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ABSTRACT 

Background: Immune-mediated lung injury and systemic hyperinflammation are characteristic of 

severe and critical coronavirus disease 2019 (COVID-19) in adults.  Although the majority of SARS-

CoV-2 infections in pediatric populations result in minimal or mild COVID-19 in the acute phase of 

infection, a small subset of children develop severe and even critical disease in this phase with 

concomitant inflammation that may benefit from immunomodulation. Therefore, guidance is 

needed regarding immunomodulatory therapies in the setting of acute pediatric COVID-19. This 

document does not provide guidance regarding the recently emergent multisystem inflammatory 

syndrome in children (MIS-C). 

Methods: A multidisciplinary panel of pediatric subspecialty physicians and pharmacists with 

expertise in infectious diseases, rheumatology, hematology/oncology, and critical care medicine was 

convened. Guidance statements were developed based on best available evidence and expert 

opinion. 

Results: The panel devised a framework for considering the use of immunomodulatory therapy 

based on an assessment of clinical disease severity and degree of multi-organ involvement combined 

with evidence of hyperinflammation. Additionally, the known rationale for consideration of each 

immunomodulatory approach and the associated risks and benefits was summarized. 

Conclusions: Immunomodulatory therapy is not recommended for the majority of pediatric patients, 

who typically develop mild or moderate COVID-19. For children with severe or critical illness, the use 

of immunomodulatory agents may be beneficial. The risks and benefits of such therapies are 

variable and should be evaluated on a case-by-case basis with input from appropriate specialty 

services. When available, the panel strongly favors immunomodulatory agent use within the context 

of clinical trials. The framework presented herein offers an approach to decision-making regarding 

immunomodulatory therapy for severe or critical pediatric COVID-19 and is informed by currently 

available data, while awaiting results of placebo-controlled randomized clinical trials.  
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INTRODUCTION 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently emergent 

human pathogen that causes a variety of disease manifestations termed Coronavirus Disease 2019 

(COVID-19). The spectrum of COVID-19 ranges from asymptomatic infections to severe and critical 

illness with multi-organ involvement that can prove fatal [1]. In adults, the most common disease 

presentation involves respiratory disease that either resolves or evolves into progressive pulmonary 

involvement and acute respiratory distress syndrome (ARDS); in adult patients with progressive 

disease, extrapulmonary manifestations and evidence of multi-organ involvement is common. While 

severe and critical COVID-19 is substantially more prevalent in adults, a small proportion of children 

also develop progressive respiratory disease and concomitant multi-organ dysfunction with high 

morbidity, but fatalities are rarely reported [2-5]. Comorbid conditions for this presentation of 

severe and critical COVID-19 in adults include obesity, diabetes, and underlying cardiac disease [6, 7] 

however, such risk factors are currently not well defined in children [3, 5, 8].  

Initial descriptions of COVID-19 presentations and outcomes indicate a substantial 

inflammatory component to severe disease [9-11]. Inflammatory phenotypes include significant 

pulmonary inflammation accompanied by prolonged fevers [12] and/or a biphasic illness course 

characterized by initial improvement followed by rapid occurrence of respiratory failure and 

pulmonary inflammation [10, 13]. In addition, COVID-19-associated cardiac injury is an independent 

risk factor for mortality, suggesting that inflammation beyond lung parenchyma contributes to poor 

outcomes [14, 15]. Further, severe COVID-19 is associated with more significant lymphopenia, 

systemically elevated pro-inflammatory cytokine levels, and impaired CD4+ T cell IFN-γ expression 

compared to moderate COVID-19 [11].  

These early reports of hyperinflammation are reminiscent of the cytokine storm features 

described in the setting of prior emergent respiratory virus infections including SARS (2002), Middle 

East Respiratory Syndrome (MERS), H5N1 avian influenza, and 2009 H1N1 pandemic influenza [16, 

17]. In each of these viral infections, significant pulmonary and systemic inflammation was identified 

and, in some cases, linked to poor outcomes and mortality (SARS [18-21]; avian influenza [22, 23]; 

2009 H1N1 [24-26]; MERS [27-29]). Since the initial SARS outbreak in 2002, several developments 

have changed the paradigm for treatment of hyperinflammation. First, detailed mechanistic 

knowledge of the genetics and immunopathology of macrophage activation syndrome (MAS) and 

hemophagocytic lymphohistiocytosis (HLH) have led to targeted treatments for cytokine storm 

syndrome (CSS)  [30]. In addition, new immunomodulators targeting specific cytokines, cytokine 

receptors, and immune pathways have been developed and studied in a wide variety of other 
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inflammatory and autoimmune diseases [31, 32]. Finally, the advent of chimeric antigen receptor 

(CAR) T cell therapy for leukemia/lymphoma and resultant cytokine release syndrome (CRS) has 

provided a specific example of cytokine-targeted therapy leading to rapid clinical improvement in 

the setting of marked and hyperacute inflammation [33].  

Symptoms of severe COVID-19 in children as currently reported fall into two categories. In a 

small subset of pediatric patients, severe lung disease occurs and appears to mimic severe adult 

COVID-19 with respiratory failure, ARDS, and associated multi-organ failure [5]. In other pediatric 

patients, an emerging inflammatory disease has recently been described [34-36] This latter 

presentation has been variably called PIMS-TS [37], PMIS [38], and MIS-C [39] and manifests as acute 

onset of fever with multisystem involvement, frequently including hypotension and cardiac 

dysfunction in the absence of respiratory symptoms. Some reported cases mimic severe Kawasaki 

disease or Toxic Shock syndrome phenotypes. MIS-C appears to be associated with prior exposure to 

SARS-CoV-2. Although immune modulation with corticosteroids and intravenous immunoglobulin 

(IVIG) is used in severe cases of MIS-C [36], given the very limited information about the mechanisms 

of this disease process, in this document we do not provide specific guidance for treatment of this 

syndrome.   

Anecdotal reports of immunomodulator use in the setting of COVID-19 have been widespread [40-

44].  While numerous trials of immunomodulatory therapies for COVID-19 in adults are being 

launched, few clinical trials for immunomodulatory therapy in pediatric patients with COVID-19 are 

currently enrolling or planned. Therefore, we undertook a comprehensive review of the current 

state of literature regarding immunomodulatory therapy in COVID-19. The goal for this document is 

to provide pediatric practitioners a framework for interpreting currently available data and a 

rationale for considering immunomodulatory therapy in the care of pediatric acute COVID-19 

patients. In the sections below, cytokine storm, CSS, and hyperinflammation are used 

interchangeably to refer to the pulmonary and systemic inflammation that accompanies severe and 

critical COVID-19. This review does not represent a final or definitive guideline for diagnosis or 

treatment, but a review of current knowledge, and we emphasize the importance of enrollment in 

clinical trials for COVID-19 immunomodulatory therapy when available.  

  



Acc
ep

ted
 M

an
us

cri
pt

 

6 
 

GUIDANCE DEVELOPMENT 

Approach 

A multidisciplinary panel of pediatric subspecialty physicians and pharmacists with expertise in 

infectious diseases, rheumatology, hematology/oncology, and critical care medicine was convened. 

We relied on the guidance approach recently published addressing antiviral use in children with 

COVID-19 [45]. Guidance statements were developed based on best available evidence and expert 

opinion. Given the lack of currently available randomized controlled trials for the therapies 

considered in this document and the overall limited nature of the data, a systematic review was not 

performed, nor was evidence formally evaluated using Grading of Recommendations, Assessment, 

Development, and Evaluation (GRADE) or other methodology. 

Definitions 

As previously described [45], we used the following definitions and similarly assert the importance of 

“first do no harm” in the consideration of proposed immunomodulatory therapies with yet unknown 

efficacy in the setting of COVID-19. Statements using the term “suggest” indicate the panel’s view 

that currently available evidence is weighted towards risk or benefit from a proposed therapy. 

Guidance statements of “consider” reflect uncertainty by the panel with regard to risk or benefit of a 

proposed therapy.  

Framework 

The panel considered three major questions related to immunomodulatory therapy for children with 

COVID-19:  

1. Are immunomodulatory agents indicated in children with COVID-19? 

2. What criteria define the pediatric population in whom immunomodulatory therapy may 

be considered? 

3. What agents, if any, are preferred if immunomodulatory therapy is considered for 

children with COVID-19? 

In addressing these questions, we utilize the definitions of severe and critical COVID-19 previously 

published (Table 1) [45].  We provide background information for several categories of 

immunomodulatory therapies that have been proposed for potential use in caring for severely or 

critically ill COVID-19 patients. These categories include IL-1 inhibitors, IL-6 inhibitors, 

glucocorticoids, convalescent plasma, Janus kinase inhibitors, intravenous immunoglobulin (IVIG), 

and interferons. Within each section we provide a guidance statement followed by rationale and an 
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evidence summary. In vitro and animal model data is reviewed in selected sections, though we do 

not significantly address SARS-CoV-2 animal models given a current lack of such published data. In 

addition, we provide information regarding potential adverse events and practical guidance 

regarding dosing within each section. A summary of key guidance statements is provided in Table 2.  

 

I. ARE IMMUNOMODULATORY AGENTS INDICATED IN CHILDREN WITH COVID-19? 

Guidance statement: 

We emphasize that the vast majority of children with COVID-19 will recover from the acute phase of 

infection with supportive care. Enrollment in clinical trials of immunomodulatory therapy for COVID-

19 is preferred. In the absence of available clinical trials, use of immunomodulatory therapy for 

COVID-19 may be considered in compliance with local institutional policies on consent for 

experimental and/or off-label treatment.  

Rationale: 

The aforementioned antiviral guidance document provided key rationale for consideration of 

therapies beyond supportive care in children with COVID-19 [45]. Multiple studies and experience in 

a variety of settings have demonstrated that the majority of children with COVID-19 recover without 

immunomodulatory interventions and do not develop severe manifestations. Given the lack of 

available results from randomized-controlled trials of immunomodulatory therapy in children with 

COVID-19, the risk-benefit ratio for most pediatric patients points toward supportive care as the key 

management strategy. However, a subset of pediatric patients develops severe or critical illness with 

acute COVID-19 [5]. It is therefore possible that immunomodulation is a key part of treatment 

strategy for such patients.  

II. WHAT CRITERIA DEFINE THE PEDIATRIC POPULATION IN WHOM IMMUNOMODULATORY USE 

MAY BE CONSIDERED? 

Guidance statement: 

We suggest that immunomodulatory therapy only be used for pediatric patients in the setting of 

confirmed critical COVID-19 (SARS-CoV-2 RT-PCR positive) with evidence of hyperinflammation (Table 

4). In addition, pediatric COVID-19 patients with hyperinflammation whose pace of illness 

progression suggests imminent progression to critical COVID-19 may be considered for 

immunomodulatory treatment. Use of immunomodulation for pediatric COVID-19 should be 

performed in consultation with specialists familiar with the use of the medications. 
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Rationale: 

Based on currently available data, very few pediatric patients with COVID-19 will become severely or 

critically ill [2-4, 46]. Therefore, for the majority of pediatric COVID-19 patients the risks of 

immunomodulatory therapy outweigh potential benefits. However, in pediatric patients with critical 

COVID-19 (defined previously; Table 1, [45]), or who are rapidly progressing towards this category, 

the potential benefits of immunomodulatory therapy may offset the potential risks. In addition, 

given the potential risks of immunomodulatory therapy, consideration of this therapy in the setting 

of severe or critical acute COVID-19 should be reserved for patients with RT-PCR-confirmed 

infection. We are aware that there may be a subset of patients for whom there is a high suspicion of 

acute COVID-19 despite negative RT-PCR testing. Given the difficulties in determining disease 

etiology and defining benefits of immunomodulatory therapy, we do not provide specific guidance 

for this scenario. In the evidence summary below, we review the current data on immunopathology 

in severe and critical COVID-19 and discuss potential clinical and laboratory criteria on which to base 

the decision to use immunotherapy.  

Evidence summary: 

Adult patients severely affected by COVID-19 demonstrate a variety of overlapping 

phenotypes of severity including features of ARDS, hypercoagulability, hyperinflammation/CSS, and 

multi-organ failure [9-11]. Currently published cohorts indicate that a very large percentage of 

COVID-19 affected children do well after infection with SARS-CoV-2. Despite these overall reassuring 

findings in children, reports have emerged that a small subset of pediatric patients are severely 

affected by COVID-19 with a presentation/severity similar to that seen in adult patients [3, 5, 8, 47]. 

The clinical and laboratory presentation of patients with severe acute SARS-CoV-2 infection 

has revealed similarities and differences with CSS. CSS is associated with dysregulated, 

inappropriate, and unbalanced immune responses that include enhanced production of 

proinflammatory cytokines (Table 3). CSS is driven by excessive activation of both innate 

(monocytes, macrophages, neutrophils, NK cells) and adaptive immune cells (T-cells) and 

overproduction of pro-inflammatory cytokines that produce a recognizable clinical and laboratory 

pattern of tissue pathology. In general, CSS is associated with evidence of aberrant systemic 

inflammation including elevated ferritin, low fibrinogen, cytopenias, hemophagocytosis, and variable 

occurrence of coagulopathy, NK cell dysfunction, and pulmonary, liver, spleen and/or CNS 

involvement [30]. Current reports of severely and critically ill COVID-19 patients indicate that 

aberrant and dysregulated inflammation contributes to morbidity and mortality in these patients. 
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However, parsing out contributions from ARDS, cytokine storm, secondary infections, and 

coagulopathy/hypercoagulability in the laboratory findings associated with severe/critical COVID-19 

remains difficult. In addition, there is likely to be distinct pathophysiology between severe/critical 

COVID-19 with CSS compared to other categories of CSS. Therefore, we emphasize caution in the 

application of diagnostic criteria used in other CSS to the assessment of CSS in the setting of COVID-

19.   

Current information regarding immunopathogenesis of CSS in acute COVID-19 derives 

primarily from adult data. We have summarized much of this data below within each specific 

immunotherapeutic section. Briefly, a subset of patients progress to severe lung injury and death. 

Autopsy studies demonstrate exudative diffuse alveolar damage with significant capillary congestion 

and microthrombi [48] and an association with venous thromboembolism in non-pulmonary sites  

[49]. Laboratory evidence of markedly elevated inflammation including elevated ferritin, CRP, and 

ESR values is also noted in severe/critical COVID-19 cases [50]. Further, many patients critically ill 

with COVID-19 demonstrate evidence of coagulopathy including significantly elevated D-dimer [51].  

Cytokine profiling of patient samples has been performed in adult and pediatric patients. 

Elevation in other cytokines/chemokines associated with hyperinflammation states, including CXCL-9 

(MIG), CXCL-10 (IP-10), CCL-7 (MCP-3), and IL-1Ra have also been shown [52].  Single cell immune 

profiling demonstrates an inflammatory signature that includes significant inflammatory gene 

expression with classical monocytes [53]. Furthermore, several early studies have suggested a link 

between impaired innate interferon expression and development of excessive inflammation in 

COVID-19 patients [54-57]. Based on this data, several cohorts reporting use of immunomodulation 

in COVID-19 have been recently published [42, 58-61]. These manuscripts and related reports are 

reviewed in specific sections below. 

 The panel recommends that use of immunomodulatory therapy for the treatment 

COVID-19 related hyperinflammation/ cytokine storm should be conducted in the context of a 

clinical trial, if available. In the absence of such opportunity, and recognizing that definitive evidence 

is lacking, consideration for use of immunomodulatory agents in cases of SARS-CoV-2 infection with 

clinical and biochemical evidence of cytokine storm physiology (e.g., features of secondary HLH) 

should be limited to patients with clear evidence of critical COVID-19 disease and risk for multi-organ 

failure. In this restricted scenario, an experimental approach using immunotherapy has theoretical 

potential for benefit and is supported by increasing evidence, as detailed below. We propose several 

key categories of clinical information to consider regarding the use of immunomodulatory therapy 

for pediatric COVID-19 patients (Table 4). These include clinical and laboratory illness features and 
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take into account the pace of illness progression, evidence of organ injury/impending organ failure, 

and evidence of hyperinflammation. Importantly, given the current state of knowledge and lack of 

available clinical trial results, we are not able to provide specific cutoffs or laboratory results that 

indicate a definite need for immunomodulatory therapy.  

Although current literature has identified proposed laboratory findings demonstrating 

hyperinflammation as indicators of risk for severe/critical COVID-19, these are not validated and 

individual values should be assessed in the context of the patient’s overall status. No single feature 

or laboratory value is known to be sufficient to recommend immunotherapy. However, it is 

anticipated that timely recognition and intervention could improve outcomes, such that trends 

toward worsening disease and the cadence of change should be considered. Despite the overlap 

with CSS and noted elevations in inflammatory markers and pro-inflammatory cytokines, diagnostic 

criteria for familial HLH (fHLH), MAS, and CRS should not be necessarily be used to identify COVID-19 

patients who may benefit from immune suppression or immune modulation, as these definitions are 

likely to differ for SARS-CoV-2 infections, just as they do between the different CSS categories. 

Consideration for use of experimental therapies should entail discussion between the 

patient’s primary team and appropriate consulting teams with experience in the use of 

immunomodulatory drug treatment in the setting of infection including infectious diseases, 

rheumatology, and/or hematology/oncology, critical care, and with involvement of pharmacists.  

Further, use of these therapies should be performed only with appropriate counseling and 

consenting of patients and families for off-label use of immune modulatory medications according to 

each individual institution’s policies. 

III. WHICH IMMUNOMODULATORY AGENTS SHOULD BE CONSIDERED?  

Guidance statement:  

There are no immunomodulators with proven efficacy for the treatment of COVID-19 in pediatric 

patients as of 24 July 2020. Therefore, no guidance can be provided to support the use of one 

immunomodulatory therapy over another. 
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Guidance statement:  

If immunomodulators are used in the treatment of COVID-19, patients should be monitored for 

adverse effects. 

Rationale:  

As outlined in topic-specific sections below, there are no randomized, controlled trials 

evaluating the use of immunomodulatory therapies in pediatric COVID-19 patients. Numerous 

cohort studies have recently been published though many of these are limited by absence or 

inadequacy of a rigorous comparator group. A few randomized controlled trials have recently been 

published. However, none of these provides comparison between immunomodulatory agents. 

Therefore, the current state of evidence does not allow for selection of one immunomodulatory 

therapy over another. As with the decision to use or not use an immunomodulator in a pediatric 

COVID-19 patient, the choice of which immunomodulatory therapy to use should be driven by an 

individualized weighing of potential risks and potential benefits. In addition, though superseded by 

evidence of efficacy and adverse effects, relative drug availability and cost may play a role in 

immunomodulatory therapy choice. For each immunomodulatory therapy addressed below, we 

provide rationale, evidence summary, potential risks, and practical considerations to assist in these 

individualized patient care decisions. The order of discussion of immunomodulatory therapies below 

does not reflect any preference for one category over another. 

 

IL-6 inhibition 

Guidance statement: 

IL-6 inhibition may be considered in the care of pediatric patients with critical COVID-19 with priority 

given to clinical trial enrollment if available. 

Rationale: 

The effects of IL-6 can be inhibited by blocking binding to the IL-6 receptor using monoclonal 

antibodies such as tocilizumab, siltuximab, and sarilumab. Notably, these are each being tested for 

use in COVID-19 in over a dozen clinical trials that are currently recruiting patients. Given that the 

pediatric experience with IL-6 inhibition has mostly been with use of tocilizumab, the panel would 

favor use of this agent, should this therapeutic modality be considered, although other agents may 

also be considered in select situations (e.g. anaphylaxis with tocilizumab or drug shortages).  
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Tocilizumab is FDA approved (albeit not for this indication), and dosing data are extrapolated from 

that used in CSS following CAR T cell or blinatumomab therapy. 

 

Evidence summary: 

Mechanism and current uses: IL-6 is a pleiotropic cytokine produced by a number of non-

hematopoietic cells and cells of myeloid origin during infections and in response to tissue injury. IL-6 

binds its receptor (IL-6R) and initiates a JAK/STAT-mediated signaling pathway, which results in 

transcription of numerous genes [62].  Increased IL-6 levels are observed in a number of viral 

infections, and in animal models elevated IL-6 levels favor the persistence of some of these viruses 

[63-66]. Tocilizumab is currently FDA approved for the treatment of CAR T cell-induced CRS in both 

children and adults, rheumatoid arthritis and giant cell arteritis in adults, as well as polyarticular and 

systemic juvenile idiopathic arthritis in children [67]. 

In vitro and animal data: A number of prior in vitro studies demonstrated that infection of airway 

epithelial cells or macrophages [68, 69] with either SARS or MERS coronaviruses could elicit 

production of IL-6 and TNF-; similar results were also observed with purified coronavirus spike (S) 

or nucleocapsid (N) proteins [70, 71].  In an animal model, primary infection with SARS is associated 

with an IL-6 gene signature and an associated self-sustaining acute phase response [72]. 

Human data: Several studies have examined the cytokine response to SARS-CoV-2; these have 

demonstrated the presence of mild to moderately elevated IL-6 in serum or plasma of adult and 

pediatric COVID-19 patients [11, 17, 73]. Moreover, the levels of IL-6 transcript and protein appear 

to correlate with the severity of COVID-19 and mortality in adults [50, 73, 74]. A proportion of 

pediatric COVID-19 patients were also shown to possess similarly elevated IL-6 levels [75]. While 

blinded and randomized clinical trial data are still needed, several recently published cohort studies 

have indicated mixed evidence for benefit for tocilizumab in adult COVID-19 patients. In a single 

center cohort study of adult COVID-19 patients requiring mechanical ventilation, treatment with 

tocilizumab was associated with decreased mortality with a hazard ratio (HR) for death of 0.55 (95% 

CI 0.33-0.9) after adjusting for disease severity at tocilizumab initiation [76]. Similarly, in an Italian 

multicenter retrospective cohort study of 544 severe COVID-19 adult patients, tocilizumab 

treatment was associated with decreased risk of mechanical ventilation or death (adjusted HR 0.61; 

95% CI 0.4-0.92) [77]. These results are supported by several smaller cohorts [42, 61, 78-82] 
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Potential Risks:   

While it is generally recommended that tocilizumab not be initiated in patients with 

neutropenia or thrombocytopenia or in those with elevations of alanine aminotransferase or 

aspartate aminotransferase, in practice many patients with severe or life-threatening systemic 

inflammatory response syndrome (SIRS) experience cytopenias or elevated transaminases due to 

multi-system organ dysfunction or the use of concurrent medications. Therefore, it may be 

reasonable to cautiously initiate tocilizumab therapy in such patients with close monitoring. 

Additionally, tocilizumab therapy may increase risk of bacterial and mycobacterial infections 

(especially the reactivation of M. tuberculosis), viral reactivation (especially hepatitis B), and invasive 

fungal disease [67]. Notably most of these reports are from adults (e.g. those with rheumatoid 

arthritis) who have received chronic IL-6 inhibition and, therefore, risk for children on shorter 

courses of tocilizumab may not be as significant. Interestingly, the above cited studies have shown 

an increase in superinfection in patients treated with tocilizumab though without clear impact on 

outcomes [76, 77].  Other adverse events such as pneumatosis intestinalis and intestinal perforation 

[83], hepatic injury and liver failure [84], hypertriglyceridemia and pancreatitis [85] have also been 

reported.  

Dosing and practical considerations: 

Note that dosing for tocilizumab in pediatric populations is largely based on use for 

rheumatologic indications and in CAR T cell-associated CRS [28, 32]. The suggested intravenous (iv) 

dosing is 12mg/kg for patients with a total body weight less than 30kg and 8mg/kg for those 30kg 

and above, with a maximum dose of 800mg. Monitoring for anaphylaxis should be performed and, if 

noted, should be treated using standard local protocols. Additionally, periodic laboratory (e.g. 

complete blood counts (CBCs), hepatic and pancreatic function testing, etc.) and clinical exam 

monitoring is suggested. Of note, while tocilizumab does not directly affect the P450 cytochrome 

system, elevated levels of IL-6 can inhibit these enzymes, and thus drugs that are metabolized by this 

system may also require monitoring. The half-life of tocilizumab is concentration dependent and is 

estimated to be up to 2 weeks in high-dose therapy (as suggested for use in COVID-19 

hyperinflammation) of adult patients receiving chronic therapy at 8mg/kg every 4 weeks. Most adult 

studies of COVID-19-associated hyperinflammation use a single dose with some studies providing 

two doses separated by 12-24 hours if there is lack of response to the first dose. Finally, since 

tocilizumab blocks the IL-6 receptor, following IL-6 levels is not useful for monitoring and is not 

recommended.  
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IL-1 inhibition 

Guidance statement:  

IL-1 inhibition may be considered in the care of pediatric patients with critical COVID-19 with priority 

given to clinical trial enrollment if available. If IL-1 inhibition is used as a treatment modality for 

pediatric COVID-19 patients, we suggest the use of anakinra based on its safety profile and favorable 

pharmacokinetics. 

Rationale: 

Available data from the prior SARS and MERS outbreaks and early data from the current 

SARS-CoV-2 pandemic suggest that IL-1β may play a role in SARS-CoV-2-related immunopathology. 

Evidence that inhibition of IL-1-signaling may safely improve outcomes in COVID-19 [58-60, 86]. 

Pediatric patients with severe COVID-19 being considered for treatment with IL-1 inhibition should 

be enrolled in clinical trials if available and eligible. In the absence of clinical trials for 

immunomodulation of COVID19 in pediatric patients, consideration may be given to use of IL-1 

inhibition in pediatric patients with severe or critical COVID19.  Given the established use and safety 

profile of anakinra in a variety of other settings as well as its short half-life allowing for rapid 

discontinuation of therapy in case of adverse reactions, anakinra is the preferred IL-1 inhibition 

agent in the setting of pediatric COVID-19. It is worth noting that a small case series has investigated 

canakinumab use in 10 hospitalized adult COVID-19 patients [87]. 

Evidence summary: 

Mechanism and current uses: IL-1α and IL-1β are two of the 11 members (including IL-18 and IL-33) 

of the IL-1 cytokine family and play a critical role in a wide variety of pro-inflammatory states. IL-1β 

is the major biologically active and secreted form in the setting of infection and other inflammation, 

but IL-1α is likely released by dying endothelial cells. IL-1β exerts its effects through binding to its 

specific receptor subunit IL-1R1 followed by co-receptor recruitment. Biological effects of IL-1β 

include recruitment of endothelial adhesion molecule expression and inflammatory cell recruitment, 

upregulation of prostaglandins and nitric oxide, and metalloproteinase production. Systemically, IL-

1β contributes to hypotension, fever, neutrophilia, and other acute phase responses. Importantly, IL-

1β contributes to CD4+ Th17 differentiation by contributing to key aspects of transcriptional 

activation [88]. IL-1 can also act upstream to increase IL-6 expression [89]. 

Several targeted therapies inhibit IL-1β signaling including anakinra, a recombinant form of 

IL-1 receptor antagonist (IL1-Ra) which mimics native IL-1Ra and prevents binding of IL-1α and IL-1β 
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to IL-1R1 and thereby prevent IL-1-mediated immune effects [90]. Another IL-1 targeting drug, 

rilonacept, binds and neutralizes both IL-1α and IL-1β. In addition, a monoclonal antibody, 

canakinumab, binds IL-1β and prevent its interaction with IL-1R1 [91]. Anakinra is FDA approved for 

adults with rheumatoid arthritis who have failed one or more disease modifying antirheumatic drug 

(DMARD) and for the treatment of Neonatal Onset Multisystem Inflammatory Disease (NOMID). 

Randomized controlled trials of each of the medications have demonstrated their safety with 

infections occurring infrequently when used in these settings [92-98].  

Anakinra has been best studied in terms of treating other CSS, including macrophage 

activation syndrome and secondary hemophagocytic lymphohistiocytosis. It is a recombinant human 

protein with over 7,000 patient-years of favorable safety data. Anakinra has a short half-life of 4-6 

hours, can be given intravenously or subcutaneously, and works quickly. Anakinra also has a wide 

therapeutic window (effective with minimal adverse effects reported from 1-48 mg/kg/day, 

including use in patients with sepsis). Retrospective analysis of a large randomized clinical trial 

demonstrated that anakinra improved survival in sepsis patients with features of CSS (hepatobiliary 

dysfunction and disseminated coagulopathy) from 35% (placebo) to 65% [99]. An early case series of 

pediatric rheumatic disease patients with refractory CSS reported resolution in 12 out of 12 patients 

treated with anakinra [100]. More recently, a retrospective report of 44 children with 

rheumatologic, oncologic, and infectious etiologies of CSS reported 73% survival rate for those who 

received anakinra at any point during their hospitalization [101]. Further, anakinra has also been 

touted to effectively treat CSS in children requiring intensive care [102]. 

Importantly, for interpreting results and studies summarized below, measurement of IL-1β 

in peripheral blood compartments such as plasma and serum may not accurately reflect its biological 

activity in a variety of disease states. This is likely due in part to its short half-life and tight regulation 

of IL-1β’s activity in human immune responses via soluble-IL-1 receptors and IL-1Ra, among other 

regulators [103]. 

 

In vitro and animal data: Several SARS proteins (E protein, Protein 3a, and ORF8b) are shown in in 

vitro studies to activate the NLRP3 inflammasome. Protein 3A and E protein each activate the NLRP3 

inflammasome in LPS-primed mouse bone marrow derived macrophages and African green monkey 

kidney-derived vero cells, respectively [104-107]. 
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Human data: An association between IL-1β and SARS-associated immunopathology was made 

predominantly through measurement of serum/plasma IL-1β levels in SARS-CoV-1 infected patients.  

In general, these studies are limited by a lack of control groups and/or measurement of IL-1β at few 

or inconsistent time points post-infection [19, 108-110]. Immunohistochemistry of lung sections 

from autopsy specimens of four SARS patients did demonstrate elevated IL-1β expression in SARS-

infected cells [111]. 

Following several small case series [58, 60], two retrospective cohort studies have shown 

potential benefit for anakinra in the context of severe COVID-19.  Adult COVID-19 patients with 

moderate to severe ARDS and evidence of hyperinflammation (CRP ≥100mg/L or ferritin ≥900ng/mL) 

were treated with either iv or subcutaneous anakinra [112].  Comparison between the 29 subjects in 

the high dose iv anakinra treatment group and historical controls indicated improved survival in the 

treatment group at 21 days post treatment initiation (90%, anakinra; 50% standard, p=0.09) though 

mechanical ventilation free survival differences were not statistically significant. No differences in 

bacteremia rates or frequency of hepatic transaminase elevation were noted [112]. In a separate 

study in France, 52 adult patients with severe COVID-19 treated with subcutaneous anakinra were 

compared to 44 historical controls [86]. Anakinra-treated subjects had significant decreased 

frequency of the primary composite outcome of death or intensive care unit admission for 

mechanical ventilation (25% versus 73%) with difference remaining significant on multivariate 

analysis (HR 0.22; 95% CI 0.1-0.49). Thus, anakinra appears to be safe and may provide mortality 

benefit in the treatment of adult COVID-19 patients. Randomized clinical trials are needed to 

validate these findings. 

 

Potential risks: 

Adverse effects of anakinra are difficult to distinguish versus effects of the disease processes 

being treated but include hematologic suppression, infections, hypersensitivity reactions, and 

malignancies.  Those most commonly reported in pediatric studies include increased liver enzymes, 

which are usually self-limiting, but a few cases of acute liver failure have been reported. In addition, 

severe injection site reactions and cytopenias have been reported [113, 114]. Importantly for the 

discussion of high versus standard dose anakinra below, high dose anakinra was associated with 

increased risk of serious bacterial infection in a pooled analysis of studies enrolling adults with RA 

[115].   
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Dosing and practical considerations: 

 Though the majority of studies of anakinra have been performed using subcutaneous (SC) 

dosing route, iv administration is evolving as an option for the treatment of critically ill patients [99, 

116, 117]. The potential utility of iv anakinra in COVID-19 patients is highlighted by the above cited 

study in which low dose SC anakinra (100 mg twice daily in adult patients) did not produce either 

significant clinical or laboratory changes in a small subset of COVID-19 patients while the 5 mg/kg IV 

over 1 hour administered every 12 hours was associated with sustained clinical benefit [112]. 

Despite these encouraging results, stability data for iv anakinra are incomplete and caution is 

warranted in the use of iv anakinra. 

As noted above, measurement of IL-1 levels in peripheral blood is difficult and therefore not 

recommended during anakinra administration. For toxicity, close monitoring of AST and ALT should 

be performed as these can become elevated on anakinra therapy. In general, hepatic transaminase 

elevation resolves with discontinuation or lowering of dose. CBC with differential should be 

monitored to evaluate for anakinra-induced leukopenia and/or thrombocytopenia. Though 

increased infections are a reported risk with the use of anakinra, anakinra has a low rate of 

secondary infection risk and a long record of safety in clinical practice [115, 118, 119]. In the use of 

anakinra in COVID-19, tuberculosis screening is not needed to initiate therapy because of clinical 

urgency for therapy initiation.   

 

Glucocorticoids 

Guidance statement: 

Given their pleiotropic effects, glucocorticoids are used in a variety of inflammatory conditions and 

settings. As such, it is difficult to definitively support or discourage the use of glucocorticoids in all 

situations. Therefore, we have provided guidance for specific situations in the following section. 

Rationale: 

Given the concerns over immune dysregulation associated with COVID-19, glucocorticoids 

have been proposed and used as a potential treatment modality [120-122]. Glucocorticoids regulate 

the immune system in a broad and multimodal manner and block multiple signaling pathways that 

propagate inflammatory signals [123, 124]. During the early phase of the immune response, 

glucocorticoid-glucocorticoid receptor complexes attenuate the signaling of Toll-like receptors, 

inhibit the production of numerous pro-inflammatory cytokines [125], and dampen cytokine 

signaling [126]. Glucocorticoids also have a potent effect on cellular immunity, especially T cell 
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signaling and activation [127]. Overall, glucocorticoids are one potential therapeutic option for the 

treatment of COVID-19, but benefits offered by glucocorticoids in attenuating immune dysregulation 

must be balanced with their inhibitory effect on the immune response needed to control viral 

replication as well as the risk of opportunistic infections and associated side-effects. Glucocorticoids, 

however, are available readily and at low cost. 

Evidence summary: 

Given the numerous clinical uses for glucocorticoids and mechanisms by which they impact 

the immune system, we have limited this evidence summary to address prior data from SARS, and 

currently available data from COVID-19.  

Data regarding the efficacy of glucocorticoids in the treatment of SARS are difficult to 

interpret. Glucocorticoids were frequently used as part of many treatment protocols, each with 

different dosing regimens and varied times of treatment initiation; thus most studies did not contain 

placebo arms [128-137]. A systematic review of the treatment effects of multiple therapeutic 

modalities for SARS, including glucocorticoids, revealed that 13/15 studies examining the effect of 

steroids were inconclusive [138]. No studies showed clear benefit, and 2 studies showed possible 

harm. Ultimately, the authors concluded that “it is difficult to make a clear recommendation about 

whether [glucocorticoids] should be used to treat SARS-associated lung injury in any stage of illness, 

particularly as the drug is immunosuppressive and may delay viral clearance if given before viral 

replication is controlled” [138]. 

Peer-reviewed data evaluating the impact of steroids on COVID-19 treatment outcomes is 

limited, and comparative data is lacking. Glucocorticoids have been used frequently in critically ill 

patients  [13, 139, 140]. One retrospective cohort study of 201 adult patients with COVID-19 

identified risk factors for the development of ARDS and death from ARDS [141]. Sixty-two patients 

received methylprednisolone, but there were limited data on the dose and timing of initiation of 

therapy. For those patients with ARDS, treatment with methylprednisolone reduced the risk of death 

(hazard ratio, 0.38; 95% confidence interval, 0.20-0.72). However, these data should be interpreted 

with caution due to small sample size and risk of bias. 

An additional retrospective cohort study performed in a multicenter health system in 

Michigan showed potential benefit of early methylprednisolone initiation (median time to initiation 

of 2 days post admission, IQR 1-3 days) compared to a standard of care cohort with later 

corticosteroid initiation (median time to initiation of 5 days with IQR of 3-7 days). In this study, early 
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corticosteroid initiation was associated with decreased occurrence of escalation of care to ICU, 

mechanical ventilation, or death (adjusted OR 0.41; 95% CI 0.22-0.77) [142].  

Recently, data from the RECOVERY Trial, a randomized clinical trial evaluating the impact of 

treatment with dexamethasone in adults infected with SARS-CoV-2, were published [143]. A total of 

6,425 adults were enrolled, and 2,104 patients received 6 mg of dexamethasone daily for up to 10 

days. For the primary outcome of 28-day mortality, receipt of dexamethasone was associated with a 

significant decrease in mortality for those patients receiving invasive mechanical ventilation (29% 

versus 41%, rate ratio 0.64, 95% confidence interval 0.51 to 0.81) or for those patients who received 

supplemental oxygen but not mechanical ventilation (23% versus 26%, rate ratio 0.82, 95% 

confidence interval 0.72 to 0.94). Receipt of dexamethasone was also associated with lower risk of 

progression to invasive mechanical ventilation, and patients in the dexamethasone group had a 

shorter duration of hospitalization. There was no difference in 28-day mortality, however, for 

patients who were not receiving any respiratory support at the time of randomization. Conversely, 

there was a slight trend towards worse outcomes in those receiving no respiratory support 

(mortality 18% vs 14%). At time of writing, the pediatric portion of the RECOVERY trial is still 

enrolling patients.  

Similarly, results from a large (140 received glucocorticoids vs. 1,666 who did not) non-

controlled retrospective cohort comparison reported decreased mortality or mechanical ventilation 

(odds ratio 0.23; 95% CI, 0.08-0.70) in those with high CRP values (20 mg/dL or higher) receiving 

glucocorticoids within 48 hours of hospital admission [144]. However, mortality or mechanical 

ventilation was increased in those receiving glucocorticoids if the CRP was less than 10 mg/dL (odds 

ratio, 2.64; 95% CI, 1.39-5.03).  

Finally, it is worth noting that some centers are reporting their experience with a combined 

tocilizumab plus corticosteroid strategy for severe/critical COVID-19 patients [145, 146]. Current 

evidence is too limited to determine whether this strategy is truly safe, effective, and/or applicable 

to pediatric COVID-19 patients.  

Thus, there is evolving evidence to support benefit of corticosteroid treatment for critically 

ill adult patients with COVID-19. The degree to which findings from these studies are applicable to 

children with severe or critical COVID-19 is not clear at this point. Despite this uncertainty, 

glucocorticoid therapy could be considered in select clinical scenarios based on individualized risk-

benefit assessment. Scenario-specific guidance follows. We have not provided specific dosing 
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recommendations beyond the below guidance statements due to the lack of COVID-19 specific 

evidence for dosing at present. 

 

Scenario-Specific Guidance: 

Guidance Statement: 

Glucocorticoid therapy is not currently indicated for outpatients or hospitalized patients with mild or 

moderate COVID-19. 

Rationale: 

Based on currently available data, most SARS-CoV-2 infected children, even those with mild or 

moderate disease, will recover with supportive care. Based on SARS and MERS studies in which 

glucocorticoid recipients had delayed viral clearance [137, 147], administration of glucocorticoids 

may attenuate the immune response needed to clear viral infection. In addition, no evidence exists 

that glucocorticoid therapy prevents progression from mild/moderate to severe COVID-19. 

Therefore, the panel recommends against the use of glucocorticoids in children without symptoms 

or who have only mild or moderate disease. 

Guidance Statement: 

Glucocorticoid therapy may be considered for pediatric patients with critical COVID-19 with 

preference for use in the setting of clinical trials, if available.  

Rationale: 

As described above with regard to IL-6 and IL-1 inhibition, current evidence suggests that excessive 

inflammation plays a role in the immunopathology of acute critical COVID-19. Given the broad anti-

inflammatory effects of glucocorticoids, their use in the setting of critical COVID-19 may impart 

benefit, especially for children with critical COVID-19. Further, in settings in which other 

immunomodulatory therapies are not readily available for pediatric patients or in the setting of 

monoclonal antibody shortages, glucocorticoids may be the only option for immunomodulatory 

therapy for acute critical COVID-19. However, there is still a lack of strong evidence for benefit in the 

pediatric population and given the breadth of immunosuppression associated with glucocorticoid 

use in this setting and the risk for impairing antiviral immunity, caution is warranted especially when 

early post-onset of COVID-19 symptoms.  
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Guidance Statement: 

Diagnosis with COVID-19 does not preclude use of steroids when they are otherwise indicated (for 

example, in asthma or catecholamine-refractory shock). 

Rationale: 

Glucocorticoid therapy offers benefit in the treatment of many pediatric conditions such as 

asthma exacerbation or flares in inflammatory bowel disease [148, 149]. In the critical care setting, 

there is limited pediatric data surrounding the efficacy of glucocorticoids in septic shock, with 

published studies containing small numbers of children [150-152]. A recent meta-analysis evaluating 

the efficacy of glucocorticoids in sepsis included 42 published RCTs of which 3 enrolled only children 

and 1 enrolled both adults and children [153]. Pooled analysis showed that use of glucocorticoids 

may decrease both short-term and long-term mortality, though any effect is likely small. A recent 

Cochrane review included 61 RCTs, though only 8 trials included children [154]. The authors found a 

small reduction in 28-day mortality in the pooled analysis, though there was significant 

heterogeneity across trials. 

There is no high-quality pediatric data to support the routine use of glucocorticoid therapy 

for the treatment of sepsis without shock or shock that is responsive to fluid resuscitation or 

vasopressors. However, if a child with COVID-19 develops circulatory shock and remains hypotensive 

despite fluid resuscitation and titration of vasoactive drugs, use of glucocorticoids can be considered 

for treatment of critical-illness related corticosteroid insufficiency. This condition is characterized by 

dysregulated systemic inflammation resulting from inadequate glucocorticoid-mediated anti-

inflammatory activity relative to the severity of the patient’s critical illness [155]. Hydrocortisone is 

the synthetic form of cortisol, and there is significant experience with its use in the treatment of 

circulatory shock. Published dosing regimens in this setting are based dosing ranges for the use of 

hydrocortisone in pediatric adrenal insufficiency [152, 156]. Prior guidelines for critically ill adults 

with COVID-19 have also addressed this topic [157, 158].  

Potential Risks: 

Short-term use of glucocorticoids is associated with significant adverse effects, including 

hypertension and fluid retention, hyperglycemia, adrenal suppression, gastritis and gastrointestinal 

bleeding, posterior reversible encephalopathy syndrome [159], and psychosis [160, 161]. We 

recommend routine screening for electrolyte abnormalities, hyperglycemia and hypertension in 

hospitalized children receiving steroids. These studies are often part of routine care. After the 2003 

SARS pandemic, there were reports of avascular necrosis after treatment with glucocorticoids [162-
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166]. In symptomatic patients, or those at increased risk of avascular necrosis, screening with plain 

radiographs or MRI should be considered.   

Glucocorticoid therapy is also associated with immunosuppression and potentially increases 

the risk of secondary infection. In one recent meta-analysis of the use of glucocorticoids as 

adjunctive treatment for influenza, adults treated with glucocorticoids had increased odds of 

hospital-acquired infection, though the overall quality of evidence was low [167]. In addition, several 

reports of adult COVID-19 patients indicate risk for invasive pulmonary aspergillosis [168, 169]. 

Whether this risk is similarly present in children with COVID-19 remains unclear.  Regardless, 

monitoring for secondary infection should occur for all patients receiving glucocorticoids. 

Monitoring for drug-drug interactions is essential with glucocorticoid use. Glucocorticoids 

are metabolized through cytochrome P450, 3A4, one of the more common hepatic isoenzymes. If 

this isoenzyme is inhibited by another agent (e.g. macrolide, protease inhibitor), significantly 

increased glucocorticoid exposure can result. Alternatively, glucocorticoid exposure can also be 

significantly reduced by an inducer of CYP 3A4 such as rifampin requiring increased dosing to obtain 

the same effect [170]. 

 

JAK inhibition 

Guidance statement:  

JAK inhibitors should not be used for children with COVID-19 outside of clinical trials. 

Rationale: 

While there exists a theoretical rationale for the use of JAK inhibitors in severe COVID-19, 

the exact clinical impact of these drugs is difficult to predict, and it is unclear whether treatment 

with these agents would prove beneficial or harmful. Additionally, there are very little data 

supporting safety or efficacy in the use of JAK inhibitors for management of COVID-19. Moreover, 

data from use in other settings suggests the potential for impaired viral clearance as evidenced by 

herpesvirus reactivations on JAK inhibitor therapy [171].  Therefore, currently, we recommend 

against the use of these drugs for children with COVID-19 outside of clinical trials. 
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Evidence summary: 

Mechanism and current uses: The Janus kinases (JAKs) are a family of four tyrosine kinases (JAK1, 

JAK2, JAK3, and TYK2) that serve as intracellular signal transducers [172]. Following the binding of 

cytokines to types 1 and 2 cytokine receptors on the cell surface, JAKs initiate a cascade of 

intracellular signaling that leads to activation or suppression of gene transcription. More than 50 

cytokines signal via the JAK/STAT pathway to coordinate hematopoiesis, induce inflammation and 

control the immune response [172]. Cytokine receptor subunits bind specific JAKs, although some 

bind more than one. Complete receptors are thus associated with a pair of JAKs, and individual 

cytokines signal through a variety of JAK combinations. 

Given the key role played by JAKs in hematopoiesis and immune signaling, these enzymes 

are an important target for pharmacologic inhibition. Several oral small molecule JAK inhibitors have 

been recently developed, and these drugs have efficacy in treating a number of neoplastic and 

inflammatory conditions [173].  Emerging pediatric uses for these drugs include treatment of 

juvenile idiopathic arthritis [174], psoriasis [175], interferonopathies [175], and graft versus host 

disease [176, 177]. In addition to the above conditions, JAK inhibitors are also increasingly studied in 

the setting of CSS such as HLH and MAS [178-181]. In a small open-label series of five adults with 

secondary HLH, ruxolitinib initiation was temporally associated with improvement in cytopenias and 

declines in both ferritin and soluble-IL-2 receptor (sIL2R) [178].  

In vitro and animal data: Data summarizing key cytokines and pathways relevant for JAK inhibitors 

are discussed in other sections. 

Human data: A few small studies have evaluated the utility of JAK inhibitor therapy for COVID-19 in 

adults have recently been published. A single-blinded, randomized controlled trial of 43 adults with 

severe COVID-19 showed that ruxolitinib did not significantly enhance clinical improvement 

compared to placebo [182]. Ruxolitinib-treated patients in this study did show more rapid 

radiographic and more rapid recovery from lymphopenia as well as decrease in peripheral blood 

cytokine expression.   

In a small cohort study, fifteen adult patients hospitalized with COVID-19 (with 9 requiring 

ICU care and 4 requiring mechanical ventilation) received baracitinib treatment [183]. Twelve of the 

fifteen patients survived though no comparator group was provided in this analysis. Finally, in a 

multicenter study from Italy, 113 baracitinib-treated patients with moderate COVID-19 were 

compared to 79 historical controls that did not receive baracitinib [184]. ICU admission and mortality 
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at 2 weeks post-enrollment was decreased in the baracitinib versus control groups (ICU: 0.88% vs. 

17.9%, p=0.02; Mortality: 0% vs. 6.4%, p=0.01). 

 Thus, clinical evidence is lacking to strongly support the use of JAK inhibitors for COVID-19 

patients at this point. However, large prospective studies assessing both efficacy and adverse effects 

are needed prior to consideration for use of these medications in children.  

Potential risks:  

When studied for treatment of rheumatoid arthritis, JAK inhibitors have been shown to have 

a similar increased risk of infection compared to placebo as with biologic agents (e.g. adalimumab). 

However, increased risk of primary or reactivation of herpes simplex and varicella zoster virus 

infections has been specifically noted for JAK inhibitors [185, 186]. These agents have also been 

associated with anemia, lymphopenia or neutropenia (and thrombocytopenia in patients with 

myelofibrosis treated with ruxolitinib), and with elevated cholesterol and abnormal liver function 

tests [187]. These effects are generally mild but occasionally require drug dosage decrease, and in 

cases of moderate to severe lymphopenia or neutropenia, discontinuation of the drug. Indeed, a 

two-patient case series recently reported demonstrated adverse effects of ruxolitinib therapy for 

COVID-19, including anemia, thrombocytopenia, soft tissue infection, and herpes labialis [188]. 

Of note, baracitinib has a black box warning for potential increased risk of thrombosis which 

merits close attention in light of high reported incidence of thromboembolism in hospitalized COVID-

19 patients [189, 190]. 

Finally, several JAK inhibitor agents (fedratinib, ruxolitinib and tofacitinib, specifically) are 

considered strong substrates of CYP3A4, and therefore put patients at risk for multiple clinically 

relevant drug interactions including with –azole antifungals [191].  Of particular interest, care 

providers should use extreme caution in patient receiving potent CYP3A4 inhibitors (-azole 

antifungals) and potent inducers of 3A4 (phenobarbital and phenytoin) as this combination will likely 

cause subtherapeutic response or increase risks for adverse event with even single dose therapy. 

Dosing and practical considerations: 

There are no current FDA approved indications for JAK inhibitors in pediatric patients and 

pediatric doses are not well established.  Although there are some pharmacokinetic data for 

ruxolitinib and tofacitinib, we do not suggest their use outside of clinical trials and therefore 

potential dosing and other considerations are not provided.  
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Convalescent plasma therapy 

Guidance statement:   

Use of convalescent plasma (CP) in pediatric COVID-19 may be considered as part of the recently 

established FDA eIND program if in the United States or as part of a clinical trial. 

Rationale: 

There is a large body of literature spanning over a century describing the use of passive 

immunization in the treatment of influenza, poliomyelitis, measles, hepatitis B, CMV, Ebola and 

other viral illnesses. An additional body of literature from animal studies provides supportive 

rationale for this approach. The efficacy of passive transfer of convalescent plasma (CP) is thought to 

be mediated primarily through viral neutralization, although other mechanisms such as stimulation 

of antibody-dependent cellular cytotoxicity and enhanced phagocytosis have also been posited 

[192]. While the passive transfer of polyclonal antibodies via convalescent plasma may be of benefit, 

no SARS-CoV-2-specific monoclonal antibody therapies have yet been clinically tested. 

Evidence summary: 

With respect to coronaviruses, use of CP was trialed in MERS and more extensively in SARS [193-

195]. While the SARS case series suggested possible benefit from CP for patients (especially those 

treated before day 14 of illness), the true efficacy of this approach remains difficult to ascertain due 

to lack of control groups, study biases, and use of concomitant therapeutics, all of which confound 

the interpretations; nonetheless, two meta-analyses of the published case series did not reveal 

significant harm [138, 196]. With respect to SARS-CoV-2, plasma collected from patients in the 

convalescent phase of infection has been used as an empirical treatment in small numbers of 

patients with severe COVID-19 disease, with some laboratory improvements and disease mitigation 

observed [197-201].  A small randomized controlled trial has also been conducted, although, was 

stopped early due to challenges with enrollment [202].  

Human data: Two studies demonstrate that while the patterns of development of IgM and IgG can 

differ among different individuals, nearly all COVID-19 patients eventually do develop appreciable 

antibody titers [203, 204]. These and other studies collectively show that the titers of SARS-CoV-2-

specific antibodies appear to be stable over the few ensuing weeks and that the majority of the 

neutralizing antibodies are directed against the spike protein, and specifically the portions of this 

protein that are responsible for the binding of virus to the ACE2 receptor. As such, these studies 
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suggest that the CP of many COVID-19 patients may contain sufficient quantities of neutralizing 

antibodies for therapeutic utility. 

There have been several  case reports and series  examining passive transfer of CP to COVID-

afflicted adult patients with moderate to critical disease [197-201, 205, 206]. Not all of these case 

series reported the titers of SARS-CoV-2 antibodies in the transferred plasma. Most of these case 

series reported that subsequent to CP, most patients displayed stabilization or improvement of 

disease, as evidenced by resolution of fever, decreases in C-reactive protein and inflammatory 

cytokine levels, and improved radiographic findings; in some cases these improvements resulted in 

the extubation of mechanically ventilated patients and weaning from ECMO support. However, in 

one case series, in which patients were treated with CP at a median time of 21.5 days from detection 

of SARS-CoV-2, 5 of 6 patients eventually died [206], even though the virus could no longer be 

detected. While the numbers of patients reported to have been treated with CP to date are too 

small to draw any definitive conclusions, similarly to the use of CP in SARS-CoV-1 [193], these reports 

do suggest that if CP is to be effective, it may need to be used earlier in the course of disease. The 

largest case series to date, including 5000 hospitalized adults at several centers across the United 

States, demonstrated only 36 severe adverse events, with only 2 of these severe adverse events 

judged to be definitively related to the infusion of convalescent plasma (Joyner et al JCI). This study 

was not designed to evaluate the efficacy of convalescent plasma.  

As of July 2020, a single randomized controlled trial has evaluated convalescent plasma for 

SARS-CoV-2 [202]. This trial enrolled 103 patients with severe or life-threatening COVID-19 but was 

discontinued early due to poor accrual and thus was not powered sufficiently to answer questions of 

efficacy. There was no clinically significant difference found in the primary measure of time to 

clinical improvement. Similarly, no significant difference was identified in 28-day mortality or time to 

discharge. However, convalescent plasma infusion was associated with a statistically significant 

negative conversion rate of viral RT-PCR at 72 hours post infusion.  

There is a single case report of the use of convalescent plasma for a pediatric patient [207]. 

A 6-year-old child with severe aplastic anemia and SARS-CoV-2 was treated with convalescent 

plasma without adverse effects and with improvement of SARS-CoV-2 related symptoms.   

It is encouraging that none of the studies to date have revealed significant adverse effects, 

or evidence of antibody-dependent enhancement (ADE) of infection. Unfortunately, the use of this 

therapeutic approach has yet to be systematically evaluated in pediatric populations.  
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Potential Risks:  There are a number of potential risks associated with the use of convalescent 

plasma therapy, including those that may result from the transfer of immunoglobulins, and those 

that may ensue from transfusion of human blood products. As noted above, current reports indicate 

that CP-infusion is generally safe. Therefore, we focus below on immunoglobulin-dependent risks 

including ADE and exacerbation of deleterious immune responses, as well as the potential for 

inhibiting the development of effective humoral immunity.  

ADE is a phenomenon in which complement pre-existing (or transferred) virus-specific 

antibodies could increase the entry of virus into cells expressing Fc receptors; ADE has been 

demonstrated to occur in a variety of viruses in vitro and in animal studies, and postulated to occur 

with coronaviruses [208]. ADE is believed to occur with sub-neutralizing or non-neutralizing 

antibodies and higher viral titers. Notably, ADE has not been demonstrated in the passive transfer of 

convalescent plasma in patients infected with SARS-CoV-1 and MERS. Yet, the risk of ADE still 

remains a concern since some patients who have recovered from mild COVID-19 may have delayed 

development of significant titers of neutralizing antibody titers against SARS-CoV-2, and since not all 

current convalescent plasma protocols mandate the use of cutoffs for neutralizing antibody titers 

[192, 209]. In addition to ADE, transfer of virus-specific antibodies may also exacerbate the 

inflammatory response and lead to further lung injury; this was demonstrated in vitro and in a SARS-

CoV-1 macaque infection model [210]. Another theoretical concern is that use of exogenous 

immunoglobulins may inhibit endogenous development of adequate titers of high affinity antibodies 

that could protect the patient from re-challenge with the same virus, as has been demonstrated with 

respiratory syncytial virus [211, 212].  

In addition to the antibody-mediated concerns, there are risks associated with transfer of 

human blood products. These include transmission of infectious pathogens (SARS-CoV-2 and other 

viruses, as well as parasites such as Babesia spp. or Trypanosoma cruzi), and transfusion-related 

reactions including anaphylaxis, hemolysis, or transfusion-related acute lung injury (TRALI) or 

transfusion related acute cardiac overload (TACO) [213]. While passive immunotherapy protocols all 

include measures to minimize the possibility of such harm, some cannot be predicted or prevented, 

thus necessitating close monitoring in the days to weeks following therapy. 
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Dosing and practical considerations: 

The United States Food and Drug administration has provided guidance [209] for the use of 

CP as an investigational product. CP is currently being employed in the US either under the auspices 

of a clinical trial, via single patient emergency IND, or under a national Expanded Access Treatment 

Protocol being administrated by the Mayo clinic (Rochester, MN; uscovidplasma.org). Donors are 

eligible if they are otherwise of good health, free of other chronic viral or parasitic diseases (as 

stated above), and have prior documentation of positive SARS-CoV-2 RT-PCR test and have 

recovered (without symptoms for 4 weeks, or in the absence of symptoms for 2 weeks but with 

documented negative SARS-CoV-2 RT-PCR testing). The plasma of donors with history of prior 

pregnancies or prior transfusions of blood products must test negative for anti-HLA or -platelet or -

neutrophil antibodies. In the US, the American Red Cross provides detailed guidance for potential 

donors, and similar guidance is provided by the European Commission for health and food safety in 

the EU. Doses of CP administered to adults have ranged between 200-600mL; it is recommended 

that children over 40kg be dosed with 200-500mL and children under 40kg be dosed with 10-

15mL/kg, while being cognizant of volume overload – especially in children with cardiac dysfunction. 

IVIG 

Guidance statement: 

We do not currently recommend use of IVIG for treatment of acute COVID-19 in pediatric patients 

with the exception of specific clinical scenarios in which IVIG is typically used. Importantly, our 

recommendations do not apply to the use of IVIG in the treatment of MIS-C. 

Rationale: 

Studies to suggest a benefit for IVIG treatment in COVID-19 are not available. Therefore, 

IVIG is not indicated in the majority of pediatric cases. A recent study, however, has shown that lots 

available from the USA and other parts of the world may variably contain antibodies to SARS-CoV-2. 

Whether these are neutralizing antibodies or are clinically insignificant is difficult to discern at this 

time and future clinical trials are needed to prove any potential benefit for their use in patients with 

COVID-19 [214]. 
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Evidence Summary: 

Mechanism and current uses: Immunoglobulin (IG) for intravenous (IV) administration, commonly 

referred to as IVIG, although licensed in the US as IGIV, contains pooled immunoglobulin G (IgG) 

from the plasma of thousands of blood donors and contains more than 95% unmodified IgG, and 

various amounts of IgA depending on the formulation. IVIG is an immunomodulating agent that 

produces effects on many components of the innate and adaptive immune system including the 

following: inhibition of complement activation, saturation of Fc receptors on macrophages [215] and 

suppression of inflammatory mediators [216].  Specific humoral effects include inhibition of B-cell 

differentiation, induction of B-cell apoptosis, down-regulation of specific auto-reactive B-cells, and 

overall inhibition of antibody production. IVIG also induces the expansion of regulatory T cells 

(Tregs) and downregulates the expansion of Th17 cells [217].  

 Currently, the FDA has approved the use of IVIG in different clinical conditions: replacement 

of IgG in primary and secondary immunodeficiency disorders; prevention of coronary aneurysms in 

Kawasaki disease; chronic inflammatory demyelinating polyneuropathies and multifocal motor 

neuropathy to improve neuromuscular disability; and to improve platelet counts in immune-

mediated thrombocytopenia [218].IVIG has also been used as an adjunct treatment in HLH along 

with other specific anti-cytokine therapy [102, 219]. 

In vitro and animal data: Assessment of the role of IVIG in SARS, MERS, or COVID-19 has not been 

evaluated through in vitro or animal model studies. 

 

Human data: In the SARS-CoV-1 outbreak, thrombocytopenia was reported to occur in up to 55% of 

patients and was identified as a significant risk factor for mortality. The etiology of this 

thrombocytopenia was likely multifactorial, but may have been immune complex mediated  [220]. 

While no data is available regarding IVIG use in the setting of SARS-CoV-1 or MERS infection, several 

other viral infections (e.g., HIV, hepatitis C, parvovirus B19 and Zika virus) may be associated with 

secondary ITP and IVIG has been used as therapy in these settings. Among 5 patients with severe 

thrombocytopenia with Zika virus who received IVIG, the median platelet count increase was 112 

×109/L, in contrast to the median increase of 8.5 ×109/L in the 4 patients who received platelet 

transfusions [221]. 

Since severe thrombocytopenia may be associated with increased mortality in COVID-19 

disease [12, 222], there may be a role for IVIG in treatment regimens for pediatric COVID-19 patients 

with thrombocytopenia. However, a causal relationship between thrombocytopenia and COVID-19-
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associated mortality is not established and the mechanisms for COVID-associated thrombocytopenia 

are not known. Therefore, benefit of IVIG in the care of pediatric COVID-19 patients is not defined. 

Potential Risks:   

Given the nature of the product and its source, immediate hypersensitivity and infusion 

related reactions such as headaches, flushing of the face, malaise, chest tightness, fever, chills, 

myalgia, dyspnea, nausea, vomiting, diarrhea, change in blood pressure, and tachycardia may occur 

and may be more likely in IgA-deficient patients who are receiving products that contain IgA [218]. 

Most of these reactions can be managed or resolved by appropriate premedication regimens and 

slowing rates of infusion. Renal injury may be more likely in those with preexisting renal disease, 

volume depletion, sepsis and concomitant nephrotoxic drug usage, and may also be specific to the 

IVIG product used. Other specific considerations should include thromboembolism and volume 

considerations with administration of IVIG, especially in patients with underlying cardiac disease. 

Dosing and Practical Considerations:  

Dosing recommendations for IVIG vary by indication.  Therefore, we do not provide 

extensive dosing guidance here. In pediatric patients with macrophage activation syndrome-related 

CSS an IVIG dose of 2 g/kg has been used [223]. A recent publication reported IVIG dosing of 0.3-0.5 

mg/kg x5 days in a case series of COVID-19 patients [224].  

 

Interferons 

Guidance statement: 

Type I or type III interferon (IFN) should not be used for pediatric COVID-19 patients outside of a 

clinical trial. 

Rationale: 

Type I IFNs have been used in the management of coronaviruses such as MERS-CoV and 

SARS-CoV-1. Although there are some compelling in-vitro and pre-clinical animal model work to 

show potential benefit, human studies using type I IFNs in MERS-CoV and SARS-CoV-1 were either 

inconclusive or did not shown benefit. Yet, studies with IFN- have shown promising pre-clinical 

data, and better tolerability and safety profile. Currently, for SARS-CoV-2, there are several ongoing 

clinical trials to evaluate the efficacy of both type I and type III IFNs in therapeutic and prophylactic 

setting. 
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Evidence summary: 

Mechanism and current uses: Interferons are critical proteins involved in immune activation and 

regulation. There are three types of interferons: type I, type II and type III. Type I IFN includes IFN-

and -, Type II interferon is IFN- and Type III includes IFN-. While type I interferon is 

produced by all cell types, plasmacytoid dendritic cells, fibroblasts, and monocytes are among the 

main sources  [225]. Type I IFN secretion is induced by any cell type upon encountering viral 

signatures. In addition, type I IFNs enhances the clearance of virally infected cells by cytotoxic CD8 T 

cells by increasing the expression of MHC class I. Other effects that further enhance antiviral 

responses include the activation of dendritic cells, macrophages and NK cells, and the induction of 

the production of chemokines such as CXCL9, -10, and -11 [225]. Unlike the ubiquitously expressed 

IFN- receptor, the IFN- receptor is expressed in epithelial cells and a subset of immune cells, 

including neutrophils [226, 227]. Based on its receptor expression, it is thought that type III IFN 

responses have critical roles in epithelial and mucosal antiviral immunity [226, 227]. When used in 

patients, IFN- due to limited expression of its receptor in the immune compartment results in less 

systemic side effects than type I IFN therapy [228].  

Type I IFN has been extensively used in the management of Hepatitis B and C infections. Due to 

side effects, modest efficacy, and the advent of effective antivirals, the use of IFN- has decreased in 

the management of hepatitis B [229, 230]. Additionally, IFN- has also shown clinical efficacy similar 

to Type 1 IFN in the management of hepatitis C [228].   

In vitro and animal data: In vitro studies have shown IFN- and - have antiviral activity. However, 

IFN- has a more potent coronavirus suppression activity than IFN-α *11-13]. Studies in murine 

models have shown that IFN- in combination with antivirals improves pulmonary function but does 

not reduce viral replication or severe lung pathology [14]. Similar reduction in mortality was also 

noted in non-human primates treated with IFN-β1b following MERS-CoV infection [15]. 

Though there are no corresponding coronavirus murine model studies with IFN-, murine 

models of influenza A virus (IAV) infection showed promising results. IFN-λ treatment resulted in 

enhanced epithelial barrier function and suppressed initial viral spread without activating the 

systemic effects seen with IFN-α therapy *16, 17+. Importantly, while IFN-λ treatment of IAV-infected 

mice lowered the viral load and protected from disease, treatment with IFN-α decreased the viral 

load but exacerbated disease [16]. 

Human data: It was recently suggested that one component of SARS-CoV-2-related 

immunopathology is insufficient robust type I, II or III IFN response [54-57, 231]. This finding along 

with the known antiviral properties of both type I and type III IFN form the basis of its use in SARS-
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CoV-2 [232]. Currently, there is only one published clinical trial of IFN therapy in COVID-19  [233]. In 

this multicenter, open-label randomized study in Hong Kong, 41 control subjects received lopinavir-

ritonavir and 86 adult subjects received intervention therapy with lopinavir-ritonavir as well as oral 

ribavirin and subcutaneous IFN-β1b. Subjects were comparable with regard to clinical and laboratory 

characteristics and underwent treatment initiation a median of 5 days after symptom onset. 

Subjects in the group receiving the addition of ribavirin and IFN-β1b to lopinavir-ritonavir had 

shorter time to complete symptom resolution and shorter time to negative nasopharyngeal swab 

compared to the control group. Further studies of interferon-β are ongoing, including with 

administration via inhalation which may decrease systemic side effects (NCT04385095). 

 

Potential Risks: 

Therapy with Type I or Type III IFN is associated with a variety of common adverse effects 

including fatigue, anorexia, nausea, diarrhea, alopecia, fever, rigors, headache, and myalgia [228, 

234].  Additionally, neuropsychiatric events including depression are reported [235]. Finally, 

neutropenia and anemia are also reported.  

Additionally, there is theoretical risk for worsening disease with the use of interferon 

therapy. As morbidity due to COVID-19 appears to be due in large part to hyperinflammation, 

potential exists for interferon therapy to result in enhanced inflammation and thereby lead to 

worsening of the CSS[120]. Further, there is a concern that Type I and III IFNs may impair successful 

antibacterial immune responses and thereby contribute to increased susceptibility to secondary 

bacterial infections [236, 237]. 

Practical Considerations: 

As we do not suggest use of interferon therapy in pediatric COVID-19 patients, potential 

dosing and other considerations are not provided. 

Other/Emerging Therapies 

In addition to the above described immunomodulatory therapies, a number of other agents 

and immune pathways are being evaluated for treatment of COVID-19. These include 

immunosuppressive medications traditionally used in the setting of solid organ or hematopoietic cell 

transplantation, such as tacrolimus (NCT04341038), sirolimus (NCT04341675, NCT04371640), and 

CTLA4-Fc fusion molecules. The anti-IFN-γ antibody, emapalumab, has recently been demonstrated 

to have efficacy in the treatment of pediatric primary HLH [238] and is also being evaluated in the 

treatment of COVID-19 (NCT04324021). 
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Conclusions 

Current data demonstrate that the vast majority of pediatric patients with acute COVID-19 

recover from their initial illness without significant morbidity or mortality. However, a subset of 

pediatric patients progresses to severe or critical acute COVID-19 and may benefit from the use of 

immunomodulatory therapies that are currently being evaluated in adult COVID-19 patients. Given 

the paucity of randomized controlled trials of immunomodulatory therapies for COVID-19 in 

pediatric patients, we have provided the above guidance to support pediatric subspecialists caring 

for severely and critically ill pediatric COVID-19 patients.  Randomized controlled trials of 

immunomodulatory therapies for pediatric acute COVID-19 are needed.  
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 Table 1. Suggested COVID-19 illness severity categories (modified from [45]) 

Disease category Clinical support requirement 

Mild/Moderate No new or increased supplemental oxygen requirement. 

Severe New or increase from baseline supplemental oxygen requirement 
without need for new or increase in baseline non-invasive/invasive 
mechanical ventilation. 

Critical New or increased requirement for invasive or non-invasive mechanical 
ventilation, sepsis, or multi-organ failure; OR rapidly worsening clinical 
trajectory that does not yet meet these criteria. 

Comments: 
Non-invasive mechanical ventilation includes high-flow nasal canula, continuous positive airway pressure (CPAP), or bilevel 
positive airway pressure (BiPAP). 
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Table 2: Summary of Guidance Statements for Immunomodulatory Use in Acute COVID-19 Pediatric Patients 

I. ARE IMMUNOMODULATORY AGENTS INDICATED IN CHILDREN WITH COVID-19?  
We emphasize that the vast majority of children with COVID-19 will recover from the acute phase of infection 
with supportive care. Enrollment in clinical trials of immunomodulatory therapy for COVID-19 is preferred. In 
the absence of available clinical trials, use of immunomodulatory therapy for COVID-19 may be considered in 
compliance with local institutional policies on consent for experimental and/or off-label treatment. 

II. WHAT CRITERIA DEFINE THE PEDIATRIC POPULATION IN WHOM IMMUNOMODULATORY USE MAY BE 
CONSIDERED? 

We suggest that immunomodulatory therapy only be used for pediatric patients in the setting of confirmed 
critical COVID-19 (SARS-CoV-2 PCR positive) with evidence of hyperinflammation (Table 4). In addition, 
pediatric COVID-19 patients with hyperinflammation whose pace of illness progression suggests imminent 
progression to critical COVID-19 may be considered for immunomodulatory treatment. Use of 
immunomodulation for pediatric COVID-19 should be performed in consultation with specialists familiar with 
these medications. 

III. WHICH IMMUNOMODULATORY AGENTS SHOULD BE CONSIDERED? 

 There are no immunomodulators with proven efficacy for the treatment of COVID-19 in pediatric patients as 
of 24 July 2020. Therefore, no guidance can be provided to support the use of one immunomodulatory 
therapy over another. 

 If immunomodulators are used in the treatment of COVID-19, patients should be monitored for adverse 
effects.  

Note: The order of discussion of each category below does not denote an order of preference. 
A. IL-6 inhibition 
IL-6 inhibition may be considered in the care of pediatric patients with critical COVID-19 with priority given to 
clinical trial enrollment if available. 
B. IL-1 inhibition 
IL-1 inhibition may be considered in the care of pediatric patients with critical COVID-19 with priority given to 
clinical trial enrollment if available. If IL-1 inhibition is used as a treatment modality for pediatric COVID-19 
patients, we suggest the use of anakinra based on its safety profile and favorable pharmacokinetics. 
C. Glucocorticoids 
Given their pleiotropic effects, glucocorticoids are used in a variety of inflammatory conditions and settings. As 
such, it is difficult to definitively support or discourage the use of glucocorticoids in all situations. Therefore, 
we have provided guidance for specific situations in the following section. 

 Glucocorticoid therapy is not currently indicated for outpatients or hospitalized patients with mild or 
moderate COVID-19. 

 Glucocorticoid therapy may be considered for pediatric patients with critical COVID-19 with preference for 
use in the setting of clinical trials, if available.  

 Diagnosis with COVID-19 does not preclude use of steroids when they are otherwise indicated (for example, 
in asthma or catecholamine-refractory shock). 

D. JAK inhibition 
JAK inhibitors should not be used for children with COVID-19 outside of clinical trials. 
E. Convalescent plasma therapy 
Use of convalescent plasma in pediatric COVID, may be considered as part of the recently established FDA 
eIND program if in the United States or as part of a clinical trial. 
F. IVIG 
We do not currently recommend use of IVIG for treatment of acute COVID-19 in pediatric patients with the 
exception of specific clinical scenarios in which IVIG is typically used. Importantly, our recommendations do 
not apply to the use of IVIG in the treatment of MIS-C. 
G. Interferons 
Type I or type III IFN should not be used for pediatric COVID-19 patients outside of a clinical trial. 
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Table 3: Comparison of Clinical, Laboratory, and Treatment Features of Hyperinflammatory 

Syndromes 

Hyperinflammat
ory Syndrome 
Characteristics 

Familial 
Hemophagocytic 

Lymphohistiocyto
sis 

(fHLH) 

Macrophage 
Activation 

Syndrome (MAS, 
Rheumatologic 

HLH) 

Cytokine Release 
Syndrome (CRS,  
Iatrogenic HLH) 

Respiratory Virus 
associated 
MAS/HLH  
(RV-HLH) 

Cytokine Storm 
Syndrome (CSS) 
in the context of 
acute COVID-19  

Clinical Settings Genetic defects in 
cytotoxicity 

Underlying 
rheumatologic 
condition (sJIA, 
AOSD, SLE) 

Administration of 
chimeric antigen 
receptor T-cells 
(CAR-T cells) 

Respiratory 
viruses (including 
influenza, 
adenovirus) 

Infection with 
SARS-CoV-2 

Clinical Features Early age of onset, 
fever, HSM, CNS 
disease, rash, 
hypoxia and ARDS 

Fever, HSM, 
lymphadenopathy
, CNS disease, 
rash, hypoxia and 
ARDS, cardiac 
disease 
Rare: Kawasaki 
disease 

Fevers, 
vasodilatory 
shock, capillary 
leak, hypoxia and 
ARDS, 
neurotoxicity, 
heart failure and 
arrythmias, HSM 
(occasionally) 

Fevers, hypoxia 
and ARDS, HSM 

Fever, ARDS, 
heart failure and 
arrythmias, 
blood clots, 
stroke, CNS 
disease 
 

Laboratory 
Features 

Pancytopenia; 
elevated CRP, 
ferritin, PT/PTT/D-
dimer, AST/ALT, 
bilirubin, LDH, 
triglycerides, 
BUN/Cr, sIL2Ra; 
low fibrinogen, 
albumin; 
hemophagocytosis  

Elevated CRP, 
ferritin, PT/PTT/D-
dimer, AST/ALT, 
bilirubin, LDH, 
triglycerides, 
BUN/Cr sIL2Ra; 
hemophagocytosi
s 

Elevated CRP, 
ferritin, 
PT/PTT/D-dimer, 
AST/ALT, 
bilirubin, LDH, 
BUN/Cr, sIL2Ra; 
low fibrinogen, 
albumin; delayed 
hematopoiesis 

Elevated CRP, 
ferritin, PT/PTT, 
AST/ALT, bilirubin  

Lymphopenia, 
thrombocytopen
ia; pancytopenia 
(rare); elevated 
neutrophil %, 
CRP, ferritin, 
PT/PTT/D-dimer, 
AST/ALT, 
bilirubin, LDH, 
BUN/Cr, cardiac 
troponin I; low 
fibrinogen, 
albumin; 
RNAemia 

Pathogenic 
Cytokines and 
Chemokines 
Associated with 
Hyperinflammati
on 

IFN, IL6, IL8, IL-
10, IL12, IL18, TNF, 
CCL3, CXCL9 

IFN, IL1β, IL2, IL6, 
IL18, TNF (in SLE-
MAS), CXCL9 

IFN, IL6, IL8, 
IL15, GM-CSF, 
CCL2, CCL3, CCL4 

Unclear IFN, IL1β, IL2, 
IL6, IL7, IL17, 
TNF, G-CSF, GM-
CSF, CCL2, CCL3, 
CCL7, CXCL9, 
CXCL10 

Genetic 
Predisposition 

Biallelic LOF in 
genes critical for 
cytotoxic granule 
release and 
function (PRF1) 

Pathogenic gene 
variants resulting 
in inflammasome 
GOF; 
Heterozygous LOF 
or polymorphism 
in cytotoxic genes 

Heterozygous 
PRF1 variants 
(rare) 

Heterozygous 
missense variants 
in PRF1 and LYST 
identified 

Unknown 

Diagnostic or 
Grading Criteria 

HLH-2004, MH 
score (MAS vs 
HLH) 

MH score, MS 
score and 
ferritin:ESR ratio 
(MAS vs active 
soJIA) 

ASTCT Consensus 
Grading for CRS 

No consensus, 
some diagnosed 
with HLH-2004 

Unknown; 
difficult to 
differentiate 
from COVID-19 
ARDS 

Treatment Glucocorticosteroi
ds, etoposide, 
emapalumab, 
ruxolitinib, HCT 

Anakinra, 
glucocorticosteroi
ds, ruxolitinib, 
IL18-BP 

Tocilizumab, 
glucocorticosteroi
ds 

Unknown, cases 
improved with 
glucocorticosteroi
ds 

Unknown 

Comments fHLH driven by 

IFN production by 
cytotoxic cells; 
Requires HCT for 
cure 

MAS distinguished 
and driven by IL1 
or IL18; 
IL18/CXCL9 ratio 
used to 

IL6 most strongly 
associated with 
severe CRS, IL1 
may also be 
important with 

Hemophagocytos
is identified in 
bone marrow, 
spleen, and/or 
lymph nodes in 

No HSM; 
hemophagocyto
sis seen in SARS-
CoV-1 
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differentiate MAS 
vs fHLH 

murine studies 
suggesting role in 
both CRS and 
neurotoxicity; no 
hemophagocytosi
s 

fatal cases; 
hyperferritinemia 
not always 
present 

Abbreviations: ASTCT, American Society for Transplantation and Cellular Therapy; HCT, Hematopoietic Cell Transplant; 
HSM, hepatosplenomegaly; fHLH, familial HLH; HLH, hemophagocytic lymphohistiocytosis; MAS, macrophage activation 
syndrome; CSS, cytokine storm syndrome,  soJIA, systemic-onset juvenile idiopathic arthritis; SLE, systemic lupus 
erythematosus; AOSD, adult-onset Still’s disease; ARDS, acute respiratory distress syndrome; LOF, loss of function; GOF, 
gain of function; CNS, central nervous system 
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Table 4:  Clinical and Laboratory Features for Considering the Use of Immunomodulatory Therapy 

for Critical COVID-19 in Pediatric Patients 

Characteristic Comments 

Evidence for Hyperinflammatory State 

Clinical Signs 

 Sustained or Recurrent fever 

 Hepatomegaly 

 Splenomegaly and/or Lymphadenopathy 

 Fever is likely most informative in the setting of 
other features of hyperinflammation described 
below 

 Consider evaluation for concurrent viral, 
bacterial, or fungal infection  

Laboratory 

 Elevated ferritin and/or CRP 

 Decreased fibrinogen 

 Elevated serum IL-6 or other pro-
inflammatory cytokines 

 Other CSS associated labs (elevated sIL2R, 
sCD163, or Triglycerides) 

 Very likely to be non-specific in isolation 

 Specific values indicating need for 
immunomodulation are not currently known 

 Many labs will not have clinically actionable 
turnaround time for serum cytokines and some 
CSS associated labs 

 

Rapid Deterioration and/or Presence of or risk for Organ Failure 

Cardiac 

 Elevated BNP or troponin 

 Persistent hemodynamic instability non-
responsive to standard pressor support 

 Elevated lactate after appropriate fluid 
resuscitation 

 Evidence of cardiomyopathy by 
echocardiogram 

 Life-threatening arrhythmias 

 Evaluation for confounding causes of organ 
dysfunction or failure (e.g. other infections, 
medication effects, etc.)  

 Attention should be given to the pace of clinical 
worsening. Patients progressing rapidly to 
severe COVID-19 may be at risk for further 
progression to critical COVID-19. 

 

Respiratory 

 Abnormal PaO2/FiO2 ratio or SpO2/FiO2 

 Rapidly escalating supplemental oxygen 
requirement 

 New mechanical ventilation requirement 

 

Coagulopathy 

 Elevated D-dimer 

 Thrombocytopenia 

 Prolonged PT or PTT 

 Decreasing fibrinogen 

Neurologic 

 Altered mental status 

Hepatic 

 Evidence of coagulopathy (see above) 

 Elevated bilirubin, GGT, and/or 
transaminases  

Renal 

 Decreased creatinine clearance 

Abbreviations: BNP, brain natriuretic peptide; CRP, C-reactive protein; CSS, cytokine storm 
syndrome; PT, prothrombin time; PTT, partial thromboplastin time; GGT, gamma-glutamyl 
transferase 

 


