and the fact that dimers are electric dipoles that 
reside in the field of other MT dipoles. Additionally, as in a series of models describing MT nonlinear dynamics, the first 𝑢-model and 
its improved versions [12,26,28], as well as the real longitudinal model [34], which take the longitudinal displacement coordinate 
for each dimer as the only degree of freedom, belong to the group of longitudinal models and, for the sake of simplicity, assume that 
the solvent is made up of water molecules. These dipolar molecules which function as a viscous medium to dampen out vibrations of 
the dimer dipoles, will have a significant impact on the long-range electrostatic energy between the dimers [12,25–28,34].

In this respect, the 𝑢-model generally considers the kinetic energy of each dimer, a harmonic potential energy of the chemical 
interaction between the neighboring dimers (nearest-neighbor) belonging to the same PF, a one-site potential energy representing the 
overall effect of the surrounding dimer dipoles on the dimer at that site and in the form of the widely known double-well potential 
of the 𝜙4-type, the energy of the dimer in the intrinsic electric field as linear electrical potential energy, and a viscosity force for the 
description of MTs dynamics [12,22,26–29,34]. Therefore, the induced equation takes into account substantially the effect of disper-
sion, viscous dissipation and nonlinearity, essentially necessary for the study of the energy propagation in MTs and the interesting 
assembly and disassembly mechanisms of polymerization and depolymerization processes of heterodimers in microtubulin systems. 
In addition, to solve the induced equation and to study the traveling wave solutions, a couple of powerful mathematical methods 
or procedures has been usually proposed, such as the standard procedure [12,35], the semi-discrete approximation method [11,22], 
the tangent hyperbolic function method (THFM) or tanh-expansion method [16,36,37], the extended THFM [38,39], the modified 
2

extended tanh-function method (METHFM) [26,39–42], the approach based on Jacobian elliptic functions [29,43], the factoriza-
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tion method [28,44,45], the simplest equation method (SEM) which is the most general procedure [25,27,36,46], and its simplified 
variant called the modified simplest equation method (MSEM) [47], the exponential function procedure [48–50], the double and 
multiple exp-function methods [51,52] and the hyperbolic ansatz method [53], just to name a few. However, many of them share a 
series expansion of the solutions in terms of known functions in addition to the standard technique, the factorization approach, and 
the hyperbolic ansatz approach. Accordingly, by using these existing mathematical tools, various authors have proposed different 
solutions describing the dynamics of MTs in terms of tanh- and cotanh-functions [25,26,36,39,40], sech-function [11,22], and exp-
function [12,18,49,50]. More importantly, Zeković et al. [29] showed the possibility of using Jacobi elliptic functions [29,43] to obtain 
analytical solutions for the given model, by presenting the link between Jacobi elliptic functions and hyperbolic functions [54,55].

Moreover, it is noteworthy to mention that it is also possible to expand the series in terms of unknown functions [56]. However, the 
fact that the function employed for the series expansion is unknown is a significant aspect (key component) of the series expansion 
unknown function method (SEUFM) which was proposed and implemented more recently [57]. Furthermore, it was shown that 
the solutions obtained using THFM and METHFM are special cases of those obtained using both SEUFM and SEM, and instead 
of obtaining a single physical solution it seems that SEUFM yields an endless number of solutions [57]. Subsequently, this is not 
particularly relevant to the physics of MTs, though, because all of them have the same physical meaning when it comes to nonlinear 
MT dynamics.

In the present study, we propose a modified 𝑢-model that describes the nonlinear dynamics of MTs by taking into account their 
polyelectrolyte features. Indeed, as oriented assembly of dipoles, it has been shown that many factors, including the stored mechanical 
energy, gravity, hydrodynamic flow, thermally induced vibrations, shape fluctuations, flow-induced vibrations and induced electro-
magnetic field, influence the energy propagation in MTs and their functions; particularly the extremely fascinating way in which 
they assemble (polymerization) and disassemble (depolymerization) via the tubulin dimers in PFs [12,16,58–64], as they act through 
the structured water molecules, the cytoplasmic water and enzymes surrounding the MT. In the same vein, considering the intrinsic 
electric field, as well as the ferroelectric properties of the dimer that are essential to propagation direction of the energy excitation 
from the hydrolysis [12,14], we propose to include a cubic term in the electric potential that account for the nonlinear intrinsic 
electric interactions in the cell. In order to proceed with the investigation and the analysis of the given mathematical model, we 
apply a method proposed by Samsonov [65,66] to carefully examine some features associated with the energy propagations in MTs. 
Through that method, we observe the propensity of MT’s assembly to favor the emergence of various localized patterns including 
localized discrete modes, and asymmetrical bright and dark solitons, whose generation and evolution are influenced by the polarized 
solvent (water), the viscous force, and the cooperative nonlinear interaction of the intrinsic electric field. These solutions are obtained 
using exp-function, Jacobi elliptic functions, and Weierstrass ℘-function associated with Jacobi elliptic functions, through various 
transformations that can be found in various documents and textbooks [39,54,62,63,65–69].

The paper is organized as follows: In Section 2, we introduce the improved longitudinal 𝑢-model for MTs and briefly explain 
the theoretical framework and mathematical procedures necessary to derive the relevant dynamical equation of motion, the crucial 
differential equation, and the solutions of the nonlinear dynamical model. Section 3 focuses on the analyses and discussions of the 
obtained solutions, while in Section 4 we examine the stability analysis of the resulting solutions. Finally, concluding remarks are 
covered in Section 5.

2. Mathematical model and theoretical framework

2.1. Model formulation and equation of motion

Considering the dynamics of the heterodimers in the longitudinal direction expressed by the 𝑢-model, the nonlinear dynamical 
equation to describe the oscillations of MTs is presented by the system’s Hamiltonian that has the form [12,26–28]:

𝐻 =
𝑁∑
𝑛=1

[
𝑚

2
�̇�2
𝑛
+ 𝐾

2
(𝑢𝑛+1 − 𝑢𝑛)2 + 𝑉1(𝑢𝑛) + 𝑉2(𝑢𝑛)

]
, (1)

where the overdot represents the first derivative with respect to time, 𝑚 is the mass of the single dimer (𝑚 = 1, 8 ×10−22 kg), 𝐾 stands 
for an effective intra-dimer stiffness parameter or dimer-dimer bonding interaction parameter within the same PF while 𝑁 denotes 
the total number of single tubulin dimers that belong to the same PF, and the integer 𝑛 indicates the location of the considered 
dimer in the PF [12,26–28]. Hence, it is obvious that the first term clearly represents the kinetic energy of the dimer at position 𝑛, 
while the second one is the energy of interaction between the dimers within the framework of the mean-field treatment, and where 
the nearest-neighbor approximation is also considered. Hence, this term characterizes the mean-field approximation for interactions 
between dimers while taking into account the nearest-neighbor approximation or the quasiharmonic vibrations of the dimers.

However, as an important part of the Hamiltonian and a source of nonlinearity is the potential energy connected to each dipole 
and represented by the final two terms. The first one is due to the overall effects (mechanochemical influences) of all surrounding 
tubulin dimers on the dimer dipole at a chosen site 𝑛, and of the polarized cytoplasmic water molecules and enzymes surrounding 
the MT; while the second one is induced by the nearly uniform intrinsic electric field generated by all other tubulin dimers, including 
the dimers belonging to neighboring PFs and the polarized cytoplasmic water. In addition, it is noteworthy that dimers are electric 
dipoles existing in the electric field of all other dipole dimers of the MT, including the dipoles belonging to the neighboring PFs 
(i.e., all other ones that do not belong to the same PF). Indeed, the presence of oriented molecules of cytoplasmic water and enzymes 
3

surrounding the MT was experimentally observed using electron microscopy technique [70], which imply their plausible participation 
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or responsibility in the nonlinear dynamics and stability of MTs which are crucial for biological systems, in several cellular activities, 
including growth and division, which are known to be necessary for the living state of MTs, and in numerous mechanisms or cellular 
processes such as information processing (the transfer and storage of information in brain microtubules) which are fundamental for 
understanding MT nonlinear dynamics [2,14,71]. Important in this respect, we also assume that an MT and the polarized cytoplasmic 
water around it induce an almost uniform intrinsic electric field parallel to its axis, and that the additional potential resulting from 
the internal electric field and the surrounding polarized water is nonlinear in nature for each dipole. Moreover, 𝑉1(𝑢𝑛) is a generalized 
double-well potential of Φ4-type that displays the overall effect of the surrounding dimers on a tubulin dipole at a given site 𝑛, and 
which is due to the ferroelectric (displacive ferrodistortive) behavior of MTs [5,12,22–26,63,72,73].

In addition, 𝑉2(𝑢𝑛) is the additional potential energy associated with each dipole dimer, which is due to the intrinsic (internal) elec-
tric field generated by the MT [12,22,26,27], and to the surrounding polarized water and microtubule-associated proteins, responsible 
for interconnection of parallel-arrayed MTs in the microtubulin systems. These interconnections, together with MTs, appear to be in 
charge of a variety of cellular processes, including growth and division, which are vitally important for the living state [1,2,6,12,18]. 
Therefore, in the present analysis the potential energies 𝑉1(𝑢𝑛) and 𝑉2(𝑢𝑛) are expressed as:

𝑉1(𝑢𝑛) =
1
4
𝐵 𝑢4

𝑛
− 1

2
𝐴𝑢2

𝑛
, 𝑉2(𝑢𝑛) = −𝐶𝑢𝑛 −

1
3
𝜖 𝑢3

𝑛
, 𝐶 = 𝑞 𝐸, (2)

where 𝐴, 𝐵 and 𝜖 are positive model parameters to be determined or at least estimated, even though 𝐴 is typically a linear function 
of the temperature [12] that generally change sign at an instability temperature T𝑐 [15]; 𝑞 represents the excess charge inside the 
dipole, and 𝐸 is the uniform intrinsic electric field strength (magnitude) directed along the longitudinal axis of the MT cylinder, with 
𝑞 > 0, and 𝐸 > 0.

It is important to precise that the intrinsic electric field 𝐸 is induced by all dimers including the dimers from the neighboring PFs. 
Fig. 1 displays the potential energies V1(𝑢𝑛) and V2(𝑢𝑛) with and without the added (correction) term, and the combined potential 
energy V1(𝑢𝑛) + V2(𝑢𝑛), yielding a non-symmetric double-well potential (W-potential). As the potential energy V1(𝑢𝑛) takes into 
account quantum chemistry considerations through the chemical effect of all other dimers of the MT [24,63,73–76], its shape for 
an isolated single-dimer is depicted in Fig. 1(a), where it is evident that the potential V1(𝑢𝑛) is a symmetric W-potential possessing 
two degenerated minima separated by a potential barrier. Fig. 1(b) presents the additional potential energy V𝑒𝑙(𝑢𝑛) = −𝑞 𝐸𝑢𝑛 = 
V2(𝑢𝑛)|𝜖=0, acquired by the dimer as an electric dipole and induced by the intrinsic electric field of the MT. It can be noticed that V𝑒𝑙
which takes into account the intrinsic helicity of the MT, exhibits linear behavior because of the consistent uniform intrinsic electric 
field produced parallel to the MT axis [12,26,34].

More importantly, to correspond with the actual MT structure, MTs can be broadly recognized as oriented assemblies of dipole 
dimers [12,87]. Accordingly, it seems that the tubulin dipole dimers are capable of undergoing conformational changes inside PFs, 
which might spread along either single PFs or tiny clusters of PFs, and such cooperative conformations are responsible for quite im-
portant functions of MTs and cellular activities, especially during the polymerization (assembly) and depolymerization (disassembly) 
processes of MTs [7,16,20,76,77]. For example, the peeling apart of the curved PF fragments at the ends of MTs during disassembly 
is the consequence of such cooperative conformations [16,77]. Accordingly, Fig. 1(c) shows that V2(𝑢𝑛) with 𝜖 ≠ 0 possesses local 
extrema which are likely responsible for the orientation towards the right or left of the symmetrical potential V1(𝑢𝑛). The nonlinear 
character of V2(𝑢𝑛) suggests beyond expectations that various excitation phenomena can be generated regarding the energy propaga-
tion within MTs, as can be seen in Fig. 1(c). To the best of our knowledge, the association of both potentials must result in the lifting 
of the degeneracy (breaking of symmetry), leading to a more realistic asymmetric W-potential, as shown in Fig. 1(d). Moreover, the 
profile of the combined potential defined as V1(𝑢𝑛) + V2(𝑢𝑛) is presented in Fig. 1(d), allowing us to appreciate the impact of the 
parameter 𝜖 on the potential’s asymmetry. Therefore, Fig. 1(d) presents in a clearcut way the asymmetric behavior of the combined 
potential as a non-symmetric function, with a right and a left minima, in accordance with the fact that the distribution of the dimers 
strongly suggests the plausibility of the two inclinations of the dimers, characteristics of the ferroelectric behavior and corresponding 
to the minima. In this regards, we observe that as 𝜖 increases, the bistable potential V(𝑢𝑛) gradually evolves into a state where its 
bistability character will be loosed. Such that, for a critical value of 𝜖, V(𝑢𝑛) will no more be bistable.

At this level let us introduce generalized coordinates 𝑞𝑛 and 𝑝𝑛 defined as 𝑞𝑛 = 𝑢𝑛, 𝑝𝑛 = 𝑚 �̇�𝑛. By using the Hamilton’s equations 
of motion �̇�𝑛 = - 𝜕𝐻∕𝜕𝑞𝑛 and �̇�𝑛 = 𝜕𝐻∕𝜕𝑝𝑛 and applying a continuum approximation (long wavelength limit) 𝑢𝑛(𝑡) → 𝑢(𝑥, 𝑡), while 
eventually making a Taylor series expansion of terms 𝑢𝑛±1 , i.e. [12,26],

𝑢𝑛±1 → 𝑢± 𝜕𝑢

𝜕𝑥
𝑙 + 1

2
𝜕2𝑢

𝜕𝑥2
𝑙2, (3)

where 𝑙 is the dimers length, representing a period of one dimensional crystal lattice, Eq. (1) can be straightforwardly transformed 
into the following appropriate continuum dynamical equation of motion:

𝑚
𝜕2𝑢

𝜕𝑡2
−𝐾𝑙2 𝜕

2𝑢

𝜕𝑥2
+𝐵 𝑢3 − 𝜖 𝑢2 −𝐴𝑢− 𝑞𝐸 + 𝛾 𝜕𝑢

𝜕𝑡
= 0, (4)

which is a nonlinear partial differential equation (PDE), and where in order to derive a realistic equation, the viscosity of the solvent 
manifested by the damping of dimers vibrations has been taken into consideration, through the introduction of a viscous force 
𝐹𝜈 = −𝛾 𝜕𝑢

𝜕𝑡
, with 𝛾 denoting the viscous (damping) coefficient [12,26].

As well-known, Eq. (4) can be further adequately transformed into an ordinary differential equation (ODE) by introducing a 
4

unified coordinate 𝑧 along with a dimensionless function 𝜓 defined as usual through the relations:
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Fig. 1. Profiles of the well-known symmetric double-well potential energy of Φ4-type 𝑉1(𝑢𝑛)(a), the additional potential energy potential 𝑉2(𝑢𝑛) without additional 
term (b) (expressed here as 𝑉𝑒𝑙) and with additional term (c), and of the combined non-symmetric double-well potential energy V(𝑢𝑛) = V1(𝑢𝑛)+ V2(𝑢𝑛) (d), associated 
with each dipole dimer as a function of the longitudinal displacement of a dimer at a given position 𝑛, u𝑛. The model parameters are selected as follows: (a) 𝐴 = 1.0
N[𝑢𝑛]−1 and 𝐵 = 1.0 N[𝑢𝑛]−3 , 𝐶 = 4.7 × 10−12 N; and: (b) 𝜖 = 0 and (c) 𝜖 = 5.0 × 10−8 N[𝑢𝑛]−2 ; (d) 𝐴 = 8.0 N[𝑢𝑛]−1 and 𝐵 = 4.0 N[𝑢𝑛]−3 , 𝐶 = 4.7 × 10−12 N, 𝜖 = 0.5
N[𝑢𝑛]−2 (solid line) and 𝜖 = 1.5 N[𝑢𝑛]−2 (dashed line). The unit of x-axis graduated by 𝑢𝑛 is [𝑢𝑛] while the unit of y-axis is one N[𝑢𝑛].

𝑧 = 𝑘𝑥−𝜔𝑡 and 𝑢 =
√
𝐴

𝐵
𝜓, (5)

where 𝑘 and 𝜔 are real constants denoting the wave number and the frequency, respectively, while the function 𝑢= 𝑢(𝑥, 𝑡) ≡ 𝑢(𝑘𝑥 −𝜔 𝑡)
= 𝑢(𝑧) is the traveling wave. Hence, 𝑧 is the traveling wave variable and denotes the moving coordinate, while the dimensionless 
function 𝜓 = 𝜓(𝑥, 𝑡) ≡ 𝜓(𝑧) represents the elongation of the oscillating dimer at position 𝑥 and at time 𝑡 only through a unified 
variable 𝑧. Accordingly, by inserting the above suitable transformations given in Eq. (5) into Eq. (4) the following ODE is derived:

𝛼𝜓 ′′ − 𝜌𝜓 ′ +𝜓3 − 𝛽 𝜓2 −𝜓 − 𝜎 = 0, (6)

where the prime (′) sign denotes the first derivative with respect to the unified variable 𝑧, i.e., 𝜓 ′ = 𝑑 𝜓

𝑑 𝑧
. Besides the following four 

dimensionless new parameters 𝛼, 𝜌, 𝛽 and 𝜎 underpinning the physics of the relevant model as:

𝛼 = 𝑚𝑤2 −𝐾𝑙2𝑘2
𝐴

, 𝜌 = 𝛾𝑤

𝐴
, 𝛽 = 𝜖

𝐵

√
𝐴

𝐵

, 𝜎 = 𝑞𝐸

𝐴

√
𝐴

𝐵

. (7)

Indeed, it is noteworthy that as expressed in Eq. (7), the parameter 𝛼 accounts for the competitive interaction between the kinetic 
energy of the dimers and the relevant chemical bounds, while the parameter 𝛽 accounts for the polyelectrolyte features of MTs. 
Likewise, the dimensionless parameters 𝜌 and 𝜎 are proportional to the viscous force and electric field strength, respectively. All of 
these effects are very important as they are crucial for nonlinear dynamics and stability of MTs, and for understanding mechanisms 
such as dynamical information processing and energy transfer; and cellular activities and processes including mitosis, metabolism, 
cell growth and division, meiosis and transport of cellular cargo motor proteins in MTs [11–14,76,78].

2.2. Mathematical approach and analytical solutions

As well known, Eq. (6) is a nonlinear dispersive (even order term) and dissipative (odd order term) ODE and in the present study, 
we will use a mathematical approach proposed by Samsonov [65] to find explicit solutions of the above ODE. This method has 
the advantage to used simple transformations that transform Eq. (6) to an equation solvable using Jacobi elliptic and Weierstrass 
℘-functions, without considering the Painleve properties [79] of Eq. (4). More interesting, and for the sake of simplicity, we first 
rewrite Eq. (6) as follows:

𝜓 ′′ − 𝜇0𝜓 ′ −𝑚1𝜓 −𝑚2𝜓
2 +𝑚3𝜓

3 −𝑚0 = 0, (8)

where the coefficients 𝜇0, 𝑚0, 𝑚1, 𝑚2 and 𝑚3 are defined as:

𝜌 𝛽
5

𝜇0 =
𝛼
, 𝑚0 =

𝜎

𝛼
, 𝑚1 =

1
𝛼
, 𝑚2 =

𝛼
, 𝑚3 =

1
𝛼
, (9)
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with the restriction (constraint) 𝛼 ≠ 0. In this regards, according to the mathematical basis for our theoretical framework procedures 
and in order to practically address Eq. (8), it might be convenient to introduce new dimensionless functions. Thence, by considering 
and performing the following transformation:

𝜓 ′ = 𝑑 𝜓

𝑑 𝑧
= 1
𝜙(𝜓)

, (10)

Eq. (8) is reduced to a dynamical first order ODE with respect to the new function 𝜙 of the form:

𝜙′ − 𝜇0𝜙2 + (−𝑚1𝜓 −𝑚2𝜓
2 +𝑚3𝜓

3 −𝑚0)𝜙3 = 0. (11)

However, it is noteworthy that the first order ODE given by Eq. (11) is not easily exploitable or solvable in order to obtain a possible 
solution to Eq. (8). For this purpose and to proceed further into our investigation, we perform a second transformation defined as:

𝜕𝜂

𝜕𝜉
= 1
𝜉𝜙(𝜂)

, (12)

and insert it into Eq. (11), with the aim of transforming Eq. (11) into a second order ODE without a first-order derivative term. In 
this vein, before applying appropriate derivations and computations, we should keep in mind that: 𝜓 = 𝜓(𝑧), 𝜙 = 𝜙(𝜓), and 𝜂 = 𝜂(𝜉)
such that 𝜙(𝜓) = 𝜙[𝜓(𝑧)], and 𝜙(𝜂) = 𝜙[𝜂(𝜉)]. Within the framework of the technique described in [65,66], we can straightforwardly 
obtain the following nonlinear evolution equation (i.e., a second order ODE in 𝜂):

𝜉2
𝜕2𝜂(𝜉)
𝜕𝜉2

+ Γ3𝜂3 − Γ2𝜂2 − Γ1𝜂 − Γ0 = 0, (13)

where the different coefficients are defined as:

Γ0 =
𝜎

𝜌
, Γ1 =

𝛼

𝜌2
, Γ2 =

𝛽𝛼2

𝜌3
, Γ3 =

𝛼3

𝜌4
, (14)

provided that 𝜌 ≠ 0, and where the functions 𝜓(𝑧) and 𝜂(𝜉) have to be determined. Here, Eq. (13) is of capital importance as it is the 
mathematical equation which is the basis of our analysis.

Before we proceed further into our investigation, it is useful to precise that the relation between 𝜓(𝑧) and 𝜂(𝜉) appears as an 
important point in the treatment. For this reason and for simplicity we have considered for convenience a linear relation between 
𝜓(𝑧) and 𝜂(𝜉), and defined as [65,66]:

𝜂 = ∫ 𝜇0 𝑑𝜓, (15)

which is one of the main transformation used to obtain Eq. (13). Indeed, Eq. (15) provides a link between the unknown function 𝜂
and the original function 𝜓 via the parameters of the system, which appear rather useful to transform Eq. (11) into a second order 
ODE with respect to the function 𝜂. Likewise, the integration of the transformation Eq. (15) leads to the relation 𝜂 = 𝜇0𝜓 since 𝜇0 is 

a constant; such that 𝜕𝜙
𝜕𝜂

= 𝜕𝜙

𝜕𝜓

𝜕𝜓

𝜕𝜂
= 1
𝜇0

𝜕𝜙

𝜕𝜓
, and where the expression of the parameter 𝜇0 is given in Eq. (9). However, let us note 

that one of the major difficulties of this mathematical method lies in the choice of the appropriate ansatz, since the ansatz varies with 
the equation form. At this point, a solution of Eq. (13) for 𝜂 can be constructed by assuming it to be of the form [65]:

𝜂 = 𝑎0𝛿
𝑝

𝑟Φ(𝛿) + 𝜂0, with 𝛿 = 𝜉𝑟. (16)

Here of course, 𝑝 and 𝑟, and the functions 𝜉 = 𝜉(𝑧), 𝛿 = 𝛿(𝑧) and Φ = Φ(𝛿) should also be determined, meanwhile 𝑎0 and 𝜂0 are 
arbitrary constants. In addition, we should also emphasize here that plugging the expression of the trial function 𝜂 = 𝜂(𝜉) given in 
Eq. (16) into Eq. (13), brings about the following dynamical equation governing the dynamics of the microtubulin system:

𝑟2𝑎0𝛿
𝑝+2𝑟
𝑟 Φ𝛿𝛿 + [2𝑝𝑟+ 𝑟(𝑟− 1)]𝑎0𝛿

𝑝+𝑟
𝑟 Φ𝛿 + Γ3𝑎30𝛿

3𝑝
𝑟 Φ3 + (3Γ3𝜂0 − Γ2)𝑎20𝛿

2𝑝
𝑟 Φ2

+ [𝑝(𝑝− 1) − Γ1 − 2Γ2𝜂0 + 3Γ3𝜂20]𝑎0𝛿
𝑝

𝑟Φ−Γ0 − Γ1𝜂0 − Γ2𝜂20 + Γ3𝜂30 = 0, (17)

where subscript indexes 𝛿 and 𝛿𝛿 denote the first and second derivatives with respect to 𝛿, respectively, i.e., Φ𝛿 =
𝑑Φ
𝑑 𝛿

and Φ𝛿𝛿 =
𝑑2 Φ
𝑑 𝛿2

. 
Hence, following the theoretical method explained above, the ansatz for the solution 𝜂 must be consistent with the series expansion 
of the above equation in powers of the function Φ =Φ(𝛿), adopted in Eq. (16), and its derivatives [65,66,79]. Since, 𝑎0, 𝑟, Γ3, 𝜉 and 
𝛿 can not be zero, by eliminating the terms which consisting Φ𝛿𝛿 and Φ3, when the corresponding coefficients of the other terms Φ0 , 
Φ1, Φ2 and Φ𝛿 are equated to zero, brings the following four equations:

Φ0 ∶ −Γ0 − Γ1𝜂0 − Γ2𝜂20 + Γ3𝜂30 = 0, (18)

Φ1 ∶ 𝑝(𝑝− 1) − Γ1 − 2Γ2𝜂0 + 3Γ3𝜂20 = 0, (19)

Φ2 ∶ 3Γ3𝜂0 − Γ2 = 0, (20)
6

Φ𝛿 ∶ 2𝑝+ 𝑟− 1 = 0. (21)
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Of central importance, let us note that the above system of equations induces only implicit relations between the parameters [65]. 
On the other hand, Eq. (20) is of physical interest, hence this equation will be explicitly exploited in the rest of our study. Therefore, 
in order to proceed further in our investigation, and for the sake of convenience and consistency, it appears that by substituting
Eqs. (18) - (21) and within the framework of the relationship given by Eq. (16), Eq. (17) can be given according to 𝛿 and reduce to:

𝑟2𝛿
𝑝+2𝑟
𝑟 Φ𝛿𝛿 + Γ3𝑎20𝛿

3𝑝
𝑟 Φ3 = 0, (22)

which cannot be solved as a differential equation unless the powers of 𝛿 are equal, leading to the condition

𝑝+ 2𝑟 = 3𝑝. (23)

In this case, as seen, Eq. (22) turns into a differential equation with variable coefficients, the solution of which is only possible for 
𝑝 + 2𝑟 = 3𝑝, leading to the following constraint relative to the dynamics of the tubulin systems

𝑝 = 𝑟 ≠ 0. (24)

Accordingly, we can firstly re-express Eq. (22) as:

𝑟2Φ𝛿𝛿 + Γ3𝑎20Φ
3 = 0. (25)

Next, by using the condition given by Eq. (24) and without loss of generality, Eq. (21) conveniently provide 𝑝 = 𝑟 = 1∕3. So, Eq. (25)
can be finally transformed in the following form:

Φ𝛿𝛿 + 9Γ3 𝑎20 Φ
3 = 0. (26)

In addition, by setting 𝑎20 = − 2
9Γ3

, Eq. (26) can now be transformed into a simplified ODE of the form:

Φ𝛿𝛿 − 2Φ3 = 0. (27)

Accordingly, by multiplying Eq. (18) by 3, and then using Eq. (20), the relations of Eqs. (18) and (19) yield after making appropriate 
transformations to the following two equations:

2Γ2𝜂20 + 3Γ1𝜂0 + 3Γ0 = 0, (28)

Γ2𝜂0 + Γ1 +
2
9
= 0, . (29)

Furthermore, from Eqs. (29) and by using the expressions of Γ1, Γ2 and Γ3 given in Eq. (14), we can easily derive a convenient 
expression for 𝛼 explicitly expressed as:

𝛼 = 𝜌

2𝛽𝜂0

[
−1 ±

√
1 −

8𝛽𝜌𝜂0
9

]
, 𝛽𝜌𝜂0 ≤ 9∕8. (30)

It is noteworthy that, Eq. (30) suggests that 𝛼 can be negative or positive. Accordingly, at this level and again without loss of generality, 
in the rest of the analysis we will consider 𝜂0 arbitrary (constant) in order to derive non diverging solutions.

More precisely, it is important to notice here that in other to have existing solutions, the minus (-) sign in the expression of 𝑎0
must disappear, such that 𝑎0 will be positive. Proceeding further into our investigation, let us multiply both sides of Eq. (27) by Φ𝛿 , 
and performing a direct integration brings about a fundamental ordinary differential equation given by:

Φ2
𝛿
=Φ4 +Φ0, (31)

where Φ0 is an arbitrary constant of integration. This is a crucial equation whose solution will be used to explain the nonlinear 
dynamics of MTs. As far as Eq. (31) is concerned, the divergence of the solution Φ can only be prevented by finding the exact solution 
to Eq. (31) in function of 𝑧. In this regards, we can derive corresponding expressions for the functions 𝜉, 𝛿 and 𝜂. Alternatively, by 
considering Eqs. (10) and (12), and by making use of the relation 𝜂 = 𝜇0𝜓 , we can finally obtain the following relations:

𝜂𝜉 =
1

𝜉𝜙(𝜂)
= 𝜇0𝜓𝜉, (32)

𝜙(𝜂) = 1
𝜓𝑧
. (33)

Now substituting 𝜙(𝜂) from the expression in the right hand side of the first equality in Eq. (32), and by equating it with Eq. (33), we 
obtain the equation 𝜇0𝜉

𝜕𝜓

𝜕𝜉
= 𝜕𝜓

𝜕𝑧
. Furthermore, by solving the resultant set of equations recursively, and with the aid of definitions 

Eq. (16), we can obtain the explicit expressions for the pertaining functions 𝜉 and 𝛿. After some algebra we therefore get the expressions 
for the functions 𝜉 and 𝛿 respectively as:
7

𝜉(𝑧) = 𝜉0exp(𝜇0 𝑧), (34)
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Fig. 2. Evolution of the parameter 𝛽 as a function of 𝜎. The other dimensionless parameters are chosen as 𝜌 = 0.5 and 𝜂0 = -1.0.

and

𝛿(𝑧) = 𝜉0exp( 1
3
𝜇0 𝑧). (35)

It is obvious that both functions 𝜉 and 𝛿, which are now determined as a function of the unified variable 𝑧, have almost the same 
form and are almost equal for small |𝜇0|, indicating that both functions have equal physical meaning. This is very interesting result 
indicating again the appropriateness of the transformation Eq. (15). Here it noteworthy that its physical explanation is simple as both 
functions describe 𝜉 and 𝛿 describe same physics.

In the rest of this investigation and without loss of generality, let us set for simplicity 𝜉0 = 1. Finally, the solution of Eq. (31)
is obtained by substituting Eqs. (34) and (35) into the said solution, and hence different solutions can be derived depending on the 
conditions on Φ0. From Eq. (16), the general explicit form of the function 𝜂(𝑧) can be obtained as:

𝜂(𝑧) =

√
− 2
9Γ3

exp( 1
3
𝜇0 𝑧)𝜑(𝑧) +

Γ2
3Γ3

=

√
−2𝜌4

9𝛼3
exp( 1

3
𝜇0 𝑧)𝜑(𝑧) + 𝜂0, (36)

provided the expression of the continuous function 𝜑(𝑧) =Φ(𝛿) should be known. In the same vein, by using Eqs. (34), (35) and (36), 
as well as the relation 𝜂 = 𝜇0𝜓 , and after some algebra while making appropriate scaling and transformations, and with the aid of 
the definitions Eq. (31), we can write down the explicit expression of the function 𝜓(𝑧) in terms of original model parameters as:

𝜓(𝑧) = 𝛼

𝜌

[√
− 2
9Γ3

exp( 𝜌
3𝛼
𝑧)𝜑(𝑧) +

Γ2
3Γ3

]

= 𝛼

𝜌

⎡⎢⎢⎣
√

−2𝜌4

9𝛼3
exp( 𝜌

3𝛼
𝑧)𝜑(𝑧) + 𝜂0

⎤⎥⎥⎦ . (37)

More evidently, Eq. (37) shows that the derived solutions depend explicitly on 𝛼, 𝜌 and 𝜂0, which remain the single mathematical 
parameters that significantly simplify the estimations of expressions of the solutions 𝜓(𝑧).
On the other hand, there is no experimental values for some model parameters or no way to determine their exact values, and the 
best we can do is to follow some requirements and deduce possible intervals for the said parameters, resulting to a plausible better 
choice and estimation, and hence for the discussion of the nature of evolution of solutions under each case. From a physical point of 
view, the study of propagation of nonlinear waves in MTs is an exciting and important task. In this regards, by using Eq. (28), as well 
as the expression of 𝛼 given in Eq. (30), we can straightforwardly obtain the following plausible two expressions of 𝛽 as:

𝛽 =
27(9𝜎 − 2𝜌𝜂0)
(27𝜎 − 4𝜌𝜂0)2

. (38)

Accordingly, we can set the expression of 𝜂0 given in Eq. (20) to be its general expression because this expression of 𝜂0 allows an 
explicit relation between the parameters of the system as expressed in Eq. (28) and Eq. (29). In this regards, we consider Eqs. (28)
and (29) to yield the same expression for 𝜂0, since it is an arbitrary constant.

From Eq. (38), and the important considerations and definitions from Eq. (7), it appears that 𝜎 > 2𝜌𝜂0
9 , leading to 𝛽 > 0.

Fig. 2 presents the evolution of the model parameter 𝛽 as a function of the parameter 𝜎 as given by Eqs. (38) and for fixed values 
of 𝜌 and 𝜂0. Indeed, in accordance with the hypotheses and physical requirements, we have selected the parameters as 𝜌 = 0.5 and 𝜂0
= -1.0, and which insure that 𝛼 < 0. Thus, using the appropriate relation between Γ3, Γ0, Γ1 and Γ2 obtained from Eqs. (20) and (28), 
will lead to the condition 𝑎20 > 0, which is in accordance with the hypotheses and physical requirements. From this figure, it can be 
seen that as the linear part of the additional potential energy 𝑉2(𝑢𝑛) through the uniform intrinsic electric field strength and defined 
8

above as 𝑉𝑒𝑙 (as in Fig. 1) is important, the nonlinear one decreases monotonically (abruptly and then smoothly) and progressively 
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Fig. 3. Wave form of traveling anti-kink soliton solution in the stationary state, plotted analytically (solid lines) and numerically (dotted lines) for 𝜂0 = −1.0, and (a) 
different values of 𝛽 and (b) different values of 𝜌, respectively. For the left figure (a) 𝜌 = 0.5 and 𝛽 = 1.0 (blue and red colors), 3.0 (yellow and purple colors) and 
5.0 (cyan and green colors), respectively; while for the right figure (b) 𝛽 = 1.0 and 𝜌 = 0.5 (blue and red colors), 1.0 (yellow and purple colors) and 1.5 (cyan and 
green colors), respectively.

becomes of the order of zero as 𝜎 increases, indicating the saturation behavior of the parameter 𝛽 as 𝜎 increases. Moreover, the graph 
suggests that when the linear part of the additional potential energy 𝑉2(𝑢𝑛) due the intrinsic electric field strength is very small, the 
nonlinear part should be very strong to in order to compensate. The important aspect of this result is that the interplay between 
parameters 𝛽, 𝜎 and 𝜌 is crucial for the stability of the obtained solutions. Among other things, also from Fig. 2, it can be seen from 
the evolution of the 𝜎 dependence of the parameter 𝛽 that the oscillations of tubulin dimers are a cooperative phenomenon, governed 
not only by the predominant variation of the polarized cytoplasmic water and motor proteins (enzymes), but also by many other 
properties. Another important point is that, regarding the expression of 𝛼 given in Eq. (30), and considering the important condition 
𝛽 > 0 from Eq. (38), we conclude that 𝛼 < 0.

3. Results and discussions

As generally known, solving Eq. (31) can provide a richness of wave solutions depending on the mathematical tools explored. A 
part of the difficulty stems from the fact that resolution of such equation requires specific considerations or conditions which involve 
various technical difficulties coming from the fact that Eq. (31) is an ODE. Then, the possible solutions of Eq. (6) can be obtained in 
terms of exponential functions, Jacobi elliptic and Weierstrass ℘ functions [54,55,65–69].

In this regards, in order to overcome the technical difficulty, we shall not be so much concerned with technical details and all the 
tedious derivations. Instead, two sets of solutions are considered, depending on the condition on the arbitrary constant of integration 
Φ0, i.e., Φ0 = 0 and Φ0 ≠ 0, respectively. Moreover, Eq. (6) is analytically addressed using mathematical methods mentioned above 
with a couple of conditions, and completely different solutions have been derived. Therefore, in what follows and in order to proceed 
further, we will investigate and analyze the obtained solutions and perform numerical analysis using the standard fourth-order Runge–
Kutta scheme, followed by a numerical simulation of their time evolution, taking into account the expression of 𝛼 given by Eq. (30), 
as well as different values of 𝛽 obtained from Fig. 2.

Now setting Φ0 = 0, and after appropriate calculations, one can write down the explicit form of one soliton solutions in terms of 
exponential function as [67–69]:

𝜓1(𝑧) =
𝛼

𝜌

⎡⎢⎢⎢⎣−
√

−2𝜌4
9𝛼3 exp

(
𝜌

3𝛼 𝑧
)

exp
(
𝜌

3𝛼 𝑧
)
+ 𝑧0

+ 𝜂0

⎤⎥⎥⎥⎦ . (39)

Likewise, setting 𝑧0 = ± 1 yields, and after appropriated calculations, two different final expressions of the solution given by Eq. (39)
which are reminiscent to tanh- and coth-functions [27,34,69,80]. However, only one solution is physically acceptable for our problem, 
i.e., for 𝑧0 = 1 and which can finally be expressed as:

𝜓1(𝑧) =
𝛼

𝜌

⎧⎪⎨⎪⎩
√

−2𝜌4

9𝛼3
[1
2
− 1

2
tanh

(
𝜌

6𝛼
𝑧

)]
+ 𝜂0

⎫⎪⎬⎪⎭ . (40)

Fig. 3 presents the stationary evolution of function 𝜓 as a localized anti-kink soliton solution (anti-kinkon) of the ODE given by 
Eq. (6) for different values of the parameters 𝜌 (different strengths of the viscous effect) and 𝛽 (different strengths of the polyelectrolyte 
effect) or 𝜎 (different strengths of the linear electric field effect), respectively.

Accordingly, Fig. 3 displays the evolution of the solution 𝜓1 predicted by Eq. (40) as a function of the unified variable 𝑧, in the 
form of localized anti-kink soliton, for different values of parameters 𝛽, 𝜌 and a fixed value of 𝜂0 (𝜂0 = −1.0). Following the anti-kink 
profiles, Fig. 3 shows that depending on the values of the parameters 𝛽 and 𝜌, the anti-kinkon solution profiles manifest amplitude 
and waveform or width variations, this depending on the values of the parameters 𝛽 and 𝜌. As shown in Figs. 3(a) and (b), it appears 
clearly that the amplitude and width of anti-kink-type soliton solution increases and decreases with increasing and decreasing 𝛽 and 
9

𝜌, respectively, leading to the important influence of the damping and polyelectrolyte effects. In this respect, it is obvious that the 
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Fig. 4. Numerical (solid lines) and analytical (dotted lines) generations of localized discrete soliton-like modes (left figures) and their propagation (right figures) in 
the MTs showing the effects of the model parameters for 𝜂0 = -1.0, 𝜌= 0.5, 𝜅 = 0.7; and: (a) and (b) 𝛽 = 1.0, (c) and (d) 𝛽 = 3.0.

amplitude and the waveform of the anti-kink-like excitation or soliton increases and changes with increasing 𝛽, as clearly seen in 
Fig. 3(a) where 𝛽 = 1.0 (blue and red), 3.0 (yellow and purple) and 5.0 (cyan and green) colors, respectively. On the other hand, the 
damping effects on the anti-kinkon’s amplitude and profiles or width are highlighted when increasing 𝜌, as shown in Fig. 3(b) for 𝛽
= 1.0, 𝜌 = 0.5 (blue and red colors), 1.0 (yellow and purple colors) and 1.5 (blue and green colors), respectively. More specifically, 
all these findings suggest that a further increase in 𝛽 or decrease in 𝜌 may lead to a more steepened ramp in the anti-kink soliton 
and the higher end of the anti-kinkon heightens more and more with the increased amplitude, which may give a different picture of 
understanding the peculiar dynamical effect known as “treadmilling”, in MTs.

Among other things, it appears that the parameter 𝛽 is an important factor in the rapid propagation of solitonic waves and in 
the very interesting assembly and disassembly behavior in MTs, as can be seen in Fig. 3(a). Therefore, all these aspects noticed and 
illustrated in Fig. 3, sufficiently demonstrate that in addition to kink-like domain walls, anti-kink-like dynamics can be viewed as bits 
of information propagating along the MTs [12,27]. This form of dynamics or transport governed by anti-kink-type soliton solutions 
is known as anterograde mechanism for the movement of motor proteins [13,81–83].

On the other hand, by considering the constant of integration Φ0 ≠ 0, a careful integration of Eq. (31) can lead to a solution 𝜓 in 
terms of Jacobi elliptic function [54,55,65–67], 𝑣𝑖𝑧

𝜓2(𝑧) =
𝛼

𝜌

⎡⎢⎢⎢⎣
√

−2𝜌4

9𝛼3
exp

(
𝜌

3𝛼
𝑧

) 1√
2 cn[exp

(
𝜌

3𝛼 𝑧
)
, 𝜅]

+ 𝜂0

⎤⎥⎥⎥⎦ , (41)

where cn is the Jacobi elliptic function with modulus 𝜅 (0 < 𝜅 ≤ 1), and which is obtained to be equal to 0.7 here. Quite remarquably 
here, the quantity 𝜅 turns out to be a non arbitrary constant, i.e., fixed. In fact it depends on the defined parameters of the model [29,
54,55]. Before continuing, we would like to make a few more additional observations or additional remarks on the solution that was 
derived above using Eq. (41). Of course, it should be noted that, for the sake of simplicity, we are considering the integration constant 
Φ0 to be undeniably negative, i.e., we choose Φ0 = −1, and the Jacobi elliptic function cn representing standard Jacobian elliptic 
function with modulus 𝜅 [54,55,67].

Figs. 4 and 5 display the analytical (dots) and numerical (solid lines) localized patterns of discrete modes as function of the unified 
variable 𝑧, and their evolution in the 𝑥 −𝑡 plane for two different values of 𝛽 and two different values of 𝜌, while 𝜂0 = -1.0. Accordingly, 
the discrete modes are spatially localized and their lifetime depends on the cooperative interactions between the parameters 𝛽 and 𝜌
as can be seen in Figs. 4 and 5. More precisely, the 2-D representation of these discrete modes (left graphs) and their propagation with 
time (right graphs) for different values of parameters 𝛽 and 𝜌 show that the initial localized discrete patterns persist as time evolves, 
illustrating the fact that the behavior of the localized discrete modes in MTs is acceptable as the soliton, as depicted in Figs. 4(a)-
(d) and Fig. 5(a)-(d). Additionally, the study offers compelling proof of the influence of the parameter 𝛽 on the behavior of discrete 
patterns through the mode profiles, showing that the amplitudes of the discrete modes seem not altered as the waves are propagating, 
demonstrating the stability of the localized discrete modes, as shown in Figs. 4(b) and 4(d), and Figs. 5(b) and 5(d). Among other 
things, from the results it is evident that recurrence is observed as time passes and such discrete modes are intrinsically generated 
as a response to the combined effects of nonlinearity and spatial discreteness [84]. However, from the solution given by Eq. (41), 
these localized discrete modes are generated in complex cooperative interaction incorporating ferroelectric processes, dispersion, 
10

dissipation, discreteness and nonlinearity, and it appears that these modes are structurally and symmetrically non uniform, since 
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Fig. 5. Numerical (solid lines) and analytical (dotted lines) generations of localized discrete soliton-like modes (left figures) and their propagation (right figures) in 
the MTs showing the effects of the model parameters for 𝜂0 = -1.0, 𝜌 = 1.5, 𝜅 = 0.7, and: (a) and (b) 𝛽 = 1.0; (c) and (d) 𝛽 = 3.0.

their spatial profile and symmetry alter with 𝛽 and 𝜌 during their process of development, as they propagate through the tubulin 
𝛼𝛽-heterodimers lattice.

Most interestingly, taking the initial value of 𝛽 in the analysis to be 𝛽 = 1.0, it is shown that a slight variation of its value, i.e., for 
example by considering 𝛽 = 3.0, has a direct incidence on the modes symmetries and on their amplitudes, as can be seen in Figs. 4(a) 
and 4(c) and Figs. 5(a) and 5(c), respectively. On the order hand, it is noteworthy that we are looking for all possible solutions based 
on constraints and assumptions. Indeed Eq. (6) can be solved from another perspective, following the method, the procedures and 
steps developed, presented and explained in Refs. [65,66,68], and to which the reader is referred for more details. Accordingly, by 
using Eqs. (6) and (31), and solving the set of equations following the same procedure and steps, yielding to another general solution 
of 𝜓 expressed in terms of Weierstrass ℘-function [68,69,79]. Proceeding with our investigation and assumption, a general solution 
𝜓 is derived and expressed as:

𝜓3(𝑧) =
𝛼

𝜌

⎡⎢⎢⎣
√

−2𝜌4

9𝛼3
𝛿
℘′(𝛿, 𝑔2,0)
℘(𝛿, 𝑔2,0)

+ 𝜂0
⎤⎥⎥⎦ , (42)

where g2 ≡Φ0 is a free parameter, and 𝛿 is defined in Eq. (35). Meanwhile, the Weierstrass ℘-function can be associated to Jacobi 
elliptic function considering different values of g2 . Here, it might be interesting to point out that the case where 𝑔2 = 0 has been 
already analyzed as it is equivalent to the case where Φ0 = 0, given by solution 𝜓1. However, when 𝑔2 < 0, the Weierstrass ℘-function 
can expressed as follows [54,68,69]:

℘(𝛿) = 𝜈0 + 2 𝜈0sn−2(
√
2 𝜈0 𝛿, 𝜅), (43)

where obviously 𝜅 is the modulus of the Jacobi elliptic function sn, with 0 < 𝜅 ≤ 1, and 𝜈0 is an appropriate fundamental function of 
𝑔2.

In Fig. 6, we display in this case the profile of the associated solitonic solution obtained both analytically and numerically using 
𝜓3(𝑧) and the solution in Eq. (43) as a function of the unified variable 𝑧, and achieve its evolution (propagation) in the 𝑥 − 𝑡 plane 
for chosen values of model parameters defined above, i.e., 𝜂0 = -1.0, 𝜌 = 0.5, 𝛽 = 1.0, 𝜅 = 1, and 𝜈0 = 0.3. Here, we observe that 
the solution is a space-localized pattern with perfect soliton-like profile emerging as an asymmetric dark solitary-wave, as depicted 
in Fig. 6(a). Also, its evolution in the 𝑥 − 𝑡 plane suggests the persistence of the initial dark soliton pattern as time evolves, which 
demonstrates the stability of the asymmetric dark-type soliton solution, as can be seen in Fig. 6(b).

Following the same procedure as above, when 𝑔2 > 0, the explicit form of the Weierstrass ℘-function in this case can be written 
down as [54,68,69]:

℘(𝛿) = 𝑣0
[
1 − cn2(

√
𝑣0 𝛿, 𝜅)

]
, (44)

where cn is a well-known Jacobi elliptic function with modulus 𝜅 introduced above and 𝛿 is the function defined in Eq. (35), whereas 
𝑣0 is another appropriate fundamental function of 𝑔2. Fig. 7 presents the profile of the associated soliton-like solution obtained 
numerically using the solution given by Eq. (44) as function of the unified variable 𝑧, and its propagation in the 𝑥 − 𝑡 plane for the 
same chosen values of the model parameters taken above, i.e., 𝜂0 = -1.0, 𝜌 = 0.5, 𝛽 = 1.0, 𝜅 = 1, and 𝑣0 = 1.0. Accordingly, 
11

for the same chosen values of the model parameters, it appears that the solution is also a space-localized pattern of soliton-like 
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Fig. 6. Numerical (solid line) and analytical (dotted line) generation of a localized asymmetric dark soliton profile in MTs system, solution of Eq. (6) as function of 
the unified variable 𝑧 (a), and its evolution in the 𝑥 − 𝑡 plane (b), for 𝜂0 = 1.0, 𝜌 = 0.5, 𝛽 = 1.0, 𝜅 = 1 and 𝜈0 = 0.3. The analytical solution is given by 𝜓3(𝑧) [Eq. (42)
and Eq. (43)].

Fig. 7. Numerical (solid line) and analytical (dotted line) generation of a localized asymmetrical bright-type soliton profile in MTs system, solution of Eq. (6), as 
function of the unified variable 𝑧 (a) and its evolution in the 𝑥 − 𝑡 plane (b) for 𝜂0 = -1.0, 𝜌 = 0.5, 𝛽 = 1.0, 𝜅 = 1 and 𝑣0 = 1.0. The analytical solution is given by 
𝜓3(𝑧) [Eqs. (42) and (44)].

profile emerging as an asymmetric bright soliton, as presented in Fig. 7(a). Here again, the propagation in the 𝑥 − 𝑡 plane leads to a 
stable solution, as can be clearly seen in Fig. 7(b). From Figs. 6(b) and 7(b), it can be seen from the propagation of the soliton-like 
modes or excitations that the amplitude and the width of the dark and bright soliton profiles do not vary as time evolves, which is 
characteristic of the stability of the soliton-like solutions. According to the parameters of MT dimers, and based on the initial condition, 
it is apparent that localized discrete and soliton-like modes are accessible as nonlinear dynamical behaviors in MTs, provided that the 
model parameters are fine tuned. It is worth mentioning that Figs. 6 and 7 show the behavior of bright and dark soliton-like modes 
depending on the sign of the free parameter 𝑔2. Among other things, stable pulse-type solitons are obtained (emerge and propagate) 
depending on the values of the parameters 𝜎, 𝛽 and 𝜌.

Moreover, we have performed an analytical analysis of Eq. (6) using the solutions obtained and the numerical analysis using the 
Runge Kutta 4 scheme, followed by a numerical simulation of their time evolution, taking into account the expression of 𝛼 given by 
Eq. (30), and we observe a good agreement between analytical and numerical analysis of the localized stationary solutions.

More interestingly, all these various features underlying the nonlinear dynamics of MTs can be relevant to many biological 
processes such as chemical energy transition in the process of hydrolysis of GTP nucleotides and microtubule motor proteins transport 
such as kinesins and dyneins [13,82,83], cell growth and division for which MTs disassemble and reassemble [6,12,78,85], excitations 
and inhibition of biomembranes and neurons [6,14,86], intracellular transport and transport of both proteins and organelles [21,
30,87], cellular movements including separating chromosomes during mitosis and meiosis [20,88], transport of cellular cargo [89], 
respiratory infections [90], dynamic information processing including processing, propagation, storage and transduction, of biological 
information in MTs [2,6,14,15,17–19]. Among other things and of capital importance, it appears that all the solution obtained assume 
forms or profiles of more stables and robust solitons.

As explained above, the solutions obtained can be divided on several types. Kink-like solutions, i.e., antikink-type soliton solutions 
coincide with those obtained by other methods, like tanh-expansion and simplest equation methods [25–28,38–42], and which 
can be viewed as bits of information propagating along MTs [11–15,34]. For example such kink-like solutions may be involved 
in the movement of motor proteins, in agreement with the treatment of MTs as artificial information strings and demonstrating 
that filamentary cytoskeletal structures may operate much like information strings in analogy to semiconductor word processors [2,
6,8–14]. On the other hand, new classes of asymmetric bell-shape soliton solutions (asymmetric dark-bright soliton-like modes) 
and discrete modes in terms of special functions are also obtained in comparison with the symmetric bell-type solitons previously 
obtained [27]. Although, these solutions are new and previously have not been described in previous works, they demonstrate that 
pulse-type solitons can propagate along MTs owing to the coupling between the elastic states of the tubulin dimers and are produced, 
12

for instance, by the energy released during GTP hydrolysis [27,91].
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4. Stability analysis

Among other things and as widely known, it is always very important to investigate the stability of all the solutions that are 
produced, which is the goal of this section. Accordingly, let us examine the stability of the solutions derived previously. In this order 
of idea, and considering the analysis method proposed in [76], we will focus on the unified solution given by Eq. (37). Thus, in order 
to investigate the stability of our solutions, let us begin by expressing the function 𝜓 as follows:

𝜓 = 𝜓𝑠 +𝜓𝑝, (45)

where 𝜓𝑠 corresponds to 𝜓1, 𝜓2 and 𝜓3, while 𝜓𝑝 is a small perturbation. Therefore, introducing Eq. (45) into Eqs. (6), and linearizing 
with respect to 𝜓𝑝 yields the following second order differential equation:

𝜓 ′′
𝑝
− 𝜌

𝛼
𝜓 ′
𝑝
+ 3
𝛼
𝜓2
𝑠
𝜓𝑝 −

2𝛽
𝛼
𝜓𝑠𝜓𝑝 −

1
𝛼
𝜓𝑝 = 0. (46)

Furthermore, assuming that 𝜓 ′
𝑝
= Λ and linearizing the product 𝜓𝑛

𝑠
𝜓𝑝 (𝑛 = 1, 2), we can obtain a system of linearized ODEs [76], 

which is⎧⎪⎨⎪⎩
𝜓 ′
𝑝
=Λ,

Λ′ = 𝜌

𝛼
Λ−

3𝛼2𝜂20−2𝛽𝛼𝜂0−𝜌
𝜌𝛼

𝜓𝑝.
(47)

In addition, it is convenient to express the system in Eq. (47) in the matrix form as:[
𝜓 ′
𝑝

Λ′

]
=

[
0 1

−
3𝛼2𝜂20−2𝛽𝛼𝜂0−𝜌

𝜌𝛼

𝜌

𝛼

][
𝜓𝑝
Λ

]
. (48)

Setting 𝐴∗ =

[
0 1

−
3𝛼2𝜂20−2𝛽𝛼𝜂0−𝜌

𝜌𝛼

𝜌

𝛼

]
and 𝑉 ∗ =

[
𝜓𝑝
Γ

]
, transforms Eq. (48) can be transformed into an eigenvalue problem of the 

form:

𝑇 (𝜆) = det(𝐴∗ − 𝜆𝐼) = 0, (49)

where 𝜆 is the eigenvalue and 𝐼 is the identity matrix. Hence, by solving the eigenvalue problem given by Eq. (49) brings about a 
quadratic characteristic equation given as:

𝜆2 − 𝜌

𝛼
𝜆+

3𝛼2𝜂20 − 2𝛽𝛼𝜂0 − 𝜌
𝜌𝛼

= 0. (50)

Consequently, after some simple mathematical algebra, the solutions of the characteristic equation can be obtained and expressed 
as:

𝜆1,2 =
𝜌

𝛼

⎡⎢⎢⎢⎢⎣
1 ±

√
1 −

4𝛼(3𝛼2𝜂20−2𝛽𝛼𝜂0−𝜌)
𝜌3

2

⎤⎥⎥⎥⎥⎦
, (51)

where the subscripts 1 and 2 refer to the plus and minus signs respectively. Accordingly, the growth rate of the disturbances repre-
sented by the real part of the eigenvalue 𝜆, [Re(𝜆)] is a determining factor for understanding the stability of our solutions. In this 
regards, the solutions are stable if Re(𝜆) < 0. According to the expression in Eq. (51), we can notice that first of all 𝜆𝑠 are real, and 
secondly 𝜆𝑠 can take positive as well as negative values. On the other hand, the expression of 𝛼 is positive, this implies that the 
solutions derived are stable whenever 𝜆 < 0. Therefore, following the above analytical stability analysis of the obtained solutions, it 
is evident that the stability of the soliton-like solutions seems to be achieved due to the balance between the nonlinearities and the 
dissipation.

5. Conclusion

In the present study and to gain a better understanding of microtubule dynamics, we developed a modified 𝑢-mode for MTs 
that considers the polyectrolyte properties of the tubulin molecules. In this regards, we have introduced a cubic nonlinear term 
in the electric field potential of the 𝑢-model, that account for the nonlinear electric interactions in the MTs resulting from the 
combined effects of the intrinsic electric field, the polarized cytoplasmic water and enzymes surrounding the MTs. Therefore, to 
study the nonlinear dynamics of MTs, the corresponding dynamical equation governing the dynamics of tubulin systems is obtained, 
and a modified mathematical approach proposed by Samsonov [65] is used to find the solitary wave solutions of the relevant modes 
describing the dynamics of the microtubulin system. The results of our investigation have shown that the localized waves or excitations 
13

responsible for energy transfer within tubulin dimers, and which further are of capital importance for the mechanisms of assembly 
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and disassembly in MTs, can evolve either as localized kink-like solitons (antikink-type soliton solutions), discrete soliton-like modes, 
asymmetric bright-solitons or asymmetric dark-type solitons. These soliton-like solutions arise from the requirement that 𝛽 is positive, 
such that 𝛼 will be negative. The condition on 𝛼 means that the kenetic energy of the dimers is not predominant in its competitive 
interactions with the chemical bounds.

In spite of nonlinearities in microtubulin systems, the nonlinear dynamics of MTs is found to be governed by stable localized 
antikink-like excitations, discrete soliton-like modes and asymmetry dark- and bright-type soliton solutions, demonstrating the com-
plex nonlinear dynamics of the microtubulin systems. Also, it is interesting that the description of the nonlinear dynamics of MTs 
depend on applied mathematical procedures. Therefore, we investigate the solitary wave solutions of the proposed MTs model using 
the above proposed mathematical method. We guesswork that the existence of such nonlinear dynamics or quanta of energy transfer 
in the form of discrete patterns and solitonic waves would provide a new understanding of the motor protein transport mechanism 
on the stability of MTs in various cellular activities such as growth and division in microtubulin systems, and which are crucial for 
living state. In fact, it has been shown experimentally that tubulin dimer is subjected to a conformational change due to the hydrolysis 
of GTP into GDP and binding, in which one tubulin monomer (𝛼 or 𝛽) deviates its orientation from the vertical axis of the dimers, 
resulting in the motion of the kinesin along MTs [17]. The finding of such localized discrete, asymmetric dark- and bright-solitons-like 
modes in MTs seems to lay down a milestone for a better understanding of the biological functions of MTs and cytoskeletal struc-
tures, which primarily dependent on their mechanical properties, as well as some specific myocardial cell functions in which MTs are 
involved, including regulation of contraction, ion channel function, receptor recycling, and sarcomere structure [34,70,72,92]. The 
investigation of nonlinear wave propagation in microtubules is an intriguing and significant task from a physics perspective. In order 
to show that the obtained soliton-like solutions assume a form of more stable and robust solitons, we next investigate the propagation 
of the obtained nonlinear solitary waves in the microtubulin systems. This is relevant to a variety of biological processes, including 
the energy transition of GTP hydrolysis, cell growth, excitation and inhibition of neurons, and so forth. However, it is crucial to note 
that the model presented in this study is a mechanical one, although there have been attempts to portray MT as a nonlinear electrical 
transmission line [30–33]. Consequently, a combination model, that is, an electro-mechanical model for electro-mechanical excita-
tions in the microtubulin system, will be particularly significant [9,88,90]. Likewise, it should be noted that every solution examined 
in this study is a one-soliton solution. Accordingly, investigating potential multisoliton solutions for the microtubulin systems should 
therefore be one of the upcoming research.
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