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Abstract

Opening of the mitochondrial permeability transition pore (mPTP) is involved in

various cellular processes including apoptosis induction. Two distinct states of

mPTP opening have been identified allowing the transfer of molecules with a

molecular weight ,1500 Da or ,300 Da. The latter state is considered to be

reversible and suggested to play a role in normal cell physiology. Here we present a

strategy combining live-cell imaging and computer-assisted image processing

allowing spatial visualization and quantitative analysis of reversible mPTP openings

(‘‘DY flickering’’) in primary mouse myotubes. The latter were stained with the

photosensitive cation TMRM, which partitions between the cytosol and

mitochondrial matrix as a function of mitochondrial membrane potential (DY).

Controlled illumination of TMRM-stained primary mouse myotubes induced DY

flickering in particular parts of the cell (‘‘flickering domains’’). A novel quantitative

automated analysis was developed and validated to detect and quantify the

frequency, size, and location of individual DY flickering events in myotubes.
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Introduction

The mitochondrial permeability transition pore (mPTP) is a non-selective

channel located in the mitochondrial inner membrane (MIM) and its opening

(‘‘permeability transition’’) was first described 40 years ago [1–4]. In the open

state, the mPTP allows ions and solutes up to a size of 1500 Da to passively diffuse

over the MIM, leading to a rapid collapse of the highly inside-negative electrical

potential (DY) across this membrane. The probability of mPTP opening is

increased by elevated calcium concentrations in the mitochondrial matrix

([Ca2+]m), but other factors such as reactive oxygen species (ROS), pH, and DY

also regulate this [5]. Permeability transition is involved in apoptotic and necrotic

cell death, for instance during ischemia-reperfusion and muscular dystrophies due

to collagen VI or laminin-2 deficiencies [6–8].

Currently, the molecular identity of the mPTP remains obscure. Although the

adenine nucleotide translocase (ANT) and voltage-dependent anion channel

(VDAC) were suggested as potential mPTP structural proteins, genetic studies

disproved such a function for VDAC and revealed that ANT acts as a regulator of

permeability transition [9–11]. Similarly, the mitochondrial phosphate carrier

(PiC) was proposed as a mPTP structural protein although decreasing PiC

expression up to 80% by RNA interference strategies did not affect mPTP opening

[12]. Recent studies suggest that the mitochondrial FoF1-ATP synthase constitutes

a structural component of the mPTP [13, 14]. A well-characterized mPTP

modulator is the mitochondrial matrix protein Cyclophilin D (CypD), which

increases the probability of Ca2+-dependent mPTP opening. The immunosup-

pressant cyclosporin A (CsA) is known to inhibit mPTP opening via CypD and

thereby desensitizing the mPTP to Ca2+-stimulated opening [15]. This property

makes CsA a widely used experimental tool to demonstrate involvement of mPTP

opening in mitochondria-associated cellular phenomena.

Interestingly, during opening the mPTP can assume either a low- or a high-

conductance state. In the low-conductance state the mPTP has a MW cut-off

below 300 Da and thus only allows passage of small ions including H+ and Ca2+.

Additionally, when in low-conductance mode, the mPTP opens transiently

(‘‘flickering’’) and mitochondrial swelling is absent [16, 17]. In the high-

conductance state the mPTP displays a much higher cut-off (below 1500 Da) and

opening is permanent, resulting in sustained DY depolarization, mitochondrial

swelling/rupture and cell death [16, 17].

Various methods have been described to study mPTP opening. For instance,

permeability transition can be monitored in isolated mitochondria by quantifying

the extent of mitochondrial swelling (measuring absorbance), mitochondrial Ca2+

retention capacity (CRC) or DY depolarization [15, 18, 19]. Although mito-

chondria are highly accessible by the above strategies, a major limitation of these

techniques is the lack of a cellular context. This means that cytosolic factors that

potentially regulate mPTP opening are absent. Moreover, isolation of

mitochondria from tissues and cells significantly alters their structure, electrical

connectivity and function [20]. In intact cells, permeability transition can be
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monitored using cationic fluorescent probes such as methyl (TMRM) or ethyl

(TMRE) esters of tetramethylrhodamine, which accumulate in the mitochondrial

matrix in a DY-dependent manner [21–24].

Although mPTP-dependent flickering of DY has been observed in studies of

isolated mitochondria and intact cells [25–28], to the best of our knowledge no

automated quantitative method for their combined spatial and temporal analysis

exists. This precludes unbiased statistical comparison of reversible mPTP opening

with respect to their spatiotemporal properties under varying experimental

conditions. Here we present an integrated experimental and computational

approach for automatic detection, spatial visualization and frequency analysis of

DY depolarization and repolarization in primary mouse myotubes. Both the

number of DY depolarizations/repolarizations were dramatically reduced by the

mPTP inhibitor CsA, strongly suggesting that they reflect reversible mPTP

opening. In contrast, inhibition of the FoF1-ATP synthase by oligomycin A

increased the number of DY depolarizations/repolarizations. Both inhibitors

reduced the spatial dimensions of the DY depolarization/repolarization region,

suggesting that they affect the electrical connectivity of (the) mitochondrial

(sub)network(s).

Materials and Methods

Animals and housing conditions

Mice were bred with a mixed 129/sv x C57BL/6 background. All animals received

a standard rodent diet ad libitum and were maintained at 21.0 C̊ and 60%

humidity, and with a light/dark (12 h/12 h) cycle. All breeding and experiments

were approved by the Animal Experimentation Committee at the Radboud

University Medical Center, in accordance with Dutch laws and regulations

regarding animal experimentation.

Myofiber and primary myoblast isolation

Female mice (8–12 weeks) were sacrificed by decapitation and extensor digitorum

longus (EDL) muscles were dissected. Individual myofibers were isolated as

described in detail elsewhere [29]. EDL muscles were digested in 0.2% (w/v)

Collagenase type I (Sigma Chemical CO, St Louis, MO, USA) in high-glucose

(25 mM) Dulbecco’s Modified Eagle’s medium (DMEM-HG; Invitrogen HQ, San

Diego, CA, USA)+1% penicillin/streptomycin (p/s, PAA Laboratories, Cölbe,

Germany) for 1.5 hours. Using a heat-polished small-mouthed glass pipette, one-

hundred myofibers were transferred to a new petri dish containing DMEM-

HG+1% p/s. Then myofibers were washed and plated onto 6 wells-plates coated

with 106 diluted Matrigel (Matrigel Basement Membrane Matrix, BD Bioscience,

Bedford, MA, USA) and cultured with 6 ml DMEM-HG culture medium

supplemented with 30% (v/v) fetal bovine serum (FBS, PAA Laboratories), 10%

(v/v) horse serum (HS, PAA Laboratories), 1% (v/v) chick embryo extract (CEE,
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MP Biomedicals Europe, Illkirch, France), 10 ng/ml basic fibroblast growth factor

(bFGF; Invitrogen), and 1% (v/v) p/s (PAA Laboratories). After three days,

satellite cells grew out the myofibers, which were removed. Finally the satellite

cells were trypsinized and pre-plated for 10 min in uncoated 6 wells-plate. Non-

adherent satellite cells were transferred to a fresh Matrigel-coated 6 wells-plate,

cultured for one week, and then used for the experiments.

Primary myoblast cell culture

Coverslips (24 mm) were first coated with 20 mg/ml fibronectin (Roche

Diagnostics GmbH, Mannheim, Germany) for one hour and subsequently with

10 ml Matrigel to create a ‘‘Matrigel-spot’’ for the cells. To induce fusion, 5,000

primary mouse myoblasts were seeded onto the Matrigel-spot in 10 ml DMEM-

HG culture medium and after attachment (10 min) cultured with 3 ml DMEM-

HG differentiation medium supplemented with 2% HS and 1% p/s (both PAA

Laboratories) for 3 days at 37 C̊ (95% air, 5% CO2).

Microscopy imaging of TMRM-stained mouse myotubes

To visualize mitochondria and detect DY changes, myotubes were loaded with

30 nM tetramethylrhodamine methyl ester (TMRM, Invitrogen) in DMEM-HG

differentiation medium for exactly 25 minutes. Under these conditions TMRM

operated in non-quenching mode. Then cells were washed and transferred to a

HEPES-Tris (HT) medium (132 mM NaCl, 4.2 mM KCl, 1 mM CaCl2, 1 mM

MgCl2, 5.5 mM D-glucose and 10 mM HEPES, pH 7.4). The coverslips were

mounted in an incubation chamber and placed on the stage of an inverted

microscope (Axiovert 200 M, Carl Zeiss, Germany). For noise analysis, empty

coverslips were mounted on the microscope and HT-buffer containing different

concentrations of TMRM (0–80 nM) was used. TMRM was excited at 540 nm

using a monochromator (Polychrome IV, TILL Photonics, Gräfelfing, Germany)

and a Zeiss 406/1.3 NA Plan NeoFluar objective. Fluorescence light was directed

using a 560DRLP dichroic mirror (Omega Optical Inc, Brattleboro, VT, USA) and

a 565ALP emission filter (Omega Optical Inc.) onto a CoolSNAP HQ

monochrome CCD-camera (Roper Scientific, Vianen, The Netherlands). The

microscopy hardware was controlled using Metafluor 6.0 software (Universal

Imaging Corporation, Downingtown, PA, USA) and images were recorded every

2 seconds for a period of 20 minutes using a 300 ms image acquisition time.

Electron microscopy

5,000 mouse primary myoblasts were seeded onto the Matrigel-spot in 10 ml

DMEM-HG culture medium and after attachment (10 min) cultured with 3 ml

DMEM-HG differentiation medium for 3 days at 37 C̊ (95% air, 5% CO2). Then

myotubes were washed with PBS and fixed in 2% glutaraldehyde buffered with 0.1

M sodium cacodylate pH 7.4. After 1 hour of fixation the myotubes were post-

fixed in 1% osmium tetroxide in Palade’s buffer pH 7.4 with 1% potassium
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hexacyanoferrate (III)-trihydrate. After dehydration in ethanol and propylene

oxide, tubes were embedded in Epon. Semi-thin, 1 mm thick transverse sections

were stained with 1% toluidine blue. Ultrathin sections were stained with uranyl

acetate and lead citrate and examined in a JEOL TEM1010 transmission electron

microscope.

Data analysis

Automated image processing and analysis were carried out using Image Pro Plus

6.3 software (Media Cybernetics, Silver Spring, MD, USA). Additional data

processing, visualization and statistical analysis were performed using custom

scripts written in Matlab 6.1 (Mathworks, Natick, Massachusetts, U.S.A.). Unless

stated otherwise, data is presented as mean ¡ SD (standard deviation). The p-

values reported in the results section correspond either to a two-way ANOVA

(with two factors: manual vs. automated analysis and CsA treated vs. untreated)

or one way ANOVA (1 factor with three levels: untreated, CsA or OLI treated

cells). In the latter case, the ANOVA was followed by a Tukey post-hoc procedure.

Results

Photo-induced DY flickering in primary mouse myotubes

Current evidence supports a mechanism in which TMRM illumination stimulates

the cyclic photo-generation of mitochondrial singlet oxygen molecules (1O2),

which increase the probability of mPTP opening [28]. As a consequence, a cycle of

DY depolarization and repolarization is induced leading to cyclic mitochondrial

TMRM efflux and re-uptake (Fig. 1A). To monitor this cycle, primary myotubes

were stained with the fluorescent cation TMRM and visualized using an

epifluorescence video microscope (Fig. 1B). TMRM partitioning between the

cytosol and mitochondrial matrix primarily depends on the magnitude of the

electrical membrane potential (DY) across the mitochondrial inner membrane

(MIM). Fields of views (FOVs) were chosen in such a way that they mainly

contained myotubes to prevent interference from myoblasts. Myotubes are easily

identified because they contain multiple nuclei (Fig. 1B; indicated by ‘‘N’’),

whereas myoblasts do not. For each time lapse recording (‘‘image stack’’) 600

images were routinely acquired using an interval of 2 s and an illumination time

of 300 ms. The recorded images had a bit-depth of 12 and were converted to TIFF

format for subsequent visualization and processing. Visual inspection highlighted

the presence of localized TMRM intensity fluctuations (‘‘flickering’’; Movie S1),

which typically were initiated within 20 seconds after the start of recording (i.e.

after 10 images were acquired). The total integrated cellular and nuclear TMRM

signal both slowly decreased (Fig. 1C) to 75–80% with respect to their initial

TMRM signal. This suggests that part of the TMRM intensity is lost due to photo

bleaching. The fact that both the mitochondrial and nuclear TMRM intensity

decreased at a similar rate indicates that the TMRM ‘‘flickering’’ is fully reversible
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and not associated with permanent TMRM repartitioning (i.e. sustained DY

depolarization).

Visualization of DY flickering and its association with mPTP

opening

A typical depolarization (blue) and repolarization event (red) for a specific region

of interest (ROI) are shown in figure 1D. To better visualize the TMRM intensity

changes and minimize interference by TMRM photo bleaching, difference images

were calculated between each image (N) and its preceding image (N-1) in the

image stack. This yields a new image stack (‘‘DIF’’) in which DY depolarizations

and repolarizations appear as regions of dark and light pixels, respectively

(Fig. 1E). This allows graphical visualization of the average signal changes within a

ROI as a function of time (e.g. Fig. 1F). To demonstrate that these depolarization

and repolarization events arise from mPTP opening, a manual analysis was

Figure 1. Photo-induction of DY flickering in TMRM-stained primary mouse myotubes. (A) Proposed mechanism underlying DY flickering in TMRM-
stained cells [28]. Following TMRM staining (#1) and its accumulation in the mitochondrial matrix (#2) cells are illuminated leading to photo-induced
generation of singlet oxygen (1O2) within the mitochondrial matrix (#4). As a consequence opening of the mPTP is stimulated (#5) leading to DY
depolarization (#6) and TMRM efflux from the mitochondrial matrix (#7). The latter prevents photo-induced 1O2 generation in the matrix (#8), resulting in
mPTP closure (#9), DY repolarization mediated by action of the mitochondrial electron transport chain (ETC; #10) and subsequent DY normalization (#11)
after which the next depolarization/repolarization cycle can start. (B) Typical example of TMRM-stained myotubes. Nuclei are marked by ‘N’. The region of
interest (ROI) depicted in panel D is indicated by a rectangle. (C) Upper panel: Time dependence of the average cellular and nuclear TMRM fluorescence
intensity (N55 myotubes) during 20 min of recording. Lower panel: average cellular and nuclear TMRM fluorescence intensity after 20 min of recording
(N55 myotubes). (D) Typical time-frames illustrating the localized disappearance (pixels colored blue by thresholding) and reappearance (pixels colored red
by thresholding) of TMRM fluorescence intensity. (E) Difference (DIF) images calculated from the recorded images (see results for details) depicting cellular
regions displaying DY depolarization (black pixels) and DY repolarization (white pixels). (F) Time dependent signal changes in the DIF images for the ROI
marked in the first image. Numerals correspond to the images in panel E.

doi:10.1371/journal.pone.0114090.g001
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performed on DIF stacks recorded from control myotubes and myotubes treated

with the mPTP-inhibitor Cyclosporin A (CsA; 5 mM, 2 h) (Fig. 2). To allow

faithful event detection, an ROI of identical size was used and placed along the

whole myotube using the raw frames (see Fig. 2A left panel for a part of a typical

Figure 2. Manual analysis of DY flickering temporal properties. (A) A typical example of the position of
identical rectangular regions of interest (ROIs; dotted rectangles) along the myotube in the raw frame (left
panel) and DIF frame (right panel). The two black arrows indicate two ROIs detecting the same depolarization.
(B) Variation of signal intensity in the DIF frames of ,110 ROIs in one cell during 20 minutes. (C) Similar to
panel B but now for ,100 ROIs in 2 myotubes treated with the mitochondrial permeability transition pore
inhibitor cyclosporine A (CsA; 5 mM, 2 h).

doi:10.1371/journal.pone.0114090.g002
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myotube). ROI size was empirically chosen in such a way that it was large enough

to minimize the number of ROIs required, but small enough to still pick up low

magnitude intensity changes. Then these ROIs were used in the DIF stack

(Fig. 2A; right panel) for temporal intensity analysis of the complete myotube. In

figure 2B, traces of ,110 ROIs of one control myotube are shown. Clearly, many

sharp downward peaks (corresponding to DY depolarization) were observed in

control myotubes. Additionally, lower amplitude upward peaks (corresponding to

DY repolarization within the same ROI) were also observed. Visual inspection of

the DIF stack confirmed the ROI-dependent presence of DY depolarization (dark

pixels) and DY repolarization (light pixels). The same strategy with equal ROIs

was used on myotubes pre-treated with CsA. CsA pre-treatment greatly reduced

the occurrence of depolarization and repolarization events (Fig. 2C; ,100 ROIs of

two myotubes). This strongly suggests that the observed DY flickering arises from

reversible mPTP openings. Although quantitative, a major drawback of manual

ROI analysis is its time-consuming nature. Moreover, due to the size of the ROIs

and their (sometimes overlapping) positioning to cover the entire cell, some

events can be simultaneously detected within multiple ROIs (indicated by the

black arrows in Fig. 2A right panel), thereby over-estimating their number. To

address these issues we developed an automated analysis strategy.

Evaluation of the shot noise influence

To demonstrate that the changes in TMRM fluorescence intensity is a result of a

biological process (i.e. DY flickering) and not due to instrumental background

noise, the influence of shot noise was estimated using a protocol similar proposed

by Blinova et al. [30]. The fluorescence signal of TMRM solutions at different

concentrations (0 to 80 nM) was recorded using identical microscopic settings as

for the cells. The theoretical Poisson distribution and experimental distribution

were compared, as shown in Figure 3. At high TMRM concentration, the

observed noise deviated from the theoretical distribution, likely due to uneven

illumination across the FOV and temperatures effects. However, when using the

difference signal as calculated in our protocol for DY analysis (see above) the

noise distribution was normally distributed and displayed a limited spread across

the range of TMRM concentrations used. This indicates that the changes in

TMRM fluorescence intensity are a consequence of a biological process in the

myotubes and not a consequence of instrumental background noise.

An automated protocol for quantification of DY flickering

frequency and domain size

A flow scheme of the automated strategy is presented in Figure 4. The

experimental part (yellow) and image analysis part (blue) including the creation

of the DIF stack were already described above. For automated analysis we

manually defined a ROI that encompassed a single myotube. We aimed to design

an algorithm compatible with the spatial resolution (i.e. considering the smallest
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observable mitochondrial size) and quality (i.e. signal-to-noise ratio) of the

microscopy images. Figure 5A depicts a typical electron microscopy (EM) picture

of a mitochondrion in a mouse myotube. Quantification of mitochondrial

dimensions in multiple EM images yielded average values for mitochondrial area

(0.460 mm2), length (1.6 mm) and diameter (0.333 mm) (Fig. 5B, N531). A

reticular was used to calibrate the microscopy images and showed that these

dimensions are within the same range as the lateral (XY) dimensions (i.e. 0.3 mm).

This means that, in theory, a single pixel could correspond to a small

mitochondrial object. However, a single pixel intensity change could also be

reflecting a noise-related artifact. Considering mitochondrial length we assumed

that mitochondrial objects are longer than 3 pixels (i.e. 0.9 mm). It was further

assumed that individual mitochondria can be randomly oriented so a 363 square

region with an area of 0.81 mm2 was used. Although this area exceeds that of an

average mitochondrion (Fig. 5B), average mitochondrial length is larger than 3

pixels. Therefore, we defined a mitochondrial object as a region with a size larger

than 363 pixels displaying TMRM flickering.

The next challenge is to carry out a threshold operation on the DIF stack that

faithfully separates ‘‘real’’ signal changes due to DY flickering and signal changes

due to random noise. To automatically determine the optimal threshold value, a

decision algorithm was applied based on the assumption that DY flickering is

absent during the first 10 frames of the stack. This assumption was proven valid

by visual inspection of the acquired DIF stacks. Next, the fluctuations in the DIF

stack signal during the first 10 frames were analyzed to calculate the standard

deviation (SD) value (s), which was used to define various threshold values. For

Figure 3. Histogram of fluorescence intensities of TMRM at different concentrations. (A) Fluorescence intensity histograms for TMRM solutions,
T525˚C. Bars – experimental data, solid lines – theoretical Poisson distributions for the experimental mean. Probability is the number of pixels with a given
fluorescence intensity divided by the total number of pixels. (B) Difference intensity histograms for TMRM solutions. Note that the distributions are displayed
at the same position as the original signal for clarity reasons, as the difference signals are normally centered on zero.

doi:10.1371/journal.pone.0114090.g003
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example, a value of 1.64 times s corresponded to 90% of the area of a Gaussian

distribution (Fig. 5C), meaning that signals in the DIF stack exceeding this value

can be considered to represent DY flickering events with 90% certainty. Using this

threshold, three depolarization events and one repolarization event were

highlighted in the partial recording depicted in Figure 5C. Obviously, the number

of detected DY flickering events decreases with increasing threshold values. To

find the optimal threshold value we determined the number of DY depolarization

peaks as a function of s in untreated (Fig. 5D) and CsA-treated myotubes

(Fig. 5E). Comparing this number with that obtained by manual analysis (dotted

horizontal lines), the value 1.64 (90% confidence) and not 1.5 (87% confidence)

times s was chosen as the most optimal threshold, since the former value gives a

Figure 4. Combined experimental and computational strategy for quantitative spatiotemporal analysis
of DY flickering. Flow scheme visualizing the sequential experimental strategy (yellow), image processing
and quantification (blue) and the quantitation and visualization of numerical results (red). Additional details
regarding this strategy are provided in the results section.

doi:10.1371/journal.pone.0114090.g004
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higher confidence. By applying this optimal threshold value, two new image stacks

were generated from each DIF stack (Fig. 4). One with below-threshold signal

changes (BIN2; reflecting DY depolarizations) and another with above-threshold

signal changes (BIN+; reflecting DY repolarizations).

In addition to the temporal properties of the DY flickering events, we also

wanted to quantify their spatial properties in the BIN2 and BIN+ images. Our

results (e.g. Fig. 1 and 2) demonstrate that DY depolarization is relatively fast and

associated with simultaneous intensity changes in regions with a size of multiple

pixels (‘‘flickering domains’’). As explained above we first discarded flickering

domains that were smaller than 9 contiguous pixels (forming a 363 square

region) from our analysis. Moreover, when closely juxtaposed ROIs displayed

synchronized DY flickering events we assumed that they constituted part of the

same flickering domain. The latter was included in our algorithm in that a 15

pixels wide radius (0.45 mm), around each flickering domain was scanned for the

presence of another domain with synchronous flickering. If so, this domain was

considered part of the same flickering domain. Application of the threshold and

size criteria on the BIN2 and BIN+ stacks yields two new binary stacks (Fig. 4)

displaying the position of DY depolarizations (DEP) and repolarizations (REP).

The result of this automated strategy was validated by manual analysis. For this

purpose multiple DIF stacks of control myotubes (N58 in 3 experimental

replicates) and CsA-treated (N57 in 3 experimental replicates) myotubes were

visually inspected frame-by-frame; each DY flickering and its position was

manually scored. The localization (data not shown) and number (Fig. 5F) of DY

depolarizations obtained by manual and automated analysis was identical and the

latter was also significantly reduced by CsA treatment (p#0.001) (Fig. 5F).

Finally, we evaluated the noise-sensitivity of our algorithm by artificially adding

different amounts of (white) Gaussian noise to each image in a typical stack.

Subsequent application of the analysis algorithm (Fig. 4) revealed that noise

addition increased the percentage of missed peaks (Fig. 5G). This result

demonstrates that our strategy requires image stacks with a sufficiently high

signal-to-noise ratio.

Spatiotemporal properties of DY flickering in control myotubes

Applying our analysis protocol (Movie S2) revealed that DY depolarizations

occur in specific regions (Fig. 6A; blue). Depolarizations were typically paralleled

Figure 5. Optimization and validation of the automated algorithm for spatiotemporal analysis of DY flickering. (A) Transmission electron microscopy
(TEM) picture of mitochondria in primary mouse myotubes. M indicates mitochondria and S indicates sarcomeres. (B) Box and whisker plot showing the
median, minimum and maximum value, and the 1st and 3rd quartile of the mitochondrial (N531) area, length and width in myotubes based on TEM. (C)
Process to define the threshold used to detect mitochondrial depolarizations and repolarizations. Different thresholds, 1.28 (80% certainty), 1.4 (85%
certainty), 1.5 (87% certainty), 1.64 (90% certainty), and 2 (95.5% certainty) times s, were used and their corresponding numbers of depolarizations were
compared to manual analysis of untreated (D) and CsA-treated (E) myotubes. (F) The number of mitochondrial depolarizations detected by the optimized
computer-assisted analysis are comparable to the manual analysis in control (N58 in 3 experimental replicates) and CsA-treated (N57 in 3 experimental
replicates) myotubes. The CsA treatment led to a significant difference (p#0.001) while manual and automated analysis cannot be distinguished statistically
(p50.454) (G) Addition of noise to the movie to define the robustness of the computer-assisted analysis.

doi:10.1371/journal.pone.0114090.g005
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Figure 6. Spatiotemporal properties of DY flickering in primary mouse myotubes. (A) Typical image of a TMRM-stained myotube (left panel). (B)
Image obtained by summing all images within the DEP stack, reflecting the total number and position of the DY depolarizations (left panel). The image was
color coded based upon the number of depolarizations. (C) Similar to B but now using the REP stack to reflect the total number and position of the DY
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by simultaneous DY repolarizations (or even hyperpolarizations) within adjacent

DY flickering domains (Fig. 6A; green). This suggests that TMRM released from a

depolarizing domain (blue) can be taken up by mitochondria in a nearby

hyperpolarizing domain (green). By summing all images within the DEP or REP

repolarizations. The rectangle in A, B, and C indicates the region of interest (ROI) magnified in the corresponding panels to the right. D) Co-localization of the
DY depolarizations and repolarizations observed in panel B and C. See results for details.

doi:10.1371/journal.pone.0114090.g006

Figure 7. Inhibition of the FoF1-ATP synthase affects the spatiotemporal properties of DY flickering. (A) Time dependence of the number of
depolarizations (black line) in a control myotube. A moving average of the signal was calculated at every time-point with a 2 second interval for
1000 seconds (red line) to facilitate visual inspection. (B) Similar to panel A but now with CsA treatment. (C) Similar to panel A but now with acute addition
(arrow) of the FoF1-ATP synthase inhibitor oligomycin A (OLI; 10 mM). (D) Image obtained by summing all images within the DEP stack of the experiment
depicted in panel A, reflecting the total number and position of the DY depolarizations. (E) Similar to panel D but now for the experiment depicted in panel B.
(F) Similar to panel D but now for the experiment depicted in panel C. (G) Effect of CsA (N57) and OLI (N53) on the number of DY depolarizations (x-axis)
and median area of the depolarizing region (y-axis). Both the median area and the frequency of OLI-treated myotubes are significantly different from controls
and CsA-treated myotubes (in both cases p,0.01).

doi:10.1371/journal.pone.0114090.g007
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stack for a given myotube, two images can be calculated to visualize the total

number of depolarizations (Fig. 6B; calculated from DEP stack) and repolariza-

tions (Fig. 6C; calculated from REP stack). These images also reveal the position

and domain size of the flickering domains. Multiple events were observed within

the same domains, suggesting that mitochondria within these domains are

electrically coupled (Fig. 6B; red). Certain regions within the myotube displayed

more flickering events than other, suggesting the existence of DY flickering

‘hotspots’. In contrast, DY flickering was not detected in other regions of the

myotubes during the time course of the experiment (Fig. 6; noncolorized pixels).

Comparing the data obtained for DY depolarizations (Fig. 6B) and repolariza-

tions (Fig. 6C) revealed highly similar patterns. Furthermore, we estimated the

co-localization of both types of events as the ratio between the number DY

depolarizations and repolarizations per pixel, as shown in Fig. 6D. The average

co-localization, as reflected by the Manders coefficient [31], equaled 0.93. This

indicates that the large majority of the observed events reflect reversible DY

flickering that represents mPTP opening.

Spatiotemporal properties of DY flickering in myotubes treated

with CsA and oligomycin A

Recent evidence suggests that the mitochondrial FoF1-ATP synthase (complex V

or CV) constitutes (part of) the mitochondrial permeability transition pore

[13, 14]. It was further observed that CypD, which mediates CsA-induced mPTP

inhibition, interacts with the OSCP (oligomycin-sensitivity conferring protein)

subunit of CV. To demonstrate whether inhibition of CV activity affects photo-

induced DY flickering we analyzed mouse myotubes in the absence and presence

of the specific CV-inhibitor oligomycin A (OLI; 10 mM). Interestingly, relative to

untreated myotubes, CsA treatment greatly diminished DY flickering frequency as

expected. However, acute OLI treatment 3-fold increased DY flickering frequency

within 15 min (Fig. 7A–C), suggesting that short-term CV inhibition acutely

stimulates DY flickering. The increase of the DY flickering upon OLI treatment

could not be reduced by CsA. During OLI treatment, the increase in flickering

frequency was paralleled by complete disappearance of the ‘hotspots’ observed in

untreated cells (Fig. 7D) and depolarizations occurred throughout the myotube

(Fig. 7F). The fact that the median area of the detected flickering domains was

,70 pixels, i.e. 6.3 mm2 in untreated myotubes (Fig. 7G), suggests that such a

domain consists of multiple mitochondria displaying synchronized DY flickering

or an electrically connected mitochondrial (sub)network. Inter-mitochondrial

electrical coupling appears to be lost in OLI-treated cells. The size of the DY

flickering domains was 2-fold reduced in OLI-treated cells (Fig. 7G). CsA-induced

inhibition of DY flickering was also associated with a 2-fold reduction in size of

the DY flickering domains.
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Discussion

This study presents an integrated experimental and computational approach

allowing detection and spatiotemporal analysis of light-induced DY flickering

events in TMRM-stained primary mouse myotubes. After validation, this strategy

was applied to demonstrate that DY flickering is associated with mPTP opening.

Photo-induction of DY flickering in TMRM-stained primary mouse

myotubes

We previously discussed that TMRM is well suited for DY quantification given its

low toxicity, fast equilibration kinetics across the MIM and low a-specific binding

to mitochondrial membranes [32]. However, it is important to realize that

mitochondrial accumulation of this dye above a certain concentration leads to

autoquenching; making DY to appear depolarized [33]. However, acute

application of the mitochondrial uncoupler FCCP (p-trifluoromethoxy carbonyl

cyanide phenyl hydrazine) induced an immediate decrease in mitochondrial

TMRM fluorescence (data not shown). Hence TMRM autoquenching is absent

under our experimental conditions. Evidence was provided that illumination of

TMRM and subsequent 1O2 formation drive mPTP opening [28, 34]. Compatible

with this 1O2 formation we observe TMRM photobleaching in our experiments.

However this photobleaching is not associated with changes in TMRM

mitochondrial/nuclear distribution ratio, irreversible DY depolarization or

aberrations in cell shape. This finding agrees with previous results demonstrating

that TMRM illumination does not release toxic amounts of 1O2 within the

mitochondrial matrix space [35].

In principle, a sudden decrease in TMRM intensity can also result from

mitochondria moving out of focus instead of DY depolarization. To address this

potential issue a DY-insensitive mitochondrial co-stain could be applied to

normalize the number and size of DY depolarizations/repolarizations. In this

study we refrained from using a second mitochondrial stain for several reasons: (i)

it might affect mitochondrial physiology, possibly altering DY and intra-

mitochondrial TMRM concentration, and (ii) it might act as a photosensitizer

thereby likely altering experimental settings (e.g. illumination time or TMRM

loading concentration). However, in our experiments the number of DY

depolarizations and repolarizations are equal (Manders overlap coefficient of

0.93) making it unlikely that the observed DY flickering results from

mitochondrial movement.

DY flickering activity is virtually abolished by CsA, supporting the conclusion

that this flickering represents reversible mPTP opening events. With respect to

mitochondrial CRC, a previous study suggests that this parameter increases with

TMRM irradiation times up to 30 s (suggesting reduced mPTP opening) and

subsequently decreases (suggesting increased mPTP opening) for a TMRM

irradiation time .30s [34]. These results were obtained using isolated mouse liver

mitochondria with a fully inhibited electron transport chain (ETC), which
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prevents DY repolarization. However, we also observed a slight increase in mPTP

opening frequency at longer illumination times (e.g. Fig. 7A).

A method for quantitative analysis of reversible DY flickering

Mitochondrial DY flickering was previously demonstrated in isolated mito-

chondria and intact cells [25–28]. However, quantitative analysis relied on manual

analysis by placing small ROIs over (parts of) single mitochondria in different

cell-types, which is time-consuming and might lead to biased quantitative

analysis. More importantly, this method is susceptible to mitochondrial move-

ment and focus drift. The novel method presented here addresses these points in

myotubes and can also be more easily implemented in high-content (HCS) and/or

high-throughput (HTS) microscopy screening strategies. In essence, our

algorithm consists of calculating a stack of difference images (DIF) from an image

stack (RAW) obtained by fluorescence microscopy. This approach has already

been used before to visualize DY depolarization in complete astrocytes [26].

However, our method is able to automatically detect DY depolarizations and

repolarizations in regions of a myotube and provide information about their

spatial localization, area, and frequency. This requires a proper mitochondria-

specific fluorescence signal to allow faithful discrimination between this organelle

and the remainder of the cell. From the DIF stack two new image stacks (DEP and

REP) are calculated by applying an automatically determined threshold operation.

In this case, the optimum is to use 1.64 s (equaling 90% of the area of a normal

distribution) in the first 20 seconds of the experiments. Other options seem

reasonable based on the results provided in figures 5D and 5E. In this sense, a

value of 1.5 s (reflecting 87% of the area of a normal distribution) yielded similar

results. However, here we chose to use 1.64 s since this value best matched the

manual analysis while providing the highest (90%) confidence. The DEP and REP

stacks are then used for numerical analysis of DY depolarization frequency and

domain size (DEP stack) and DY repolarization frequency and domain size (REP

stack). It was previously discussed that mPTP opening can induce full DY

depolarization within 5 ms [28]. This time period is much smaller than our image

illumination time (300 ms) and acquisition interval (2 s). However, following

mPTP closure DY is restored by ETC action, as reflected by a slowly increasing

mitochondrial TMRM fluorescence (data not shown) [28]. In this way, our

algorithm is still able to reliably detect DY depolarizations. Quantitative

comparison indicates that the numbers of detected DY depolarizations and DY

repolarizations are identical, meaning that both types of events are reliably

detected. In theory, the fact that our algorithm reported no DY flickering events

in subcellular regions of control myotubes could be due to: (i) that these events

are truly absent, (ii) that they originate from mitochondrial objects smaller than

363 pixels that are excluded from the analysis, or (iii) given the axial dimensions

of the myotubes, mitochondrial objects might be out of focus. When treated with

OLI, the algorithm reported an increased number of DY flickering events that

originated from DY flickering domains with a substantially reduced size. This
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observation argues against mitochondria in control cells being so small that they

evade detection. OLI-treated cells also displayed DY flickering domains

throughout the complete myotube. This result argues against mitochondrial

objects being out of focus. In the light of the above, we conclude that our

algorithm reliably detects DY flickering events and that the latter are restricted to

subcellular DY flickering domains in control myotubes.

Cyclosporin A and oligomycin A affect the spatiotemporal

properties of reversible mPTP openings associated with DY
flickering

Our results demonstrate that DY flickering frequency is reduced by CsA, but

increased by OLI. In contrast, both inhibitors reduced the size of DY flickering

domains suggesting that they both reduce the electrical connectivity of (the)

mitochondrial (sub)network(s). This means that a reduced mitochondrial

electrical connectivity can be associated with either a decreased or increased

mPTP opening frequency. Interestingly, a previous study demonstrated that

mitochondrial matrix volume and CRC were reduced when isolated mitochondria

were placed in a medium with low osmolarity (250 mOsM) whereas

mitochondrial volume and CRC were increased in a medium with high osmolarity

(400 mOsM) [36]. This suggests that a reduction in mitochondrial matrix volume

inhibits Ca2+-induced mPTP opening. Therefore, the CsA-induced inhibition of

mPTP opening observed in this study might be (partially) mediated by a

reduction in mitochondrial size, compatible with smaller DY flickering domains.

Recent studies support the idea for a structural role of FOF1-ATP synthase in

mPTP opening and in particular the c-subunit [13, 14, 37]. Oligomycin A, a

potent inhibitor of the FOF1-ATP synthase, was shown to inhibit mPTP opening

and TNF-a/ementine-induced cell death in HeLa cells [38]. Surprisingly, acute

OLI treatment dramatically increased DY flickering frequency, reduced the size of

DY flickering domains and triggered DY flickering events throughout the entire

myotube. Although our aim and method is not to induce terminal depolarization

and apoptosis, the observed phenomenon might lead eventually to apoptosis.

However, OLI is able to increase the rate of apoptosis in eosinophils, suggesting

that the effect of OLI could depend on the cell type used [39].

In conclusion, a novel quantitative automated analysis was developed to detect

and quantify the frequency, size, and location of individual DY flickering events

in myotubes as a consequence of mPTP opening.

Supporting Information

Movie S1. Typical movie of TMRM-stained myotubes. In the myotubes (similar

to figure 1B) several localized disappearances (DY depolarizations) and
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reappearances (DY repolarizations) of TMRM fluorescence intensity can be

observed.

doi:10.1371/journal.pone.0114090.s001 (WMV)

Movie S2. Application of the analysis protocol on a TMRM-stained myotube.

The automated analysis protocol detects many DY depolarizations (pixels colored

blue) and repolarizations (pixels colored green) in the myotube. The automated

analysis protocol also calculates for each frame the number (# flashes) and size of

the DY depolarizations (green line) and repolarizations (blue line), which are

shown in two separate graphs.

doi:10.1371/journal.pone.0114090.s002 (WMV)
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