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Abstract 

Advances in machine learning and digital data provide vast potential for mental health predictions. However, research 
using machine learning in the field of eating disorders is just beginning to emerge. This paper provides a narrative 
review of existing research and explores potential benefits, limitations, and ethical considerations of using machine 
learning to aid in the detection, prevention, and treatment of eating disorders. Current research primarily uses 
machine learning to predict eating disorder status from females’ responses to validated surveys, social media posts, or 
neuroimaging data often with relatively high levels of accuracy. This early work provides evidence for the potential of 
machine learning to improve current eating disorder screening methods. However, the ability of these algorithms to 
generalise to other samples or be used on a mass scale is only beginning to be explored. One key benefit of machine 
learning over traditional statistical methods is the ability of machine learning to simultaneously examine large 
numbers (100s to 1000s) of multimodal predictors and their complex non-linear interactions, but few studies have 
explored this potential in the field of eating disorders. Machine learning is also being used to develop chatbots to pro-
vide psychoeducation and coping skills training around body image and eating disorders, with implications for early 
intervention. The use of machine learning to personalise treatment options, provide ecological momentary inter-
ventions, and aid the work of clinicians is also discussed. Machine learning provides vast potential for the accurate, 
rapid, and cost-effective detection, prevention, and treatment of eating disorders. More research is needed with large 
samples of diverse participants to ensure that machine learning models are accurate, unbiased, and generalisable 
to all people with eating disorders. There are important limitations and ethical considerations with utilising machine 
learning methods in practice. Thus, rather than a magical solution, machine learning should be seen as an important 
tool to aid the work of researchers, and eventually clinicians, in the early identification, prevention, and treatment of 
eating disorders.
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Plain English Summary 

Machine learning models are computer algorithms that learn from data to reach an optimal solution for a problem. 
These algorithms provide exciting potential for the accurate, accessible, and cost-effective early identification, pre-
vention, and treatment of eating disorders, but this potential is just beginning to be explored. Research to date has 
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Eating disorders have severe and chronic impacts on the 
lives of sufferers and those who care for them [1]. These 
disorders typically begin in adolescence or early adult-
hood [2, 3], a time of upmost importance for the for-
mation of long-term relationships and academic and 
career success. Thus, it is vital that we identify those at 
risk for, or suffering from, eating disorders early in life, 
before symptom severity changes the life course. Lifestyle 
modification and dissonance-based eating disorder pre-
vention programs were recently found to be effective at 
reducing 54% to 77% of future eating disorder onset [4]. 
Although these results are encouraging, most preven-
tion programs are in-person [4], making them difficult 
and costly to implement on a mass scale. Further, effec-
tive internet-based prevention programs have issues with 
adherence and dropout, and it is currently difficult to 
broadly disseminate the programs to those most at risk 
for eating disorders [4, 5]. Current approaches to iden-
tify eating disorder risk are primarily limited to validated 
questionnaires and clinical interviews [6]. Although these 
screening methods are effective, they are costly, time 
consuming, and burdensome to participants and/or the 
healthcare system. More importantly, they are typically 
administered on an individual basis to people who have 
already sought help from a health professional or those 
involved in eating disorder prevention programs, which 
has resulted in most people with an eating disorder not 
currently being screened [7, 8].

For those who do seek help for an eating disor-
der, waitlists are long and treatments are costly [1]. 
Response rates for even the best eating disorder treat-
ments are modest [9–11], especially when considering 
long term outcomes [12]. Scholars have argued for the 
need for a personalised approach to treatment [11, 13], 
given research suggesting that treatment outcomes may 
vary based on individual characteristics [14, 15] and 
therapeutic alliance [16, 17]. However, further research 
is needed using large datasets to determine who will 
respond best to which treatments and we are far from 
implementing evidence-based personalised treatments 

for eating disorders on a mass scale. Thus, further inno-
vations in the field of eating disorders are needed.

Machine learning (ML)—a form of artificial intelli-
gence—are computer algorithms that learn from data 
to reach an optimal solution for a problem. Increases in 
computing power and digital storage capacity have given 
rise to the use of ML in research and healthcare set-
tings. While ML is currently being utilised in physical 
healthcare to create automated approaches to diagnosis 
and treatment, in mental health, ML is primarily used in 
research rather than real-world settings [18]. Research 
on ML and eating disorders is just beginning to emerge 
[19]. This narrative review will explore current research 
and future potential benefits of ML to aid in the rapid 
and cost-effective detection, prevention, and treatment 
of eating disorders, and will highlight some limitations 
and ethical considerations with utilising these methods in 
practice.

Machine learning
ML provides a wide suite of models for identifying pat-
terns in data. The main aim of ML is to create a model 
that can make accurate predictions that are generalizable 
to different populations. Similar to traditional statistical 
models, ML models can be used to test hypotheses and 
make inferences about the data (i.e., inferential statistics), 
but they can also allow for flexible methods to maximise 
prediction and different methods of validation (i.e., pre-
dictive statistics) [20, 21]. Two common categories of ML 
models are supervised and unsupervised models [22]. 
Most models currently used in mental health research 
are supervised [23]. Supervised models are developed 
and tested on data that is labelled with the outcome. 
Supervised models can include pre-selected predictors 
based on existing literature and clinical experience and 
thus have some utility in hypothesis testing. Hypothesis-
free approaches are also beneficial in identifying predic-
tors that may be less intuitively known. Thus, supervised 
models with identifiable predictors can help generate 
future hypotheses and inform the development of theo-
retical models. Unsupervised models examine hidden 

mainly used machine learning to predict women’s eating disorder status with relatively high levels of accuracy from 
responses to validated surveys, social media posts, or neuroimaging data. These studies show potential for the use of 
machine learning in the field, but we are far from using these methods in practice. Useful avenues for future research 
include the use of machine learning to personalise prevention and treatment options, provide ecological momentary 
interventions via smartphones, and to aid clinicians with their treatment fidelity and effectiveness. More research is 
needed with large samples of diverse participants to ensure that machine learning models are accurate, unbiased, 
and generalisable to all people with eating disorders. There are limitations and ethical considerations with using these 
methods in practice. If accurate and generalisable machine learning models can be created in the field of eating 
disorders, it could improve the way we identify, prevent, and treat these debilitating disorders.
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and complex patterns in data that are unlabelled with the 
outcome and thus do not often facilitate human under-
standing of relevant predictors. Unsupervised learning 
is beneficial when human understanding is limited or 
biased within a domain. This approach leads to discov-
ery of new patterns in data which are not possible to find 
using accepted methods.

When examining a small number of predictors, cur-
rent research is mixed on whether ML outperforms 
traditional analytic approaches in predicting treat-
ment outcomes in clinical settings [24], including those 
for eating disorders [25–27]. The main benefit of ML 
over traditional statistical models is the ability of ML to 
simultaneously examine large numbers (100s to  1000s) 
of multimodal predictors and their complex non-linear 
interactions [20]. Other benefits of ML methods include 
the emphasis on model parsimony, with techniques avail-
able to identify the simplest prediction models that don’t 
compromise on accuracy. ML methods also emphasise 
the importance of cross-validation [28], with data being 
separated into training and testing samples. Cross-vali-
dation is vital in psychology, especially when considering 
concerns around the replication of findings in the field, 
because it identifies whether a model has been overfit to 
the original (i.e., training) sample and whether it will gen-
eralise to new samples (i.e., testing samples) [21].

Although there are some ML techniques (e.g., regu-
larisation, or testing the relative accuracy of models with 
and without specific predictors) that allow complex mod-
els to be more easily interpreted [21], highly complex 
and uninterpretable models are often found to make the 
most accurate predictions in many fields of psychology 
[29]. Thus, researchers will need to consider the extent to 
which they want to preference explanation or prediction 
within their data when deciding which ML or traditional 
statistical model best fits their research question. ML is 
not a replacement for statistical models but rather a tech-
nique to be used in conjunction with more traditional 
approaches to data analysis. There will always be the need 
to make interpretable and causal inferences within the 
field of eating disorders. However, there is also a need 
to make accurate and generalisable, yet perhaps uninter-
pretable, predictions. ML provides exciting potential to 
move the field forward and better predict eating disorder 
risk, prevention, and treatment outcomes.

Implications for detection
In the field of eating disorders, supervised ML is primar-
ily being used to predict people’s eating disorder status 
and to identify the most relevant predictors for eating 
disorders. Recent research has used ML to predict recur-
rent binge-eating behaviour [30] and eating disorder sta-
tus [31–34] using cross-sectional surveys with validated 

measures of known eating disorder risk factors (see 
Table 1 for a summary of current research using survey 
predictors). Further, a longitudinal study used ML to 
predict future eating disorder outcomes among a sam-
ple of female patients over a two-year period from 33 
self-report measures with 78% accuracy [26]. These stud-
ies provide initial evidence for the utility of ML to iden-
tify eating disorder status with relatively high accuracy 
(70–91%) using survey measures as predictors and help 
advance knowledge about the most relevant predictors of 
eating disorders, which have implications for prevention 
and treatment-seeking individuals. More longitudinal 
research is needed with larger samples of diverse partici-
pants to investigate the utility of different ML techniques 
to predict future eating disorder status using validated 
surveys. However, because these studies rely on self-
report surveys as predictors, it is difficult and costly to 
implement these methods of screening on a mass scale.

Technology is an integral part of our lives and every 
swipe, click, like, post, purchase, and search can be 
stored as part of our ‘digital exhaust’. In 2016, more than 
90% of the world’s data had been created in the past two 
years alone, and digital data is predicted to double in size 
every two years as internet use expands globally [35]. In 
a time of ‘big data’, there is vast potential to use ML to 
examine our digital data to make predictions about our 
current and future mental health. The advantages of 
using ML to analyse these data to detect risk are: (1) it 
does not require additional effort or burden to the indi-
vidual; (2) screening can occur as soon as data is created; 
(3) it can be delivered across entire populations; and (4) 
it can identify those who are unaware of their risk and/or 
who may not seek help. Utilising ML on digital data could 
also help differentiate between specific eating disorders 
and other disorders with similar symptomologies and 
improve our understanding of the prevalence of these 
disorders within a population.

While there are many forms of digital data that can be 
examined (e.g., electronic health records, sensory data 
from smartphones/watches), most research in the field 
of eating disorders has focused on social media data. 
Social media is used from a young age [36] and posts pro-
vide access to naturalistic, first person accounts of users’ 
behaviour, thoughts, and feelings. Social media may be 
particularly useful for the identification of eating disor-
ders because appearance-based images and comments 
are pervasive on social media and because eating dis-
order communities (whether pro-disorder or recovery) 
tend to gather on these platforms [37].

Pro-eating disorder content can be difficult to mod-
erate on social media [38]. Two studies have used ML 
models to predict whether eating disorder content had 
been or would be removed on Instagram or Tumblr for 
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violating community guidelines (see Table  2 for a sum-
mary of current research using ML to identify eating 
disorder content on social media). One study [39] using 
image and text content from Tumblr posts as predic-
tors and using an unsupervised deep neural network ML 
model had a higher accuracy rate (89%) than the other 
study [40] using only text content from Instagram posts 
as predictors and a supervised model (69%). Further 
research is needed to determine whether the complexity 
of the predictors and/or the ML models improves their 
ability to identify potentially harmful eating disorder 
content on social media. However, current research sug-
gests there may be utility in the use ML to rapidly remove 
potentially harmful or triggering eating disorder content 
on those platforms.

ML has also been shown to be effective (78–97% accu-
racy) in identifying eating disorder content using certain 
hashtags and linguistic features relating to appearance, 
eating, and exercise from publicly available posts within 
eating disorder communities on different social media 
platforms [37, 41–47]. For example, one study examin-
ing pro-eating disorder content on Instagram was able to 
predict future mental illness severity with 81% accuracy 
over a seven month period [41], however it is important 
to note that severity was also predicted from content in 
the posts. This is a common limitation in the current lit-
erature, with most research inferring eating disorder sta-
tus based on the social media posts themselves or based 
on human coding of posts for eating disorder risk, rather 
than participants’ responses to validated clinical sur-
veys or interviews. The creation of accurate ML models 
that can predict eating disorder status based purely on 
social media posts may be an efficient and cost-effective 
method of screening in the future. However, those mod-
els first need to be created on large and diverse samples 
of people whose eating disorder status has been veri-
fied using validated clinical measures to properly deter-
mine the accuracy of the ML model and the utility of 
the model in real-world settings. Collecting large sam-
ples of social media data, particularly privately available 
data, in addition to users’ responses to validated clinical 
measures is a significant challenge for researchers. For 
example, a recent study using ML to predict eating dis-
order status (based on their responses to validated eat-
ing disorder screening surveys) from women’s internet 
browsing history only had 25% of the original sample 
agree to provide their internet data [48]. Encouragingly, 
participants in that study did not differ on any variables 
of interest (e.g., age, body mass index, eating disorder sta-
tus) based on their willingness to provide their browsing 
history. More research is needed using ML to predict eat-
ing disorder status based on social media content, par-
ticularly using both image and text content as predictors 

and validated clinical measures as outcomes. However, 
current research suggests that social media and other 
online platforms may provide untapped potential to use 
ML to identify both those with a current eating disorder 
and those at risk of developing a disorder in the future on 
a mass scale.

With most personal data stored digitally, there is 
potential to combine multimodal data to improve the 
prediction of eating disorder risk. While little research 
has examined this potential, it is not a new line of inquiry. 
Over 20 years ago, researchers in Italy used ML to predict 
eating disorder status among a group of 172 patients with 
87% accuracy based on 124 different variables, including 
generic information, ailment behaviour, blood samples, 
and psychodiagnostic testing [49]. The study had a small 
sample size, but it shows potential for the use of ML in 
this field. There have since been advances in technology 
that provide further opportunities to identify those at 
risk using more objective measures. For example, pre-
liminary ML research has identified biomarkers of eating 
disorders from small samples of neuroimaging data (see 
Table 3 for a summary of current research using ML to 
identify eating disorder risk from physiological meas-
ures), with higher accuracy found among adult compared 
adolescent female samples [50–55]. Researchers are also 
examining potential endophenotypes that link specific 
genes to eating disorders [56], and have used ML to iden-
tify risk for anorexia nervosa with 69% accuracy using 
whole genome genotyping data [57]. Further, ML is cur-
rently being used to identify biomarkers for the effects 
of eating disorder treatment (i.e., cognitive behavioural 
therapy) longitudinally using neural circuit functioning, 
clinical data, gene expression, and psychological meas-
ures, but the results are yet to be published [58]. Thus, 
ML provides potential to examine complex interactions 
from many sources of data, such as neuroimages, genet-
ics, social media, electronic health records, and sensor 
and usage data from smartphones or watches, to improve 
the accuracy of predictions of eating disorder risk.

Implications for early intervention and treatment
After identifying those at risk of eating disorders, there 
may be the opportunity to provide help seeking informa-
tion to those individuals on social media or other online 
environments. Chatbots are conversational search assis-
tants that often use ML to simulate modest conversa-
tion potentially employing basic therapeutic techniques 
and providing relevant referral information to healthcare 
providers [59]. While these chatbots would likely not 
replace the need for clinical interventions [59], they can 
provide basic help to those who need it, when they need 
it, anytime, anywhere, and for free. Stigma around eat-
ing disorders and weight is common [60], and may stop 
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people from seeking help, particularly among groups for 
which eating disorders are less recognised (e.g., men, 
people of colour, higher-weight individuals). Chatbots 
may reduce stigma and discomfort with seeking help 
for an eating disorder and could be used to normalise a 
person’s symptoms and fear of disclosure before involve-
ment from a clinician [61]. The use of chatbots in health-
care settings is just emerging, with most chatbots being 
text-based rather than speech-based, and most delivered 
via mobile apps [59]. Chatbots have recently been devel-
oped to provide specific text-based psychoeducation 
and coping skills training around body image and eating 
disorders [62, 63]. A recent study found that the use of a 
chatbot to administer an eating disorders prevention pro-
gram to women at high risk of eating disorders reduced 
their weight/shape concerns through 6-month follow up 
and reduced their overall eating disorder psychopathol-
ogy in the short term compared to waitlist controls [64]. 
Further research is needed on the efficacy and accept-
ability of chatbots in the field of eating disorders and the 
use of ML to increase the appropriateness of responses 
to specific and unanticipated user input [63]. However, 
there is potential for chatbots to be used on social media, 
and other platforms, to provide initial advice, prevention 
strategies, and support for individuals and carers, and to 
refer people to other effective evidence-based eating dis-
order prevention and treatment options.

There has recently been an increase in research testing 
the effectiveness of scalable online eating disorder treat-
ments and interventions delivered via computers and 
mobile apps [5]. Like chatbots, online treatments and 
interventions can overcome some barriers to in-person 
help seeking because they can allow for anonymity, and 
have increased accessibility and flexibility [65]. A recent 
meta-analysis found online eating disorder prevention 
and treatment programs to have promising effects for 
reducing eating disorder symptoms immediately after the 
interventions, but more research is needed to determine 
their long term efficacy [5]. Smartphone interventions 
have also been created for eating disorders [66], with 
interventions using cognitive behavioural therapy being 
found to be effective at reducing eating disorder psycho-
pathology compared to waitlist controls [67]. Online eat-
ing disorder programs often have issues with drop out 
(21–25%) and adherence [5], leading to a call for more 
engaging multimedia programs, codesign with end-users, 
and the use of ML to provide personalised approaches to 
interventions [5, 68]. While some human involvement 
may be optimal to provide more effective results and 
improve adherence [65], accessible and scalable effective 
evidence-based online eating disorder programs provide 
potential to reduce the prevalence and severity of eating 
disorders globally.

Researchers, clinicians, and those with lived experience 
are advocating for personalised approaches to eating 
disorder treatment [13, 69]. ML provides vast potential 
to tailor treatment plans to individuals in real time. ML 
could be used to help determine who will respond best 
to different in-person and online treatments and to track 
the progress of that treatment for individuals over time. 
For example, researchers have recently developed a ML 
early warning system that accurately identifies criti-
cally deteriorating cases in anorexia nervosa inpatient 
populations with 98% accuracy [70]. If a treatment is not 
working for an individual, ML could help decide which 
alternative treatment would be most beneficial. ML could 
also be used to match patients to specific therapists or 
support groups and to discover aspects of interactions 
between clinicians and patients or people within sup-
port groups that predict the best responses [23]. Further, 
ML may be a cost-effective tool to assess treatment fidel-
ity with rapid, individualised, and objective feedback. A 
recent systematic review found that ML performed better 
than chance and, in some instances, at near human-level 
performance when predicting fidelity for psychological 
treatments from verbal recordings of treatment sessions 
[71]. More research is needed to explore the vast utility of 
ML in treatment settings for eating disorders.

Outside of the clinic, there is also potential for the use 
of ML in ecological momentary interventions (EMI; [72]) 
to deliver contextually relevant and personalised therapy 
recommendations based on survey and/or sensory data 
via smartphones, continually learning from the individual 
to identify risk early and provide immediate individual-
ised care [61, 73]. Further, individuals, clinicians, and 
researchers could make use of self-quantification data for 
EMI, in which individuals track their own progress on 
different physical (e.g., heartrate, activity level, sleep) or 
mental health (e.g., mood, triggering experiences, eating 
disorder symptoms) domains via smartphones, to track 
each individual’s eating disorder risk in real time [74]. 
EMI with ML are currently being developed to improve 
eating behaviour based on ecological momentary assess-
ments (i.e., completing brief surveys several times each 
day on mobile devices; 75). While EMI are being devel-
oped in the field of eating disorders, ML is yet to be uti-
lised in these settings [5, 73, 76].

Limitations
While ML provides exciting potential for the detection, 
prevention, and treatment of eating disorders, there are 
many factors that limit its current use in research and 
practice. Many of the limitations of ML are the same as 
those for traditional statistics. For example, large datasets 
with diverse participants are needed to create accurate 
ML models, which can be difficult to establish given the 
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relatively low prevalence of eating disorders [2]. Further, 
those models need to be externally validated on large and 
diverse samples to ensure the predictions are generalis-
able to different populations. Current ML research in 
the field of eating disorders primarily focuses on sam-
ples of young white females, limiting the generalisability 
of existing models to detect risk in other relevant demo-
graphics. ML models are also limited by the quality of 
data used to create them and are susceptible to missing 
data. For example, if a model is created based on data 
from those seeking treatment for an eating disorder, it 
may not generalise to those with an eating disorder who 
do not seek help. Further, if supervised ML models are 
created to predict eating disorder status based on survey 
responses or clinical interviews, the accuracy of the mod-
els will only be as useful as those surveys/interviews are 
at capturing eating disorder status. Most ML models cre-
ated in mental health have failed to generalise to diverse 
samples, which is a primary reason these models are not 
currently being used in practice [24]. Thus, there is cur-
rently a disconnect between what is possible and what is 
feasible in the field of ML and mental health. While these 
limitations can be overcome, it may require researchers 
to collaborate and combine large international datasets, 
especially if models are created to identify specific types 
of eating disorders (e.g., anorexia nervosa or bulimia 
nervosa). Best practice guidelines have been published 
for developing and reporting ML models in biomedi-
cal research [28]. These guidelines should be followed 
in future eating disorder research to ensure ML models 
are correctly applied and reported in this emerging field 
and to increase the utility of those models in real-world 
settings.

Ethical considerations
If accurate and generalisable predictions can be made in 
the field of eating disorders, there are several ethical con-
siderations that need to be addressed before using these 
methods in practice. There are concerns with the pri-
vacy and security of collecting, storing, and sharing data 
that may have implications for a person’s mental health. 
If ML models are created using digital data, there is also 
the concern about whether participants have, or need 
to, provide informed consent for their data to be used to 
make mental health predictions. More so if treatments 
are automated. Researchers are arguing for the need for 
people to understand, control, and own their own data 
and for that data to be stored securely [77].

There are also concerns around bias created in ML 
models that may disadvantage groups that are underrep-
resented in research. For example, if models are created 
using data from those who are seeking treatment for an 
eating disorder in a Western country, the models may 

assume that people with an eating disorder are young 
white females, and may not identify eating disorders 
among other genders, races, or ages. This bias could fur-
ther perpetuate the problem by providing help seeking 
information only to those who match the demographic 
profile from the population in which the models were 
created. Researchers need to be conscious of, and reduce, 
any potential bias in ML models before they are used 
in practice. Bias may be reduced by creating ML mod-
els using large and diverse samples and by co-designing 
models with researchers, clinicians, and those with lived 
experience. Sharing de-identified data and computer 
code alongside the peer-reviewed publication of results 
can improve trust and transparency [78]. Like other tech-
nologies used in healthcare, ML algorithms should be 
transparent, rigorously tested, validated in real-world set-
tings, and regularly reviewed if they are implemented in 
practice [78].

Like humans, all ML models have some degree of error, 
and that error could have harmful implications. For 
example, someone with an eating disorder may be missed 
by a ML model and they may not be provided with much 
needed help seeking information, or a person’s treat-
ment may be stopped unnecessarily due to a prediction 
from a ML model. Identifying eating disorder risk based 
on digital data, such as that on social media, and pro-
viding help seeking information may also be distressing 
for those who were unaware of their vulnerability. Thus, 
researchers are advocating for the importance of collabo-
ration between humans and ML algorithms in healthcare 
settings to make the most accurate and appropriate rec-
ommendations [79, 80]. Human involvement is needed 
because ML methods are not always transparent (i.e., it 
is sometimes unclear what predictions were based on), 
ML predictions can be inaccurate, and ML methods may 
not capture all of the intricacies of each specific situation 
[79]. Further, human involvement is important for thera-
peutic alliance which can improve treatment outcomes 
and can reduce higher dropout rates associated with 
completely remote care [81, 82]. However, it is impor-
tant to note than human decision making in clinical set-
tings can also be negatively impacted by conscious or 
unconscious biases [83, 84], which can lead to inaccurate 
diagnoses, unhelpful patient-clinician interactions, and 
inappropriate treatment recommendations. Thus, ML 
may be a useful tool to aid clinicians in the identification 
and treatment of eating disorders. Human-in-the-loop 
ML allows people to change the results of ML based on 
their skills and expertise, which can improve the power 
of ML to deal with complicated real-world tasks [79]. For 
example, ML models could be guided by researchers, cli-
nicians, and those with lived experience to make recom-
mendations based on available data, and then clinicians 
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could decide whether to enact those recommendations 
based on their own clinical experience and knowledge.

Practical considerations
There are also practical considerations when utilising ML 
in real-world settings. The models are reliant on the avail-
ability of the specific predictors used to create them. The 
more intricate, timely, and costly the predictors are to 
collect and input into the ML algorithms, the harder they 
will be to utilise in practice. For example, if ML models 
are reliant on genetic or neuroimaging data, they will be 
difficult and costly to use on a mass scale. Further, ML 
models that reply on predictors collected via technology 
(e.g., specific smartphones or smartwatches) will be lim-
ited to those who have access to that technology and/or 
those who choose to use that technology. Similarly, ML 
models that reply on social media data may only be use-
ful for those who are active users of those specific plat-
forms and those who engage in the specific social media 
behaviour (e.g., posting image or text content) used to 
create the ML models. Given the speed with which social 
media platforms and technology evolve to include new 
functions and features, ML models will need to be regu-
larly reviewed and tested to ensure they remain accurate 
predictors of users’ eating disorder status. Further, those 
ML models may be reliant on companies (e.g., social 
media platforms) and users consenting for their informa-
tion to be used to make predictions about mental health. 
Research on the opinions and concerns of companies 
and users regarding the use of their data to make mental 
health predictions is needed and education and interven-
tions may be required before those ML models are used 
on a mass scale. Accurate ML models that reply on pre-
dictors that can be collected from the largest number of 
people with the least amount of burden (i.e., lowest cost 
and time) placed on individuals, researchers, clinicians, 
companies, and healthcare providers will likely be more 
widely used in practice.

Once the specific predictors have been collected, they 
will then need to be input into the ML algorithms. Ideally, 
this process would be automated. However, it may be diffi-
cult to automate if the ML models reply on predictors from 
different sources. If humans need to input data into the ML 
models, then simple interfaces should be created to allow 
them to enter the information without the need for exten-
sive technical training. Further, in settings where clinicians 
and other healthcare providers need to decide whether to 
enact the recommendations from the ML models, the ML 
predictions need to be clearly presented, with an explana-
tion of what the prediction was based on, if that informa-
tion is available. Issues may also arise from a collaboration 
between clinicians and ML models. Clinicians may not 
value the recommendations made by ML models or they 

may rely solely on the recommendations at the expense of 
their own clinical judgement. Research and training would 
be required to ensure best practice in this space.

Conclusions
Machine learning provides vast potential for the accurate, 
rapid, and cost-effective detection, prevention, and treat-
ment of eating disorders. This potential is just beginning to 
be explored and more research is needed with large sam-
ples of diverse participants to ensure that ML models are 
accurate, unbiased, and generalisable to all people with eat-
ing disorders. There are important limitations and ethical 
and practical considerations with utilising ML methods in 
real-world settings. If accurate and generalisable ML mod-
els can be created in the field of eating disorders, especially 
using digital data, it has the potential to improve the way 
we identify, prevent, and treat eating disorders and could 
help reduce the prevalence and severity of these debilitat-
ing conditions.
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