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The metabolism of bone tumors is extraordinarily complex and involves many signaling
pathways and processes, including the tumor necrosis factor (TNF) signaling pathway,
which consists of TNF factors and the TNF receptors that belong to the TNF receptor
superfamily (TNFRSF). It is appreciated that signaling events and pathways involving
TNFRSF components are essential in coordinating the functions of multiple cell types that
act as a host defense network against pathogens and malignant cells, the implications of
TNFRSF-related signaling pathways on bone tumor metabolism remain to be summarized,
which is one of the significant obstacles to the application of TNF-related treatment
modalities in the domain of bone oncology. This review will discuss and summarize the
anti-tumor properties of important TNFRSF components concerning osteosarcoma,
chondrosarcoma, and Ewing sarcoma.
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1 INTRODUCTION

TNF, TNFRSF and their respective signaling pathways in tumor metabolism, the current treatment
of bone tumors, and future perspectives involving TNFRSF immunotherapy application in bone
tumor treatment.

1.1 The TNF Superfamily
The immune system has been observed for its antitumoral activity, and about 30 years ago, a soluble
cytokine that was later termed TNF was identified for its antitumor activity upon activation by the
immune system. (Wajant et al., 2003) The tumor necrosis factor superfamily (TNFSF) of cytokine-
like molecules, up till today, has 19 ligands. Whereas the TNFRSF, which are proteins that bind to the
mentioned ligands, contains 29 associated receptors. (Dostert et al., 2019) Members of TNFRSF
consist of an ectodomain, a transmembrane domain, and an intracellular domain. Depending on
differences in these structures, three distinct categories of TNFRSF are defined, including 1) Death
Receptors (DRs) containing a Death Domain (DD) in the intracellular domain that transduce
apoptosis signals via Fas-associated death domain (FADD), TNFR1-associated death domain
(TRADD), or other signaling molecules that could bind to DD; 2) TNFR-associated factor
(TRAF)-interacting receptors that specifically interact with TRAF family; 3) decoy receptors
(DcRs) that act as TNFR ligand inhibitors without an intracellular ligand. (Vanamee and
Faustman, 2020) TNFSF ligands interacting with TNFRSF receptors enhance signaling that
regulates immune and non-immune cell survival, proliferation, differentiation, and effector
functions. While components of the TNFSF/TNFRSF system have pro-inflammatory qualities
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via their activation of NF-B signaling pathways, their actions can
also result in apoptosis as well as other types of cell damage and
death (Figure 1). Thus, numerous TNFSF/TNFRSF members
have been shown to have both beneficial and adverse effects, and
various of these impacts are associated with congenital and
acquired human disorders. With regards to cancer therapy, in
the late 1980s, researchers discovered that TNF killed just a few
cancer cells and that treating patients with TNF resulted in a fatal
inflammatory shock syndrome. (Tracey et al., 1988) These
harmful side effects inevitably limited using TNF as an anti-
cancer drug. Nonetheless, they resulted in the most significant
finding in the TNFSF/TNFRSF area: the application of TNF
inhibitors in the treatment of chronic inflammatory disorders.
Given the strong pro-inflammatory effect of TNF, medications
that limit its activity are therapeutically beneficial by reducing
inflammation associated with a variety of autoimmune diseases,
such as inflammatory bowel disease (IBD) and rheumatoid
arthritis (RA). (Croft et al., 2013) Therefore, the other TNFSF/
TNFRSF family members are being thoroughly investigated for
their therapeutic potential. On the other hand, studies have
shown that microenvironment inflammation caused by obesity
or other risk factors is a central and reversible mechanism that
leads to increased cancer risk and progression. (Iyengar et al.,
2016) Given the anti-inflammatory properties of TNFSF, its
therapeutic potential against bone tumors should not be
overlooked. The present paper covers our present state of
knowledge on the TNF ligand and the receptor superfamilies
in terms of their activity, structures and roles in cancer and
inflammatory disorders. Additionally, we focus on areas where
innovative novel treatment strategies may be possible. (Dostert
et al., 2019)

1.2 TNF and Metabolism
TNF-, cachectin and lymphotoxin were previously known as
tumor necrosis factor (TNF) before their cloning and
purification in 1984 and 1985, respectively. (Aggarwal et al.,
2012) Numerous studies have established a link between
infection and irregular lipid and carbohydrate metabolism
during the production and secretion of TNF by activated
lymphocytes and macrophages, as well as the influence of
TNF on lipid metabolism. In this view, obesity, insulin
resistance (IR), and metabolic disorders are interconnected.
(Ciaraldi et al., 1998; Porter et al., 2002; Plomgaard et al.,
2005; Cawthorn and Sethi, 2008; Gluvic et al., 2017; Sethi and
Hotamisligil, 2021) In 1993, obesity-related IR and type 2 diabetes
were first associated with increased TNF production in adipose
tissue, spurring several physiological, clinical, and mechanistic
research to better understand TNF’s metabolic biology and its
relationship to the immune system response. (Cawthorn and
Sethi, 2008; Aggarwal et al., 2012) There were mixed findings
from anti-TNF clinical trials in obesity-associated Type 2
Diabetic Mellitus (T2DM), while investigations in patients
with similar inflammatory disorders showed that anti-TNF
therapy could reduce the incidence of diabetes. (Hotamisligil,
2017a) Crucial metabolic genes and insulin signaling crosstalk
between IRS1 serine kinases like IKKs and JNKs have been
identified as molecular mediators. (Sakurai et al., 2003) It is

essential for multicellular organisms to operate properly that their
immunological and metabolic responses are tightly coordinated;
when mediated improperly, they can cause widespread damage
and may contribute to cancer development (Figure 2). Thereby,
this paper will address this interaction using TNF as a
representative example. (Dostert et al., 2019)

TNF-α, alternatively referred to as TNF superfamily member 2
(TNFSF2) or just TNF, is one of the multifunctional cytokines
with immunological roles that are well-established in adaptive
and innate immunity, as well as its role in the immune cells’
normal physiological functions, where its actions and products
are both spatially and temporally limited. On the other hand,
TNF is associated with detrimental inflammatory disorders
including sepsis associated with infection and chronic
autoimmune disorders. (Tsiavou et al., 2004) TNF has also
become known as an adipokine in recent decades, following
the coincidental discovery of its increased synthesis in adipose
tissue in individuals suffering from obesity, leading to a
recognition of the inflammatory nature of obesity and
accompanying metabolic disorders. These findings inspire a
resurgence in energy metabolism research and the creation of
the field of ‘immunometabolism’. (Dostert et al., 2019; Palsson-
McDermott and O’Neill, 2020).

The goal of immunometabolism is to elucidate the metabolic
reprogramming of non-immune cells by immune-derived signals
and the metabolic programs that underpin immune cell function,
which contribute to the understanding of immunometabolic and
metabolic homeostasis in disease or health. (Sethi and
Hotamisligil, 2021)

Metabolic homeostasis in health and disease is mainly
conserved, while in this context, TNF’s metabolic activities
and its impact are exceedingly high. The Drosophila form of
diabetes, for instance, can be prevented by inhibiting TNF
activity. (Padmanabha and Baker, 2014; Agrawal et al., 2016;
Hotamisligil, 2017b; Mattila and Hietakangas, 2017) Meanwhile,
adipose tissue inflammation and TNF were also known as a basic
framework in the metainflammatory character of obesity and its
accompanying diseases. (Fève and Bastard, 2009; Tack et al.,
2012; Donath, 2014; Hotamisligil, 2017a) Associated with obesity,
Non-alcoholic fatty liver disease (NAFLD) including NASH,
hepatosteatosis as well as cirrhosis, is also being linked to TNF
pathophysiology, according to recent studies. The progression of
(NAFLD) to hepatocellular carcinoma and end-stage liver disease
is related to higher TNF expression and activity in the final stages
of the illness. (Crespo et al., 2001; Kugelmas et al., 2003; Wandrer
et al., 2020) Hepatic TNF activity has been identified
mechanistically in increasing NASH development in rodent
studies. In contrast, rodent models of NAFLD that lack TNF
activity, insulin sensitivity, and liver steatosis and fibrosis are less
prominent. (Henao-Mejia et al., 2012) Furthermore, patients
suffering from NAFLD with TNF genotype polymorphisms are
more likely to develop colorectal liver metastases. (Divella et al.,
2019) In a preclinical model of NAFLD, additionally, it has been
demonstrated that a new anti-human-TNFR1 antibody reduces
hepatocellular damage, hepatic steatosis and fibrosis. (Tomita
et al., 2006; Bluemel et al., 2020; Wandrer et al., 2020) Also, in
clinical studies, treatment with TNF inhibitors has been shown to
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benefit hepatic tissue in patients suffering from RA and NAFLD.
(Tang et al., 2020; Verhoeven et al., 2020) Therefore, in this paper,
we will discuss the effects of TNF on bone tumors from the
perspective of metabolic homeostasis.

1.3 TNF in Bone Metabolism and Disorders
As an essential member of the host immune system, TNF has
been linked closely to infections or autoimmune disorders. In
recent decades, however, a more comprehensive understanding
of TNF as a modulator and regulator of tissue homeostasis,
angiogenesis, and pathogenesis has been revealed. Cells
including activated macrophages, T lymphocytes, and natural
killer cells (NKs) that secrete TNF are distributed throughout the
body via blood circulation, which includes the musculoskeletal
system. (Josephs et al., 2018) TNF has long been known to
mediate bone metabolism via promoting osteoclast formation
and inhibiting osteoblast activity. In 2007, a study led by C
Sandler et al. find that in patients suffering from RA, TNF
production in the synovial tissue showed a significant increase,
which may indicate a potential connection between TNF and
bone autoimmune disorders. (Sandler et al., 2007) Moreover, in
RA patients, blockade of TNF via synovial injection of specific
monoclonal antibody resulted in the significantly decreased
expression of IL-1 and other proinflammatory cytokines,
which suggests that TNF could be a pivotal mediator in the
production of various proinflammatory cytokines. (Tseng et al.,
2018) On the other hand, inflammationmediators including TNF
have been implicated in the angiogenesis of tumors, which could
result in tumor progression and metastasis. (Murdoch et al.,
2008)

1.4 Current Treatment Modalities Available
for the Treatment of Bone Tumors
Primary bone tumors in adults are rare, making it difficult to
investigate the most effective treatments for patients. The
majority of specialists agree that persons with primary bone
malignancies, particularly those with advanced or recurrent
cancers, may want to explore joining a clinical trial
investigating new approaches to treat their cancer. Numerous
clinical studies are being conducted to treat various forms of bone
tumors. The latest advances in current treatment modalities used
to treat bone tumors are briefly discussed below.

1.4.1 Chemotherapy
Some research investigations including a study led by Wagner
et al. are looking into novel chemotherapy medications while also
exploring fiction and possibly better ways to administer the
currently available drugs. (Wagner et al., 2016) For example,
surgeons are investigating whether mixing zoledronic acid
(Zometa), a bisphosphonate, with the bone cement to fill the
region following the removal of a giant cell tumor decreases the
probability of cancer recurrence. (Ouyang et al., 2018)

Another area of focus is the long-term effects of chemotherapy
on patients. Some bone cancer can occur in people as young as
20 years old. Doctors are learning more about how the

chemotherapy medications used to treat them may produce
long-term negative effects as cancer survivors age.

1.4.2 Targeted Drug Therapy
Unfortunately, chemotherapy is not very effective in treating
certain types of bone tumors. Unlike traditional chemotherapy
drugs, targeted treatment medications are emerging as a new
option for bone tumor treatment and function differently from
chemotherapy. They are looking for specific changes in genes and
proteins in cancer cells to target.

Many genomic investigations about bone cancer cells have
been carried out. Researchers have learned that modifications of
these genes are critical to tumor development. Afterward, gene-
targeted medications for bone cancer have been developed, tested,
and used by doctors. Researchers believe these medications could
alter the tumor’s propensity to grow and spread, allowing for new
and improved treatment options. For example, targeted
medications are now available for various gene and protein
alterations that have been discovered in chordoma cells.
(Frezza et al., 2019) Some of these targeted medications are
currently being considered for clinical use to treat advanced
chordoma. Advanced chondrosarcomas are also now being
treated with targeted drugs studied and used in clinical trials.
(Lejeune et al., 1998; Wittrant et al., 2004; Kulbe et al., 2005; Croft
et al., 2013)

FIGURE 1 | A graphical representation of the TNF-alpha signaling
pathway.
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1.4.3 Immunotherapy
Immunotherapy functions by assisting the immune system in
recognizing and neutralizing tumor cells. Immunotherapy
medications are available in a variety of forms. The efficacy of
certain drugs in treating specific types of bone tumors is now
being scrutinized in clinical trials.

For example, cancer cells might occasionally exhibit more
significant gene and protein expression alterations than normal
cells. This characteristic feature distinguishes them from regular
cells and makes them prone to be detected by the immune system

and more susceptible to immunotherapy. Therefore,
immunotherapy medications known as checkpoint inhibitors
can be beneficial when it occurs. For instance, tumors with
high microsatellite instability (MSI-H), dMMR abnormalities,
or high tumor mutational load (TMB-H) are sensitive to
Programmed Death 1 (PD-1)blockade. (Andre et al., 2020)
Unfortunately, only a small proportion of bone tumors have
these mutations. And researchers are investigating a variety of
other types of immunotherapy for use in the treatment of bone
malignancies.

FIGURE 2 | A pictographic representation depicting the roles of TNF and TNFR in metabolism and IR.

FIGURE 3 | A pictorial description of the relationship between TNFs and TNFRs and their roles in osteosarcoma.
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FIGURE 4 | A pictorial description of the relationship between TNFs and TNFRs and their roles in Chondrosarcoma.

FIGURE 5 | A pictorial description of the relationship between TNFs and TNFRs and their roles in Ewing’s sarcoma.
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1.4.4 Drugs That Affect Bone Cells
Some bone malignancies respond well to drugs that target bone cells
(osteoblasts and osteoclasts). Some primary bone malignancies may
benefit from these medications, which are more commonly used to
treat tumors that have progressed to the bones.

For example, denosumab (Xgeva) is an osteoclast-targeting
RANKL inhibitor applied in treating bone giant cell tumors. (Li
et al., 2020)

Zoledronic acid (Zometa) is a bisphosphonate that affects osteoclasts
differently. Researchers are testing this drug’s effectiveness in treating
various bone malignancies, such as giant cell tumors.

1.4.5 Radiation Therapy
X-rays are used in most cancer treatments, and they are the most
commonly used type of radiation therapy. Large amounts of
radiation are required to cure most forms of bone tumors since
they can spread to surrounding locations and cause harmful
effects in the process. However, it has been reported that one of
the side effects of radiotherapy is second cancers, which may
restrict the use of radiotherapy. (Citrin, 2017) As a result,
researchers are now looking into alternative forms of radiation
that may be either safer or more effective.

For example, proton beam radiation uses protons (atom
components) with the ability to radiate in a limited range,
thereby reducing damage to normal tissue surrounding the
tumor. Proton radiation is widely used to treat bone cancers
located near sensitive organs such as the central and peripheral
nervous systems. Meanwhile, it can be used against different types
of tumors and may be increasingly effective in treating bone
cancers. Currently, the United States already has a small number
of proton beam treatment centers.

Carbon ion radiation, another emerging radiation therapy,
employs larger particles that may cause more harm to the tumor,
this may help treat some bone tumors with little response to
conventional radiotherapy, but additional research is required.
(Rajani and Gibbs, 2012)

2 CONNECTIONS BETWEEN BONE
TUMORS AND TNFRSF/TNF-Α

2.1 Osteosarcoma and TNFRSF/TNF-α
The most prevalent type of bone malignancy is osteosarcoma
(OS), accounting for 30 to 80 percent of primary skeletal sarcoma

cases. OS is more prevalent among children, teenagers, and young
adults between the ages of 10–30. Compared to women, men are
more susceptible to this disease. Besides, it tends to occur in
cylindrical long bones, such as the knee joint (nearly a half of all
findings) and the humerus (the other half). And the tibia, femur
and humerus become the most susceptible bones. Only a small
percentage of tumors are seen in the shoulder blade, pelvis, or
skull. (Enneking et al., 1980;Meyers and Gorlick, 1997; Savitskaya
et al., 2012; Fidler et al., 2015; Taran et al., 2017)

Metastasis to the lymph nodes and lungs often occurs in the
early stage of the tumor. Upon diagnosis, around 10–20% of OS
patients had metastatic malignancy. The lung is the most familiar
location of metastasis, whereas bone and soft tissue metastasis
occur less frequently. The occurrence of metastases at diagnosis is
a substantial predictive factor for overall survival, as patients
without metastasis at diagnosis had a 5-years overall survival of
70%, while in patients with metastasis, it was merely 32%. Upon
diagnosis, 20% of patients in developing nations had metastatic
lesions, twice that of developed countries. (Kempf-Bielack et al.,
2005) And recently, researchers have found that TNFSR and
ligands can influence tumor growth, metastatic potential and
other prognostic factors, shedding new light on the treatment
of OS.

Cytokines and growth factors are detectable both in the
supportive stroma and the tumor regions, characterizing the
inflammatory microenvironment of malignancies. Metastasis
may be facilitated by the involvement of these substances in
tumor growth and progression. Therefore, the functional
polymorphisms of inflammatory genes may be linked to
cancer susceptibility and severity. Given that, in many cases of
inflammation, TNF-α plays a central role. OS patients may have
gene polymorphisms in genes that encode TNF proteins or TNF
receptors, which could play a critical role in their disease, and the
effect may be bimodal. (Balkwill, 2002; Oliveira et al., 2007)
Therefore, it is possible that via controlling TNF-α, the metastatic
potential of OS might be limited.

Kotz et al. (Holzer et al., 2003) investigated serum levels of
TNF-β and soluble TNF receptors in pediatric cases having
primary bone tumors that are highly malignant and found
that TNF-β and soluble TNF receptor levels were significantly
lower in patients with OS than those with Ewing’s sarcoma.
Moreover, it was found that in patients with advanced OS, the
higher the TNF-β levels, the worse the response to neoadjuvant
chemotherapy tends to be. It appears that both TNF-β and soluble

TABLE 1 | Summary of clinical trials targeting members of TNF(R)SF. UTI: urinary tract infection; URTI: upper respiratory tract infection.

Drug Target Mechanism Phase of
Clinical
Trials

Treatment Emergent
Adverse Effect

References

Atacicept APRIL and
BAFF

Recombinant fusion protein Phase IIb Injection site reactions; UTIs; URTIs; Diarrhea JT Merrill et al. (Merrill et al.,
2018)

APX005M
(sotigalimab)

CD40 Humanized monoclonal
antibody

Phase Ib Lymphocyte count decrease; Anemia; Neutrophil
count decrease

MH O’Hara et al. (O’Hara et al.,
2021)

MED16469 OX40 Humanized monoclonal
antiboyd

Phase Ib Lymphopenia; Fever; Fatigue R Duhen et al. (Duhen et al.,
2021)

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9076296

Zhou et al. Bone Tumor Metabolism and TNFRSF

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


TNF receptor levels are useful diagnostic markers for
distinguishing Ewing sarcoma and advanced OS in children
and predicting patient’s drug responsiveness.

Mori et al. (Mori et al., 2014) demonstrated that TNF-α
released by host macrophages serves to keep OS cells
undifferentiated and is needed for tumor growth. TNF-
deficient animals with AX cells, a transplantable mouse OS
model created on the basis of the AX cell line and
pharmacologically suppressed TNF, were found to inhibit
tumor development and promote osteoblast formation in vivo.
The IL-1 therapy also reduced osteoclast formation in AX cells
and prevented tumor development in IL-1/IL-1 double deficient
mice. TNF and IL-1 suppressed osteoblast development in AX
cells through activating ERK. Exogenous inflammatory cytokines
are necessary for carcinogenesis and undifferentiation in
mutation-induced OS. These results point to TNFα/IL-1 and
ERK as possible OS targets.

Additionally, it has been found that TNF-α enhances cancer
permeability and metastasis in malignant tumors. Malik et al.
(Malik et al., 1990) observed that when ovary cells of Chinese
hamster were transfected with the human TNF gene alone, they
had a significantly increased potential to infiltrate peritoneal
surfaces and generate lung and hepatic metastases in nude
mice. Orosz et al. (Orosz et al., 1993) observed that
intraperitoneal injection of a single recombinant TNF 5 hours
prior to intravenous inoculation of fibrosarcoma cells
significantly increased the number of lung metastasis.
Kawashima et al. (Kawashima et al., 1994) found that when a
low metastatic OS cell line was treated with TNF-α prior to
injection, metastasis in nude mice lungs rose considerably,
showing a dose-dependent manner.

TNF-α, like many other cytokines, is context-dependent in its
activity. TNF-α is antiangiogenic and has a potent anticancer
impact when administrated locally. (Lejeune et al., 1998) While
chronically and endogenously generated TNF-α may have a role
in epithelial malignancy progression, large dosage of exogenous
TNF-α exerts antitumor functions. Chronically generated
endogenous TNF-α in the microenvironment of tumors has
been shown to promote tumor invasion and progression by
activating other chemokines or cytokines implicated in cancer
development. And TNF produced by malignant tumor cells
significantly impacts tumor growth and metastasis.
Additionally, when exposed to a variety of carcinogens, TNF-
α/TNF-Rp55-deficient animals generated fewer tumors and
metastasis than WT mice. (Kitakata et al., 2002; Tomita et al.,
2004) TNF-deficient mice are resistant to tumorigenesis. (Moore
et al., 1999) As a result, the TNF-α/TNF-Rp55 axis may
contribute to carcinogenesis, progression, and metastasis. Anti-
TNF-therapies that inhibit expression levels of endogenous TNF-
α/TNF receptors may have a beneficial effect on cancer
prevention and therapy (Figure 3).

Recent evidence suggests that TNF-α can regulate CXCR4,
which is crucial for cancer cells to migrate to certain
metastatic areas, and the Rho/Rho-kinase pathway, which
affects several cellular functions, such as migration, cell
contraction, and proliferation. (Müller et al., 2001) Studies
on infliximab’s pharmacological mechanism showed that

infliximab’s effect on MDA-231 cell and 143B cell are
through inhibiting CXCR4 and Rho/Rho-kinase pathway
via inhibition of TNF-α. (Cho et al., 2009; Matoba et al.,
2010; Hamaguchi et al., 2011) This was previously thought to
be among the various mechanisms underlying the effect of
metastasis suppression. Another research led by Kato et al.
(Kato et al., 2015) demonstrated significant new results about
the downregulation of Rho, Rho-kinase, and CXCR4 by
infliximab in an OS cell line. And Kato et al. (Kato et al.,
2015) established that anti-TNF-α treatment with infliximab
reduces OS lung metastases. This discovery adds to our
understanding of TNF-α signaling in the background of OS
and also serves as a criterion for the use of TNF-α inhibitors in
OS-associated lung metastasis treatment. In 2017, Robl et al.
(Robl et al., 2017) evaluated the effects of targeted TNF-α on
OS development in the early and late phases. They
demonstrated that F8-TNF inhibited the creation of early
OS micrometastases but had no effect on the progression
of pulmonary metastases. Additionally, they established that
the comprehensive effectiveness of F8-TNF therapy was
essentially unrelated to the administration route (i.a. versus
i. v.). Furthermore, previous investigations have identified
extra domain A (EDA) in primary human OS tissues, making
it a potential target for future OS treatment methods. (Robl
et al., 2017)

2.2 Chondrosarcoma and TNFRSF/TNF-α
Chondrosarcomas are malignant cartilage-forming tumors with a
high proclivity for local invasion and distant metastasis. They
account for over 20% of all primary malignant bone tumors and
mostly affect individuals in their third to sixth decades of life.
Regrettably, the molecular mechanisms underlying the
development and proliferation of chondrosarcoma remain
unknown. It is acknowledged that the invasion of bone by
tumor cells generates an “inflammatory-like” environment that
allows tumor cells and their environment to communicate with
one another. Following that, the bone tumor microenvironment
is defined as a refuge for the formation of drug resistance patterns
and may, in part, regulate tumor progression. (David et al., 2011)
Several studies have suggested a possible link between TNF-α and
integrins, the central binding molecules in mammalian cells that
are related to cancer cell metastasis. (Gao et al., 2002; Curnis et al.,
2004; Bieler et al., 2007; Lee et al., 2019) However, the effects of
TNF-α on chondrosarcoma cell motility and integrin expression
remain mostly unclear.

Hou et al. (Hou et al., 2011) discovered that TNF-α enhanced
αvβ3 integrin migration and expression in human
chondrosarcoma cells. TNF-α-induced activation of the
mitogen-activated protein kinase (MEK), extracellular signal-
regulating kinase (ERK), and nuclear factor-κB (NF-κB)
pathways were demonstrated, and TNF-α-induced integrin
expression and migration activity were inhibited by a specific
inhibitor and mutant of the MEK, ERK, and NF-κB cascades
respectively (Figure 4). Additionally, one earlier study reveals
that TNF-α promotes chondrosarcoma cell migration by boosting
αvβ3 integrin expression via the MEK/ERK/NF-κB signal
transduction pathway. (Hou et al., 2011)
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2.3 Ewing’s Sarcoma and TNFRSF/TNF-α
Ewing’s sarcoma is a malignant tumor that typically originates in
the bone. It is most prevalent in children and young people,
frequently manifesting throughout adolescence. Ewing’s sarcoma
can grow in any bone, and it is most commonly found in long
bones. Pelvic bones are frequently impacted as well. It can spread
to other body regions, including the lungs, bone marrow, and soft
tissues. And the prognosis of children suffering from distant
metastasis tends to be less satisfying despite aggressive treatment.
Compared to different types of cancer, malignant bone tumors
such as Ewing’s sarcoma are uncommon. But recently, clinicians
expanded the definition of the disease to include four distinct
forms of cancer, dubbed the Ewing’s Family of Tumors (EFT).
This includes Ewing tumor of bone (ETB), primitive
neuroectodermal tumors (PNET), extraosseous Ewing tumor
(EOE), and Askin tumors, which are PNETs of the chest wall.

The resistance to apoptosis and loss of E-cadherin is connected
with epithelial-to-mesenchymal transition in epithelial
carcinomas. Previous studies demonstrated that ML327, a new
small-molecule medication, can reverse the transition in
epithelial and neural crest-derived malignancies from
epithelium to mesenchyme (Figure 5). In 2017, Rellinger et al.
(Rellinger et al., 2017) investigated the effects of ML327 on
mesenchymal-derived Ewing sarcoma cells, and the result
showed that ML327 induces growth arrest and sensitizes cells
to TNF-related apoptotic ligands. In many Ewing Sarcoma cell
lines, ML327 altered the protein expression, including increased
E-cadherin production and reduced vimentin, which is consistent
with a partial mesenchymal-to-epithelial transition (SK-N-MC,
TC71, and ES-5838). The induction of epithelial characteristics
was shown to be associated with apoptosis, as determined by
PARP and caspase three cleavage via immunoblotting by
Rellinger et al. (Rübe et al., 2003; Rajani and Gibbs, 2012;
Rellinger et al., 2017)

2.4 Targeting TNFs and TNFRs in Cancer
Members of TNFSF have long been selected as targets for anti-
tumor treatment in various clinical trials. Numerous studies have
established that inhibiting a proliferation-inducing ligand
(APRIL, also known as TNFSF13) or B-cell activating factor
(BAFF, also known as BLyS, TNFSF13B) may be effective in
cancer treatment, as both molecules are well-known to exert pro-
survival and differentiation signaling for B cells and may directly
contribute to the establishment of B cell malignancies. In 2007,
Tecchio et al. (Tecchio et al., 2007) observed elevated levels of
BAFF in patients with B cell malignancies, including Hodgkin’s
lymphoma. Several tumor cells have also been shown to exhibit
the TNF superfamily receptors TACI (encoded by TNFRSF13B
gene) and BCMA (encoded by TNFRSF17 gene), making them
susceptible to APRIL or BAFF growth signals. CD40 (TNFRSF5),
originally identified as receptors delivering contact-dependent T
helper signals to B-cells, has also been identified in autoimmunity
and inflammation in conditions including RA, systemic lupus
erythematosus (SLE), and multiple sclerosis. (Law and Grewal,
2009) Since the microenvironment inflammation provides a
possibility for tumor genesis and development, targeting CD40
could be effective in cancer treatment. Similarly, other members

of TNF(R)SF including OX40 (TNFSF4), 4-1BB (encoded by
TNFSF9), and signaling pathways concerning TNF(R)SF are also
readily candidates for clinical trials, which will be discussed
further in this section. (Rennert et al., 2000; Chiu et al., 2007;
Guadagnoli et al., 2011)

Currently, targeting APRIL and/or BAFF could be achieved
via either recombinant fusion proteins (Atacicept) or humanized
monoclonal antibodies (belimumab and tabalumab) (Table 1). In
Phase I clinical trial of atacicept in patients suffering from
refractory or relapsed non-Hodgkin’s lymphoma,
Waldenström’s macroglobulinemia, or multiple myeloma, no
safety concerns were noted, and possible therapeutic benefits
against tumor progression were observed. (Ansell et al., 2008;
Rossi et al., 2009; Rossi, 2011) In another phase II clinical trial of
atacicept in patients with SLE, atacicept showed evidence of
efficacy, particularly in patients with high disease activity or
serologically active disease, along with an acceptable safety
profile. (Merrill et al., 2018) A Phase II trial of belimumab in
the treatment of Waldenström’s macroglobulinemia also found
encouraging results and is actively recruiting volunteers, as are
Phase II/III trials of tabalumab in the treatment of multiple
myeloma. Additionally, specific APRIL antagonists are being
investigated to inhibit the survival of B cell lymphoma.
(Guadagnoli et al., 2011)

Targeting CD40 in cancer, on the other hand, is to directly
enhance the functions of macrophages, dendritic cells, and B cells
and indirectly control T cells’ activity. The first attempt to target
CD40 was as early as 20 years ago when Vonderheide et al. used
recombinant CD40 ligand (rhuCD40L) in a phase I clinical trial
for patients with advanced solid tumors or intermediate or high-
grade non-Hodgkin’s lymphoma, and they have observed
satisfactory antitumor activity and long-term remission.
(Vonderheide et al., 2001) Subsequent approaches targeting
CD40 are largely based on modification and alteration of
monoclonal antibodies, including CDX-1140, ADC-1013,
APX005M, and such, but overall, tumor response to single-
agent monoclonal antibody remained minimal. (Vonderheide,
2020)

The third way of targeting TNFSF components in a clinical
setting involves tinkering with OX40 and its ligand. OX40 signals
have been observed to significantly increase the activity of CD4+

and CD8+ T lymphocytes and NK cells. (Croft, 2009) In a phase
Ib clinical trial using murine anti-human OX40 agonist antibody
in 17 patients suffering from locally advanced head and neck
squamous cell carcinoma conducted in 2021, the result showed
that anti-OX40 prior to surgery is safe and can increase the level
of activated CD4+ and CD8+ T cells in circulation and tumor.
(Duhen et al., 2021)

Another strategy is to target 4-1BB and its ligand, since
agonists of 4-1BB or forced expression of 4-1BBL on tumor
cells or antigen-presenting cells have demonstrated significant
anticancer effects in numerous murine cancer models, boosting
CD4+ and CD8+ T cell and NK cell activity. Other directions for
the clinical targeting of TNF receptors and TNF ligands could
involve targeting FN14 signaling and TWEAK, TRAILR–TRAIL,
CD30, and its ligand CD30L, GITR and its ligand, CD70, and
lastly, CD27. (Croft et al., 2013)
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Although several clinical trials aim to develop therapeutic
modalities involving the clinical targeting of TNF superfamily
members in a wide variety of cancers, there are no known clinical
trials or successful applications of TNF and TNFR inhibitors for
treating bone tumors, but this might change in the near future.
(Croft et al., 2013) A study by Kato et al. (Kato et al., 2015) shows
that TNF inhibitor therapy reduces the incidence of lung
metastasis. On the other hand, there are some roadblocks to
the use of TNF superfamily inhibitors for the clinical targeting of
bone tumors because a study led by Greene et al. (Greene et al.,
2016) showed that the long-term use of TNF and TNFR
inhibitors can lead to the initiation of OS.

3 CONCLUSION

TNF’s role as a metabolic messenger has yielded a wealth of
information that could be valuable in future immunometabolic
research and its integration into therapeutic and diagnostic
applications. It is important to note that the effects of TNF
and other inflammatory mediators are extremely dependent on
time, space, dose, and the combination of many elements.
Immunometabolic targeting efforts in the future should cover
regions of local production, duration of action, redundancy, and
most critically, patient stratification.

Current treatment methods concerning primary malignant
bone tumors essentially include surgery, radiation therapy,
and chemotherapy. While immunotherapy is an option, the
application remains limited given the stage,
immunohistochemistry nature of the tumor, and the
affordability of the patients. Assimilation of TNFRSF into
the study of bone tumors, therefore, provides a new
perspective for immunotherapy options. Clinical trials in
the treatment of autoimmune disorders and cancer mainly
target APRIL, BAFF, TACI, CD40, OX40, and 4-1BB and their
respective signaling pathways. While many have seen
satisfactory treatment effects, it is more important to note

that most clinical trials provide a safe pharmacological profile,
which could guarantee further studies in this field.
Furthermore, when developing intervention techniques,
particularly for chronic illnesses, it may be preferable to
address disease in its earliest stages, when it is more likely
to reverse tissue remodeling. Most significantly, metabolic
inflammation control, such as treatment with anti-TNF,
should be examined as part of a multidisciplinary strategy.

Overall, the role of TNF in the development and progression
of bone tumors is very complicated, with opposing effects on
tumor growth depending on whether levels of TNF are high or
low. Immunotherapies and other anti-cancer treatments could
benefit from exploiting this equilibrium to promote anti-tumor
immune responses and increase their effectiveness.
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