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Abstract: In this paper, we present the recent progress in the experimental studies of the electrical
conductivity of dominant nominally anhydrous minerals in the upper mantle and mantle transition
zone of Earth, namely, olivine, pyroxene, garnet, wadsleyite and ringwoodite. The main influence
factors, such as temperature, pressure, water content, oxygen fugacity, and anisotropy are discussed in
detail. The dominant conduction mechanisms of Fe-bearing silicate minerals involve the iron-related
small polaron with a relatively large activation enthalpy and the hydrogen-related defect with
lower activation enthalpy. Specifically, we mainly focus on the variation of oxygen fugacity on the
electrical conductivity of anhydrous and hydrous mantle minerals, which exhibit clearly different
charge transport processes. In representative temperature and pressure environments, the hydrogen
of nominally anhydrous minerals can tremendously enhance the electrical conductivity of the
upper mantle and transition zone, and the influence of trace structural water (or hydrogen) is
substantial. In combination with the geophysical data of magnetotelluric surveys, the laboratory-based
electrical conductivity measurements can provide significant constraints to the water distribution in
Earth’s interior.

Keywords: electrical conductivity; impedance spectroscopy; mantle; olivine; pyroxene; garnet;
wadsleyite; ringwoodite; high-pressure; high-temperature

1. Introduction

Results in the geophysical field observations from magnetotelluric (MT) and geomagnetic deep
sounding (GDS) surveys have already confirmed the existence of anomalous high electrical conductivity
(EC) zones (conductivities: 10−1–10−2 S/m), in the global and regional geotectonic units of the Earth’s
interior [1,2]. In order to reasonably interpret and extrapolate these observed phenomena of high EC
anomalies, the in-situ measurements of laboratory-based EC of minerals and rocks are indispensable
under controlled temperature and pressure conditions. Electrical conductivity is a temperature-
and pressure-dependent intensive physical property of minerals, which largely depends on the
physicochemical behavior of Earth’s and other terrestrial planets’ deep interior, and varies with
depth [3,4]. In particular, EC is affected by several factors such as elements diffusion coefficients [5,6],
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electronic spin transition [7,8], crystallographic anisotropy [9,10], distribution of water and other volatile
elements [11,12], partial melting [13,14], dehydration of minerals and rocks [15–17], pressure-induced
structural phase transitions and metallization [18,19], etc.

Over the last twenty years, there has been a large number of research groups involved in measuring
the EC of minerals in the upper-mantle and mantle transition zone using the electrical impedance
spectroscopy (EIS) technique, combined with multi-anvil high-pressure devices. It is worth mentioning
a few representative laboratories, such as the High-pressure Laboratory in the Department of Geology
and Geophysics at Yale University, the Key Laboratory of High-temperature and High-pressure Study
of the Earth’s Interior (HTHPSEI) in Institute of Geochemistry at Chinese Academy of Sciences, the
Bayerisches Geoinstitut at University of Bayreuth, the Institute for Study of the Earth’s Interior at
Okayama University, the Scripps Institution of Oceanography at University of California San Diego
and the University Clermont Auvergne at the French National Centre for Scientific Research (CNRS).

In most of the models describing the upper mantle and the mantle transition zone, the main
mineralogical composition consists of nominally anhydrous minerals (NAMs). The NAMs may
accommodate a substantial amount of water, which widely exists as a form of hydrogen-related
defects in the crystal structure of the minerals. The presence of trace hydrogen plays a crucial
role in many pressure-dependent physicochemical properties and processes of minerals, such as
electrical conductivity [3,4,11,12,20], diffusivity [21,22], plastic deformation [23,24], seismic wave
attenuation [25,26], grain growth [27,28] and kinetic recrystallization [29,30]. In the early of 1990s, it
was the first time that Karato put forward the hypothesis that the dissolved hydrogen can significantly
enhance the EC of upper-mantle minerals and by using the Nernst-Einstein relation he calculated the
EC of hydrous olivine [31]. As a hot topic in the research field of high-pressure mineral physics in the
recent years, a series of experimental studies have been performed to clarify this hypothesis for the
NAMS in the upper-mantle and transition zone (olivine: [4,12,32–36], pyroxene: [37], garnet [38–40],
wadsleyite and ringwoodite [3,11,13]). About a decade later, Xu and his collaborators reported a series
of EC measurements of mantle minerals, i.e., olivine, wadsleyite, ringwoodite and silicate perovskite
with different content of alumina percentage, under high-pressure (HP) and high-temperature (HT)
conditions [41–46]. By studying the in-situ EC of hydrous minerals at different water contents under
high-P conditions, the functional relation between the EC and water content can be established, thereby
providing constraints of the water content in the deep Earth’s interior.

Comprehensive considerations of laboratory-based EC measurements, geophysical field
observations and theoretical-computational modelling, can be combined to shed light on the current
structure of Earth. Although some possible causes of high conductivity anomalies in the upper mantle
and mantle transition zone, such as the trace water of nominally anhydrous mineral, anisotropic
hydrogen diffusion, partial melting and the presence of an interconnected impurity phase of high EC
have been proposed in the recent years, some controversies still exist.

In the present work, the recent advances of the electrical transport properties of dominant
minerals in the upper-mantle and mantle transition zone, i.e., olivine, pyroxene, garnet, ringwoodite
and wadsleyite, under HP-HT conditions will be reviewed. The review paper is organized as
follows: In Section 2, we briefly describe: (i) the well-established experimental technique of EIS
used to perform conductivity measurements in various fields of material science and (ii) the main
conduction mechanisms in mantle minerals. Section 3 reports on the HP-HT apparatuses used to
simulate the mantle conditions for the investigation of minerals with different experimental approaches.
A comprehensive data set of recently reported conductivity measurements is presented and discussed
in Section 4. Finally, some important remarks on the evaluation of the mineral electrical conductivity
are discussed in Section 5.
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2. Electrical Conductivity of Minerals

2.1. Electrical Impedance Spectroscopy

The electrical properties of minerals and rocks have been studied extensively during the last
decades and a wealth of published data is now available at HT and/or HP conditions [47–50]. Generally,
the electrical conductivity, σ is frequency dependent and is therefore expressed as a complex function
which is related to the other electrical-dielectric quantities, through the following relations:

σ∗(ω) = σ′(ω) − iσ′′ (ω) = iωε(ε∗ − 1) (1)

ε∗(ω) = ε′(ω) − iε′′ (ω) = C(ω)
d

επr2 − i
1

ωR(ω)
·

d
επr2 (2)

and:

Z∗(ω) = Z′ + iZ′′ =
R

1 + (ωRC)2 − i
ωR2C

1 + (ωRC)2 (3)

where primed quantities denote the real part and the double primed the imaginary part of the complex
EC σ∗(ω), dielectric permittivity ε∗(ω) and complex impedance Z∗(ω) [49]. The angular frequency is
denoted byω, ε is the permittivity of the vacuum and i =

√
−1. Equations (2) and (3) stand for a parallel

combination of an ohmic resistance R and a capacitor C, which is the case of measurements carried out
with an impedance analyzer operating on the two-electrodes configuration, with a separation distance
d and radius r of the cylindrical electrodes.

The advantage of measuring the electrical impedance of a sample in a broad range of frequencies,
usually between a few mHz to several MHz depending on the type of the analyzer, lies in the fact
that from the recorded spectra we can easily distinguish the different contributions to the overall
EC, namely, grain interior, grain boundaries and electrodes effects. In this way, only the intrinsic
conductivity of the bulk of the mineral will be considered and thus, we will avoid any possible errors
resulting from the unwanted contributions. This can be achieved by plotting the recorded data in
Cole-Cole plots of impedance, i.e., the imaginary part of impedance versus its real part. In the simplest
case of a series combination of R-C elements connected in parallel (according to Equation (3)), the
different contributions are indicated by separated and/or overlapping semicircles. However, in the
case of natural samples such as minerals or rocks in different forms (single crystal, polycrystalline
or powder), the ideal semicircle is reduced to a depressed one and the capacitance in Equation (3) is
replaced by a constant phase element (CPE), according to the following definition:

ZCPE =
1

Q(iω)n =
1

Qωn

[
cos

(
−n
π
2

)
+ isin

(
−n
π
2

)]
(4)

where the parameters Q and n are calculated from the fitting of the experimental data [51]. The resistance
R of the sample results from the intersection of the fitted arc with the real axis (Z′) and therefore, the
conductivity is calculated from the relation, σ = d/

(
πr2R

)
.

Examples of Cole-Cole plots of complex impedance spectra of mineral and rock samples, are
depicted in Figure 1a,b. Figure 1a shows the electrical impedance measurements of magnetite-free
dry olivine aggregates [52] carried out in the frequency range from 10−1 to 106 Hz, at 2.0 GPa and
at elevated temperatures (873–1273 K). In this case, an equivalent circuit comprising a resistance R
in parallel connection to a CPE is sufficient to describe the electrical response of the mineral, under
the specific measured conditions. A deviation of the experimental data measured at 873 K from the
arc-shaped fitting model, suggests that at this temperature an additional contribution might exist,
which however disappears at higher temperatures. In the case of the impedance measurements of a
diatomite sample shown in Figure 1b, the overall electrical response is modeled by a series combination
of two parallel R-CPE circuits and a single CPE, indicating the existence of three distinct contributions,
i.e., grains interior, grain boundaries and electrodes polarization effects [51].
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Figure 1. Cole-Cole plots of impedance (−Z” vs. Z’) at two different cases. Solid colored lines represent
the fitting of experimental data to an equivalent circuit. (a) Dry olivine aggregates measured at elevated
temperatures (873–1273 K) and pressure of 2 GPa [52]. (b) Diatomite sample measured at 750 ◦C, in
the frequency range 10−2–106 Hz. The contributions of grains interior, grain boundaries and electrode
effects are clearly shown as two depressed semicircles accompanied with a tail in the low frequency
range. The equivalent circuit is also shown (data from [51]).

In most cases, dc-conductivity is calculated from the recorded impedance spectra and its
temperature and pressure dependence for a single conduction mechanism is described by the
well-known Arrhenius law:

σ(T, P) = σoexp
(
−

∆E + P∆V
RT

)
(5)

where σo is the pre-exponential factor, ∆E is the activation energy, ∆V is the activation volume and R is
the gas constant [4].

It is worth mentioning that the activation volume is an important point defect parameter as it is
related to the lattice distortion caused by the formation or/and the transportation of charge carriers
in conduction and diffusion processes. Actually, in the case of a single conduction mechanism in a
mineral, the EC is related to the diffusion of the electric charge carrier through the Nernst-Einstein
equation. The sign of ∆V depends on the lattice expansion or shrinkage caused when the charge carrier
is transferred between two consecutive lattice positions. In this sense, models that describe the self-
and hetero-diffusion in minerals are very important for a theoretical approach giving insights to the
transport properties of conduction and diffusion [53]. The aforementioned issues will be discussed
further in the last section.

2.2. Electrical Conduction Mechanisms in Mantle Minerals

When different conduction mechanisms contribute independently to the overall electrical response
of a mineral, the total EC is expressed as a sum of the contributions of the different charge carriers:

σ =
∑

i

qiniµi (6)

where µi express the mobility of the i-th charge carrier with an effective charge qi, and ni denotes its
concentration [4]. The transport of each charge carrier is a thermally activated process, which dominates
at a certain temperature range and is characterized by an activation energy, ∆E. Consequently, different
charged species having different activation energies can be distinguished from each other as they
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correspond to different slopes in an Arrhenius plot (refer to Equation (5)) that can appear if EC is
measured over a wide temperature range.

In the case of mantle minerals such as silicates (olivine and its high-P polymorphs) and oxide
minerals (ferropericlase, (Mg,Fe)O), electrical conduction is mainly attributed to ionic diffusion of Fe2+,
Mg2+ or protons, and to hopping of electrons or electron holes [50,54].

Ionic conduction takes place via diffusion of Fe or Mg ions through vacancy sites in the
mineral lattice which requires large activation energy and therefore dominates at high temperatures.
Additionally, in H-bearing minerals, the diffusion of hydrogen (proton) or H-related defects may have
a significant contribution to the electrical conduction. In this case, due to the high mobility of protons,
the activation energy is smaller [54].

In Fe-bearing minerals, the existence of ferric ions (Fe3+) in ordinary cation sites (Fe•M in Kröger-Vink
notation, where M denotes Fe or Mg sites) results to the creation of electron holes that contribute to
the electrical conduction through the exchange of electron charge between ferrous and ferric irons.
However, in insulating materials such as minerals, the hopping of the electron charge with a reduced
mobility causes the distortion of the surrounding lattice. The latter mechanism is known as the hopping
of small polaron, where “small” refers to the local lattice distortion, as opposed to the extended spatial
deformation over many lattice sites where the polaron is considered as large [49,50].

3. High-Pressure Apparatuses for Conductivity Measurements of Minerals and Rocks of Upper
Mantle and Mantle Transition Zone

In order to perform the EC measurements of minerals and rocks under HP-HT conditions, many
different high-pressure apparatuses have been designed and developed in the past, such as autoclaves,
piston-cylinders, multi-anvil presses and diamond anvil cells. A schematic diagram of the P-T operating
limits of the above devices is shown in Figure 2.

Figure 2. The pressure and temperature ranges of different types of apparatuses (denoted with different
colors) in a T-P profile of the Earth (blue line), according to the Preliminary Reference Earth Model
(PREM) [55]. The major minerals of the mantle up to the depth of 900 km have been noted.

Among all these high-pressure equipments, the multi-anvil press has unique advantages for
performing electrical conductivity experiments. Firstly, the relatively large space of sample chamber
can accommodate a complex sample assemblage for EC measurements. Secondly, it can provide
an efficient hydrostatic pressure environment and a stable high temperature range. In light of the
temperature and pressure ranges of the upper-mantle and mantle transition zone regions, there are
two representative multi-anvil presses, namely, YJ-3000t and Kawai-1000t that have been adopted to
measure the EC of minerals and rocks under HP-HT conditions till now. These two types of devices
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operating in similar P-T ranges are presented below. An electrical cell assembly for performing EC
measurements in multi-anvil apparatuses was recently made available by the Consortium for Material
Properties Research in Earth Sciences (COMPRES) [56] and is also described below.

3.1. YJ-3000t Multi-Anvil Press

Almost half a century ago, the YJ-3000t multi-anvil press was successfully installed and operated
by Xie and his coworkers in the Key Laboratory of HTHPSEI, Institute of Geochemistry, Chinese
Academy of Sciences, Guiyang, Guizhou, China. Following the first study on the EC of fayalite carried
out by Xie et al. [57] under HP-HT conditions, a large amount of in-situ EC results on minerals, rocks,
pure water, and saline solution systems have been published the last 35 years, using this high-pressure
apparatus [58–75]. Figure 3 shows the experimental measurement platform of HTHPSEI used for
performing the EC measurements of minerals and rocks at HP-HT conditions. It is composed of
three main counterpart pieces of equipment, namely, (a) the pressure-generated apparatus of the
YJ-3000t multi-anvil press; (b) the Solartron-1260 Impedance/Gain-phase analyzer operating in the
two-electrodes configuration for complex EIS measurements in the frequency range 10−2 Hz–106 Hz;
and (c) the Vertex-70v vacuum Fourier-transform infrared spectroscopy (FT-IR) analyzer used for
determining the water content before and after the high-pressure EC measurements. All potential
parameters affecting the EC of minerals and rocks in the deep Earth crust and upper mantle (i.e.,
temperature, pressure, frequency, oxygen fugacity, water content, iron content, crystallographic
anisotropy, grain boundary state, content of alkali metallic elements, et al.) have been thoroughly
explored using this in-situ HP measurement platform.

Figure 3. Experimental platform of HTHPSEI for electrical conductivity measurements of minerals and
rocks at HP-HT conditions. (a) The pressure-generated apparatus of the YJ-3000t multi-anvil press;
(b) the Solartron-1260 Impedance/Gain-phase analyzer used for measuring the complex impedance of
the sample; (c) the Vertex-70v vacuum FTIR analyzer used to determine the water content before and
after high-pressure EC measurements.

By virtue of the YJ-3000t multi-anvil press, the representative measurement assemblage for
measuring the EC of upper-mantle minerals and rocks under controlled oxygen fugacities, using the
EIS technique, was designed by Dai and his coworkers [76–78], as illustrated in detail in Figure 4.
During the EC measurements, the oxygen fugacity of sample chamber can be efficiently monitored
and adjusted by changing the selective metallic type in two symmetric disc-shaped metallic electrodes
(e.g., Ni, Mo, Re, Fe, etc.), its corresponding metallic tubes with the same kind of the metal-containing
and metallic oxide (e.g., Ni–NiO, Mo–MoO2, Re–ReO2, Fe–FeO, Fe–Fe3O4, etc.) and the Faraday
shielding case. High pressure is generated by 6 cubic anvils made of tungsten carbide (WC) with each
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edge length of 23.4 mm, which can provide a maximum pressure of less than 10.0 GPa. The cubic
pyrophyllite (32.5 × 32.5 × 32.5 mm3) was chosen as the pressure-transmitting medium, and some
representative Al2O3 and MgO ceramic sleeves were adopted to surround the sample so as to supply a
sufficient insulation environment. The heater was made up of three-layer stainless steel slices with each
individual layer thickness of ~1.7 mm. The experimental temperature was monitored by NiCr–NiAl,
W5%Re95%–W26%Re74% and Pt–Pt90%Rh10% thermocouples, with an error of ±5 K.

Figure 4. Experimental assemblage for EC measurements in the YJ-3000t multi-anvil press. (1) pressure
medium of cubic pyrophyllite (baked at 973 K); (2) three layers stainless steel heater; (3) symmetric
pyrophyllite block (baked at 1173 K); (4) metallic shielding case made of Ni, Fe, Re or Mo foil; (5) MgO
insulation tube; (6) Al2O3 insulation tube; (7) lead wire of metallic electrode and Al2O3 insulation
tube; (8) two symmetric buffer electrodes; (9) sample; (10) electric grounding; (11) solid oxygen buffer;
(12) thermocouple and Al2O3 insulation tube.

In addition to the in-situ EC measurements, it has recently become possible to measure some other
high pressure-dependent physical properties of minerals and rocks by using the YJ-3000t multi-anvil
press, such as the ultrasonic elastic wave velocity, thermal conductivity, thermal diffusivity, kinetics of
grain growth, etc. [79–87]. These additional capabilities make the system a state-of-the-art experimental
tool for performing HP-HT measurements in many areas of materials science.

3.2. Kawai-1000t Multi-Anvil Press

A typical sample assembly for high-pressure EC measurements using the Kawai-1000t multi-anvil
high-pressure apparatus installed in Department of Geology and Geophysics at Yale University (New
Haven, CT, USA) [3,11,12,32–35,37,38] is displayed in Figure 5. In this type of multi-anvil apparatus,
pressure is generated by eight cubic WC anvils (26 × 26 × 26 mm3) with the 3 to 18 mm truncated
edge length, depending on the pressure. High-pressure phase transitions of some representative
engineering materials (ZnS, ZnTe, GaP, etc.) and minerals (coesite, olivine, wadsleyite, Bridgmanite,
et al.,) have been chosen to calibrate the pressure of sample chamber in the Kawai-1000t multi-anvil
high-pressure apparatus. Some fundamental parts including the MgO octahedral pressure medium
with the percentage of 5% doped Cr2O3, Al2O3 insulation sleeve, two symmetric disk-shaped metallic
electrodes and metallic foil shielding are employed to perform the EC measurements at HP conditions.
Different types of heaters are available, according to the target temperature and the requirement
of sample assemblage, such as graphite, lanthanum chromite, titanium diboride, rhenium slice,
etc. The W5%Re95%–W26%Re74% and Pt–Pt90%Rh10% thermocouples are adopted to measure the
temperature during the EC measurements. The uncertainties of the temperature and pressure are 10 K
and 0.5 GPa, respectively.
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Figure 5. Experimental assemblage for EC measurements in the Kawai-1000t multi-anvil press:
(1) metallic Mo ring; (2) MgO octahedral pressure medium with its edge length of 14 mm; (3) sample;
(4) zirconia; (5) Al2O3 cement; (6) electric grounding; (7) lead wire of metallic electrode and Al2O3

insulation tube; (8) insulation tube made of four hole alumina; (9) heater of lanthanum chromite;
(10) two symmetric buffer electrodes; (11) MgO insulation tube; (12) metallic shielding case made of Ni,
Fe, Re or Mo foil; and (13) thermocouple and Al2O3 insulation tube.

3.3. The Electrical Cell by COMPRES

Recently, an electrical sample cell was developed by Pommier and Leinenweber [56] and became
available through COMPRES, in order to ensure high-quality and reproducible EC measurements
under HP-HT conditions. This electrical cell can be combined with a multi-anvil assembly and has
been tested by using rhenium and graphite furnaces and different types of electrodes (Mo and Fe), and
calibrated at pressures up to 10 GPa and temperatures up to 2273 K. An advantage of this electrical cell
lies in the choice of using 2- or 4-electrodes configuration. The latter setup is achieved by using the
wires of the two W-Re thermocouples, preventing the unwanted contribution of charge accumulation
to the electrodes, which occurs at low frequencies of the applied ac-voltage. Furthermore, in the
4-electrodes configuration, the use of the two thermocouples allow the detection of a thermal gradient
across the sample, thereby avoiding uneven heating, which results in the chemical heterogeneity of the
tested sample [88,89].

4. Electrical Conductivity of Major Minerals in the Upper Mantle and Mantle Transition Zone

The main factors influencing the electrical transport properties of minerals and rocks, i.e.,
temperature, pressure, oxygen fugacity, water content, iron content, grain boundary state, graphite
content, magnetite content, anisotropy and partial melting have been explored in detail, in the recent
years. Due to the neglected effect of the crucial water content on the EC of the dominant mantle
minerals studied by other research groups, in the following we mainly focus on the high-pressure
conductivity results from the Institute of Geochemistry at Chinese Academy of Sciences and the
Department of Geology and Geophysics at Yale University.

4.1. Electrical Conductivity of Olivine

Olivine is a dominant rock-forming silicate and nominally hydrous mineral in the Earth crust
and upper mantle, which can be stabilized over a wide temperature and pressure range, in the
depth range of 5 to 410 km. The EC of olivine single crystal is anisotropic and highly sensitive to
pressure, oxygen fugacity, water content and iron content. In an early study, Roberts and Tyburczy [48]
reported the electrical properties of polycrystalline olivine compacts over a broad frequency range.
They investigated the role of porosity and induced microfracturing due to the thermal expansion
anisotropy of olivine, in the measured conductivity. They concluded that, for their measured samples
of 2–8% vol. inter- and intra-granular porosity, the above features have little or no effect to the
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overall electrical properties. On the basis on these findings, subsequent investigations on the electrical
properties of olivine and other mantle minerals do not include the effects of porosity and micro-cracking.
The pressure influence on the EC of San Carlos olivine Mg1.8Fe0.2SiO4 single crystal was investigated
by Xu et al. [41] using the EIS technique in the multi-anvil high-pressure apparatus. The conductivity
measurements were carried out in the temperature range of 1273–1673 K, pressure range of 4–10 GPa
and the Mo–MoO2 oxygen buffer, within the frequency range of 10−1–106 Hz. The experimental data
were fit to the Arrhenius relation with the pre-exponential factor of ~200 S/m, ∆E of 144.7 kJ/mol and
∆V of 0.6 cm3/mol [46]. A negative pressure dependence on the EC of the olivine single crystal was
observed and the hopping conduction mechanism of small polaron between the ferrous and ferric iron
was proposed. However, in all of their published results on the EC of mantle minerals, Xu et al., did
not provide any information on the water content of the measured samples [41–46].

The first theoretical prediction for the effect of water on the EC of mantle olivine was put forward
by Karato [31] on the basis of the Nernst-Einstein equation, who stated that the trace hydrogen of
nominally hydrous mineral plays a crucial role in the EC of olivine in the upper mantle. In order to test
this hypothesis, the EC of hydrous synthetic olivine was measured for the first time by Wang et al. [12] at
conditions of 4.0 GPa, 873–1273 K and water content of 100–800 ppm, using the Kawai-1000t multi-anvil
press (Key Laboratory of High-Temperature and High-Pressure Study of the Earth’s Interior, Institute
of Geochemistry, Chinese Academy of Sciences, Guiyang, China) and the Solarton-1260 EIS analyzer
(Schlumberger, Houston, TX, USA). They suggested the model of the ionization reaction in hydrous
olivine for the free proton-dominated conduction mechanism, as follows:

(2H)×M = H′M + H• (7)

where, in the Kröger-Vink notation, (2H)×M stands for the two hydrogens of crystalline lattice in the M
site, H′M stands for the hydrogen vacancy of M site, H• stands for the free proton and M stands for
either Mg or Fe.

Furthermore, the electrical conductivities of the olivine single crystal, polycrystalline and sintered
synthetic polycrystalline hydrous olivine aggregates have been extensively investigated in recent
years [32–35]. The effects of temperature, pressure, oxygen fugacity, iron and water content on the EC
of olivine single crystal and polycrystalline compacts were studied under HP-HT conditions is shown
in Figure 6.

For olivine aggregates with a constant iron content, Xiron = 0.412 (molar ratio, Fe/(Fe+Mg)), we
observe that by increasing the water content from 45 to 620 ppm, EC increases by an order of magnitude,
retaining the same activation enthalpy, ∆H = 80 kJ/mol (refer to Figure 6a,d). This activation enthalpy
is lower than that of the dry olivine sample with the same iron content, ∆H = 136 kJ/mol [32]. The effect
of pressure on the EC of hydrous olivine aggregates in the temperature range 873–1273 K is depicted in
Figure 6b. EC decreases with increasing pressure up to 10 GPa, affecting both activation enthalpy and
pre-exponential factor, which also decrease (refer to Table 1) [34]. In all the previous cases, a single
slope in the Arrhenius plots is observed in the measured temperature range (873–1473 K) suggesting
the operation of a single conduction mechanism. The effect of oxygen fugacity on the H-assisted EC of
hydrous (280 ppm) polycrystalline olivine measured at 873–1273 K and 4.0 GPa is shown in Figure 6c,
where a negative dependence is observed at all the measured temperatures. The latter observation
has been attributed to a hybrid model of EC where a transition from the free-proton conduction to a
mechanism associated with two protons at M-site can take place [33].
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Figure 6. The influence of (a) temperature and water content, (b) temperature and pressure, (c) oxygen
fugacity and temperature, and (d) water content and temperature on the EC of hydrous olivine
aggregates under HP-HT conditions (873–1473 K and 4–10 GPa). Oxygen fugacity is controlled by three
different solid-state oxygen buffers, increasing along Ni–NiO, Mo–MoO2 and Re–ReO2 (Reproduced
with permission from Dai and Karato, Phys. Earth Planet. Inter.; published by Elsevier, 2009 [32–34]).
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Table 1. Fitting parameters of the Arrhenius behavior of electrical conductivity (σ = σ· exp(−∆H/RT)) of the major minerals in the upper mantle and transition zone,
at different P-T conditions, measured exclusively by the impedance spectroscopy technique. The pre-exponential term σo, may include the contribution of water
content Cw and oxygen fugacity, where applicable.

Mineral - P (GPa) T (K) CW (ppm H/Si) logσo (S/m) ∆H (kJ/mol) ∆V (cm3/mol) Ref.

olivine

single crystal a [100]
4 573–1373 1380 (SIMS cal.)

0.74 ± 0.09, 4.52 ± 0.20 75 ± 2, 140 ± 6 -
[35][010] 0.51 ± 0.04, 1.99 ± 0.16 73 ± 3, 101 ± 3 -

[001] 0.30 ± 0.10, 1.08 ± 0.13 71 ± 2, 87 ± 5 -

hydrous polycrystalline, Re-ReO2 buffer
4 873–1273

3675 (3628) b 1.67 ± 0.08 85 ± 5 -
[33]Ni-NiO buffer 2853 (2737) 2.00 ± 0.13 88 ± 3 -

Mo-MoO2 buffer 4406 (4394) 1.69 ± 0.10 78 ± 4 -

hydrous polycrystalline
4

873–1273
2335 (2317) 2.67 88.6 ± 4

−0.86 ± 0.05 [34]7 2326 (2296) 2.63 86.0 ± 4
10 2329 (2434) 2.58 83.4 ± 4

dry polycrystalline, Mo-MoO2 buffer

1

1073–1423 not measured

2.91 ± 0.12 143.8 ± 2.7

0.25 ± 0.05 [64]2 2.93 ± 0.17 145.9 ± 2.0
3 2.93 ± 0.10 148.2 ± 2.3
4 2.96 ± 0.13 151.4 ± 3.1

single crystal San Carlos (Fo90), [100]
8 1123–1709 nominally dry

2.52 140.9 -
[89][010] 1.14 108.1 -

[001] 2.00 124.5 -

polycrystalline Mg1.8Fe0.2SiO4

4 1273–1573
not measured

2.98 ± 0.17 166.9 ± 4.8
0.68 ± 0.14 [41]7 1273–1673 2.63 ± 0.19 160.2 ± 4.8

10 1273–1673 2.71 ± 0.18 163.1 ± 4.8

pyroxenes

polycrystalline orthopyroxene 5 1273–1673
not measured

3.72 ± 0.06 173.7 ± 1.9 -
[44]polycrystalline clinopyroxene 13 1273–1673 3.25 ± 0.07 180.4 ± 1.9 -

polycrystalline ilmenite + garnet 21 1473–1773 3.35 ± 0.10 160.2 ± 2.9 -

anhydrous orthopyroxene [001]

8

873–1473 <8 2.73 ± 1.18 147 ± 7 -

[37]hydrous orthopyroxene [001] 873–1273 4660 (4540) 2.26 ± 1.00 80 ± 2 -
[100] 873–1273 4690 (4600) 2.21 ± 1.11 82 ± 3 -
[010] 873–1273 4700 (4640) 2.18 ± 0.95 85 ± 2 -

single crystal, [100] 10 1273–1673 not measured 3.02 ± 0.22 165.0 ± 5.8 - [41]

orthopyroxene single crystal

1

1073–1423 not measured

3.79 166.9

0.03 ± 0.01 [90]2 3.80 171.8
3 3.79 174.6
4 3.73 176.6
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Table 1. Cont.

Mineral - P (GPa) T (K) CW (ppm H/Si) logσo (S/m) ∆H (kJ/mol) ∆V (cm3/mol) Ref.

garnets

pyrope-rich single crystal, anhydrous 4–16 873–1473 <10 2.93–2.48 138–168 2.50 ± 0.48 [38]
hydrous 4, 8 873–1273 7000 1950·C0.63

w 67.7, 65.4 −0.57 ± 0.05

anhydrous Py73Alm14Grs13 single
crystal 2 873–1273 <1 2.69 132.2 - [39]

hydrous Py73Alm14Grs13 single crystal

1

873–1273 465

1.735 73.3

−1.4 ± 0.15 [39]2 1.742 71.4
3 1.759 70.4
4 1.769 68.5

almandine-rich garnet single crystal
1

973–1273 <3 (6)
3.11 126.4

2.01 ± 0.57 [40]2 3.06 129.3
3 3.04 130.3

majorite garnet 23
900–1300

grainboundarywater
1.73 122.5

- [91]1300–1750 3.03 153.4
1800–2000 4.24 194.9

wadsleyite

polycrystalline (5–10 µm) 14–16 773–1273 102–105 2.6 + 0.66logCW 88 ± 3 - [11]

anhydrous polycrystalline (9 µm)
15

873–1673 <9 2.1 ± 0.1 147 ± 3 - [3]
hydrous polycrystalline (3–7 µm) 873–1273 360–32000 2.5 + 0.72logCW 88 ± 10 -

polycrystalline (20 µm) ambient
1000–1850

<2
2.41 138.0 - [92]

1900–2000 3.57 180.4 -

polycrystalline 15 1073–1473 not measured 2.04 ± 0.15 91.7 ± 3.9 - [41]

ringwoodite polycrystalline (5–10 µm) 14–16 773–1273 102–105 3.6 + 0.69logCW 104 ± 2 - [11]
polycrystalline 20 1073–1473 not measured 2.92 ± 0.04 111.9 ± 1.0 - [41]

a Two conduction mechanisms of Arrhenius behavior have been considered b Numbers in parentheses denote water content after the experiment.
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Dai and Karato [32] reported that the content of iron and hydrogen in olivine can enhance the
EC of anhydrous and hydrous samples under HP-HT conditions, respectively. The EC of hydrous
Fe-bearing silicate minerals with different contents of iron and hydrogen has been expressed as:

σ = σiron + σhydrogen (8)

where σiron stands for the EC due to the small polaron hopping conduction of anhydrous specimen, and
σhydrogen denotes the EC due to the hydrogen-related defect of hydrous sample. The total conductivity
of both conduction mechanisms, has been fitted using the following equation:

σ = σ01(iron)X
i

iron f q1
O2

exp
(
−

∆Hiron
kT

)
+ σ01(hydrogen)X

i
hydrogen f q2

O2
Cr

w exp
(
−

∆Hhydrogen

kT

)
(9)

where σ01(iron) and σ01(hydrogen) stand for the pre-exponential factors of iron- and water-bearing
sample, respectively; the parameters X, fO2 , CW and ∆H stand for iron (or hydrogen) content, oxygen
fugacity, water content and activation enthalpy of sample, respectively; all of i, q1, q2, r and k stand for
constants [32,33].

Dai and Karato found that as the weight fraction of ferrous iron was increasing from 0.214 to
0.637, the EC of anhydrous olivine also increased, while, ∆H of sample reduced accordingly, from 148
to 121 kJ/mol [32]. In contrast, the EC of hydrous olivine had a weak dependence on iron content
and ∆H was almost independent (80–88 kJ/mol) over the temperature range of 873–1473 K at 4.0 GPa.
Therefore, the influence of iron content on the EC of hydrous olivine is very feeble over the whole
temperature range, for the range of water content, 45–620 ppm.

The observed dependence between the EC of olivine and oxygen fugacity, expressed through
the q-exponent (refer to Equation (9)), was used to efficiently distinguish the species of charge carrier
and its electric transport, i.e., small polaron (Fe•Mg) and hydrogen-related defects (free proton (H•), one

hydrogen vacancy at M-site (H′M) and two protons at M-site ((2H)x
M), respectively [33].

The pressure dependence on the EC of dry and water-rich mantle olivine, was systematically
studied by Xu et al. [46], and Dai and Karato [34], within the corresponding upper-mantle pressure
range, 4.0–10.0 GPa. A negative pressure dependence of EC of dry and wet olivine was observed, and a
positive activation volume (∆V = 0.6 cm3/mol) for dry sample was obtained, whereas, a negative value
of activation volume (∆V = −0.86 cm3/mol) was confirmed for the hydrous olivine. This observation is
possibly related to the different pressure dependences of EC of olivine single crystals with various
water contents and the electrical conduction mechanism at high-P.

The EC of hydrated olivine single crystals along the three dominant crystallographic directions
([100], [010] and [001]) has been reported by Dai and Karato [35] under conditions of a broad temperature
range of 573–1373 K at 4.0 GPa (Figure 7). In the low temperature range (573–900 K), the EC of olivine
single crystal with a low ∆H (74 kJ/mol) shows a feeble anisotropy, which is in good agreement with
previously obtained conductivity results [12,93–95]. However, within the high temperature range
(T > 1000 K), the EC of sample exhibiting a higher activation enthalpy (~130–150 kJ/mol) is obviously
anisotropic, which is consistent with the results of high-temperature H–D inter-diffusion in olivine [96].
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Figure 7. The anisotropic EC of San Carlos olivine single crystals measured at 4.0 GPa over a broad
temperature range (573–1373 K). Three different average schemes of series (σs), parallel (σp) and
effective medium models (〈σ〉) were applied. See text for details. (Reproduced with permission from
Dai and Karato, Earth Planet. Sci. Lett; published by Elsevier, 2014 [35]).

In order to precisely estimate the EC of randomly oriented polycrystalline aggregates from the
anisotropic EC results of olivine single crystals along [100], [010] and [001] crystallographic orientations,
three different average schemes of series (σs), parallel (σp) and effective medium models (〈σ〉) were
proposed (refer to Figure 7), as follows [35]:

σS =
(
σ[100] + σ[010] + σ[001]

)
/3 (10)

σP = 3
(

1
σ[100]

+
1

σ[010]
+

1
σ[001]

)−1

(11)

〈σ〉 =

[
σS + σP +

√
(σS + σP)

2 + 32σSσP

]
/8 (12)

In comprehensive considerations of geophysical field observations and geochemical models,
the acquired EC results revealed that the high and highly anisotropic EC at the corresponding
asthenospheric temperature and pressure conditions is reasonably explained by the high water content
in the region of asthenosphere (100 ppm). On the other hand, the influence of the interconnected
high conductive impurity phases (graphite, magnetite, sulfide impurity, etc.) on the EC of olivine has
been also explored in detail [52,89,96–98]. An alternative approach to the highly anisotropic EC of the
lithosphere-asthenosphere boundary was recently proposed by Pommier et al., who studied the effect
of melt in initially deformed minerals and rock samples [88]. Specifically, Pommier et al., performed EC
measurements in deformed olivine aggregates and sheared partially molten rocks, at asthenospheric
pressure (~3 GPa) and temperatures up to 1479 K. They found that the EC in the shear direction of the
deformed olivine samples is one order of magnitude higher as compared to the undeformed samples
while, it increases by two orders of magnitude in melt-bearing layered samples of olivine.

4.2. Electrical Conductivity of Pyroxene

Pyroxene is the secondary primary abundant component of the upper mantle and its mineralogical
composition corresponds approximately to 20–40% by volume of the upper mantle. Therefore,
pyroxene and its high-pressure polymorphs can provide an important constraint on the bulk EC of the
upper mantle. Previous results on the aluminum-bearing saturated water solubility for anisotropic
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enstatite indicated that the orthopyroxene can dissolve an abnormally high amount of structural
water than olivine in the Earth’s asthenosphere region [90,99], hinting that pyroxene plays a crucial
role in explaining the high conductivity anomaly in the shallow upper mantle conditions. Thus, a
large amount of EC results has been reported for orthopyroxene and clinopyroxene, using the EIS
measurement technique under HP-HT conditions.

Electrical conductivity measurements of 2.89 wt% alumina-bearing San Carlos orthopyroxene
[(Mg0.92Fe0.08)SiO3] were carried out by Xu and Shankland [44], using the multi-anvil press and EIS
technique under the pressure range of 5–21 GPa, temperatures of 1273–1773 K and controlled oxygen
fugacity of the Mo–MoO2 solid buffer. By virtue of the fitted Arrhenius relations from the in-situ EC
results, the phase transitions from orthopyroxene to clinopyroxene to ilmenite and garnet system
imposed constraints on the EC of the mantle.

Dai et al. [100] measured the EC of dry orthopyroxene at 1.0–4.0 GPa and 1073–1423 K under
controlled oxygen partial pressure conditions. Four solid oxygen buffers (e.g., Ni–NiO, Fe–Fe3O4,
Fe–FeO and Mo–MoO2) were selected to control the oxygen fugacity during the EC measurements. At
the pressure of 2.0 GPa, the functional modelling between the EC of the dry sample and the variation
of oxygen fugacity was successfully established.

Dai and Karato performed EC measurements on two oriented orthopyroxene single crystals
from the Stuttgart region in Germany and the Han Nuoba region in eastern China [37]. The water
content of orthopyroxene was accurately determined by FT-IR spectroscopy, before and after the EC
measurements. The Arrhenius plot of EC of anhydrous and hydrous orthopyroxene single crystals
(water content, 420 ppm) along the three main crystallographic orientations ([001], [100] and [010]) is
depicted in Figure 8, where it is evident that: (i) the EC of the hydrous orthopyroxene single crystal
is higher than that of the anhydrous sample and (ii) the influence of anisotropy on the activation
enthalpy and the pre-exponential factor of the hydrous orthopyroxene single crystal is rather weak
(refer also to Table 1). A good correlation between the EC and temperature according to an Arrhenius
relation implies that only one individual conduction mechanism can operate under the conditions of
8 GPa, 873–1473 K and Mo–MoO2 oxygen buffer. Dai and Karato suggested that the main conduction
mechanisms for anhydrous and hydrous Fe-bearing orthopyroxene samples are the hopping of small
polaron and the free proton diffusion, respectively.

Figure 8. The electrical conductivity of hydrous orthopyroxene single crystals along [100], [010] and
[001] crystallographic directions at conditions of 873–1273 K and 8 GPa. The EC of anhydrous sample
is also included (modified from Dai and Karato [37]).

In addition, Yang et al. [101] and Schlechter et al. [102] measured the EC of hydrous orthopyroxene
containing various amounts of hydrogen, aluminum and iron. The functional relationship of EC with
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the water content (0, 40, 100 and 285 ppm) was established by Yang et al. [101] under conditions of
0.6–1.2 GPa and 573–1273 K in an end-loaded piston cylinder apparatus. They reported that the EC of
hydrous orthopyroxene can explain the high EC anomaly in the lower crust regions, especially where
its main rock outcrop is constituted mostly by granulite.

The electrical conductivity of dry diopside single crystals along different crystallographic directions
was reported by Dai et al. [103] under conditions of 1.0–4.0 GPa, 1073–1373 K and Ni–NiO oxygen
buffer, using the YJ-3000t multi-anvil press and the Solartron-1260 EIS analyzer. A phenomenon of
feeble anisotropic EC in dry clinopyroxene single crystals was also observed along the [001], [100] and
[010] crystallographic orientations, which is similar to the results for the EC of hydrous orthopyroxene
single crystals [102]. The complex EC of polycrystalline augite with different grain sizes (Spec: ~5–63,
63–160 and 160–250 µm) were measured by Yang and Heidelbach [104] under conditions of 1.0 GPa
and 773–1273 K in the piston-cylinder high-pressure apparatus. Compared with the EC data of
clinopyroxene single crystal, a negligible influence of grain size on the EC was observed. Subsequently,
a series of results for the effect of water content on the EC of hydrous clinopyroxene were reported
by Yang [90], Yang et al. [105], Zhao and Yoshino [91], and Liu et al. [106], in order to explain the
high conductivity anomaly of magnetotelluric field observations in the representative regions of the
lower continental crust, the uppermost mantle, the Eastern Pacific rise region, the ultrahigh-pressure
metamorphic belt of Dabieshan and the Tibet Plateau.

4.3. Electrical Conductivity of Garnet

As a major rock-forming mineral, garnet is able to stabilize over a broad temperature and pressure
range of the Earth’s interior, from the mid-lower crust to the top of lower mantle. In the light of
its structural stability and its complex chemical composition, garnet is widely distributed over the
entire deep mantle region, as compared to some typical mantle rock-forming minerals, i.e., olivine,
clinopyroxene, orthopyroxene, wadsleyite, etc. Therefore, the HP-HT research on the EC of garnet is
essential to establish the laboratory-based electrical conductivity-depth profile and explain the high
EC anomaly in the deep Earth’s interior.

ECs of majorite garnet with two different chemical compositions of pyrolite (pyrolite minus
olivine) and mid-ocean ridge basalt have been reported by Yoshino et al. [107] under the mantle
transition zone conditions of 18–23 GPa and 900–2000 K. Within the lower temperature range of
1000–1600 K, the relatively high activation energy of 135 kJ/mol indicates that the main charge carrier
of majorite garnet is transported by the hopping of small polaron. However, at higher temperatures
(1600–2000 K), the dominant charge carrier is migrated by the ionic diffusion.

Dai and Karato [38] performed EC measurements in a series of dry and water-bearing pyrope-rich
garnet single crystals (~Py73-Alm14-Grs13) at 873–1473 K, 4–16 GPa and a broad range of water content
(<10 to 7000 ppm). The influence of the pressure on the EC of anhydrous and hydrous pyrope-rich
garnet single crystals is shown in Figure 9 in detail. Under water-free conditions, the EC of pyrope-rich
garnet was found to decrease slightly with increasing pressure while, the activation energy remains
constant, with a relatively high value (∆E = 128 kJ/mol). The effect of temperature is quite significant
on the measured temperature range, causing the EC to increase by 3 orders of magnitude at any
measured pressure. The hopping of small polaron was suggested as the main conduction mechanism.
Under water-bearing conditions (160 ppm), the EC of garnet single crystal exhibits a weaker variation
with pressure as compared to the dry sample, and the corresponding activation energy is much lower
(70 kJ/mol). In this case, it has been proposed that the free proton is the charge carrier of the dominant
conduction mechanism.

In subsequent studies, Dai et al. [39,40] measured the EC of a series of anhydrous and hydrous
pyrope- and almandine-rich garnet single crystals with different chemical compositions (Py20Alm76Grs4,
Py30Alm67Grs3, Py56Alm43Grs1, Py73Alm14Grs13 and Alm82Py15Grs3) under conditions of 1.0–4.0 GPa,
873–1273 K and five different solid buffers to control the oxygen fugacity (Fe3O4–Fe2O3, Ni–NiO,
Fe–Fe3O4, Fe–FeO and Mo–MoO2).
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Figure 9. The effect of the pressure on the EC of anhydrous and hydrous pyrope-rich garnet single
crystals (~Py73-Alm14-Grs13) in the temperature range of 873–1473 K. The abbreviations Alm and Grs
stand for almadine (Fe-Al) and grossular (Ca-Al) garnet, respectively (Reproduced with permission
from Dai and Karato, Phys. Earth Planet. Inter.; published by Elsevier, 2009 [38]).

The dependence relations of the EC of dry pyrope-rich, water-bearing pyrope-rich garnet (its water
content: 465 ppm) and almandine-rich garnet single crystals on the oxygen fugacity were determined
respectively as [39,40]:

log10 σ = (2.23± 0.063) + (0.061± 0.002) × log10 fO2 +
(−6092± 94)

T
(13)

log10 σ = (2.27± 0.032) + (−0.071± 0.001) × log10 fO2 +
(−6475± 48)

T
(14)

log10 σ = (2.67± 0.05) + (0.054± 0.003) × log10 fO2 +
(−5446± 68)

T
(15)

Similar to the previously-mentioned EC of olivine, the obtained values of q-exponent for garnet
single crystal has be used to extrapolate different conduction mechanisms of mantle silicate minerals,
either the hopping of small polaron (Fe•Mg) or the hydrogen-related defects (H•, H′M and (2H)x

M). More
recently, Liu et al. [107] investigated the EC of hydrous iron-rich garnet (40 and 100 ppm) in order to
explain the high conductivity anomaly caused by the enrichment of eclogite region in the upper mantle.

Dai et al. [39], based on the obtained conductivity results of anhydrous pyrope-rich garnet
(Py73Alm14Grs13) at 2.0 GPa, 873–1473 K and the Ni–NiO oxygen buffer combined with the effective
medium theory, calculated the EC of eclogite as a function of the volume percentage of garnet (refer to
Figure 10a). It is worth mentioning that eclogite is an important metamorphic rock as it is formed only
under high-P conditions in the mantle. It is obvious that the EC of eclogite decreases almost linearly
with increasing garnet content whereas, this tendency becomes weaker with decreasing temperature.
Furthermore, the laboratory-based electrical conductivity-depth profile on eclogite with different
volume ratios of garnet to clinopyroxene at the depths of 40–150 km was established by Dai et al. [39]
at conditions of 2.0 GPa, 873–1473 K and the Ni–NiO solid oxygen buffer. Their results are shown in
Figure 10b. Electrical conductivity of eclogite increases smoothly with depth, but at a slower rate as the
depth increases. Furthermore, the EC of eclogite also increases with increasing the percentage volume
of clinopyroxene, in agreement with reported results [105].
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Figure 10. (a) The calculated electrical conductivity of eclogite as a function of the volume percentage
of garnet, based on the obtained conductivity results of pyrope-rich garnet at conditions of 2.0 GPa,
1073–1473 K and the Ni–NiO oxygen buffer (modified from Dai et al. [39]). (b) The EC of eclogite at
different volume percentages of the constituent minerals, i.e., garnet (Gt) and clinopyroxene (CPx)
at depths of 40–140 km, at conditions of 2.0 GPa, 873–1473 K and the Ni–NiO solid oxygen buffer
(Reproduced with permission from Dai et al., Contrib. Miner. Petrol.; published by Springer Nature,
2012 [39]).

4.4. Electrical Conductivity of Wadsleyite and Ringwoodite

It is well known that olivine ((Mg,Fe)2SiO4) is the principal mineralogical phase in the shallow
upper mantle region of the deep Earth interior. In the depth range of 410 to 660 km of the mantle
transition zone, olivine is transformed to its high-pressure polymorphs of nominally anhydrous
minerals: wadsleyite (~410 km depth) and ringwoodite (~660 km depth). High-pressure experiments
and theoretical calculations have confirmed the high water storage capacity and solubility of wadsleyite
and ringwoodite in the shallow mantle transition zone at the depth range of 410–660 km. A striking
example of this huge water reservoir, is the discovery of hydrous ringwoodite, with high water content
(1.4–1.5 × 104 ppm as estimated by FTIR measurements), in the ultra-deep diamond inclusion below
the lithospheric mantle in the region of the Juína district of Mato Grosso, Brazil [108].

Electrical conductivities of wadsleyite and ringwoodite were firstly measured by Xu et al. [41]
under conditions of 15–20 GPa and at 1073–1473 K. They found that the phase transition from
olivine to wadsleyite and ringwoodite can result in the EC jump by about a factor of 100 in the
mantle transition zone. Subsequently, Huang et al. [11] measured the EC of hydrous wadsleyite and
ringwoodite at conditions of pressure of 14–16 GPa, temperature of 773–1273 K, water content range
from 100–10000 ppm and Mo–MoO2 oxygen buffer. At a given temperature and pressure, the EC of
the sample increases with increasing water content. Based on the fitted Arrhenius relation between
EC of hydrous sample and temperature, Huang et al. extrapolated the water content of ~1000–2000
ppm in the typical transition zone region, which corresponds to the EC values of ~10−1–5 × 10−1 S/m,
within the temperature ranges of 1825–1900 K of the transition zone [11].

Karato and Dai [109] carried out EC measurements in dry and hydrous wadsleyite samples
under conditions of 15 GPa and 873–1473 K. They found that the EC of dry and water-bearing
olivine and wadsleyite is very close to each other, and the previously measured high electrical
conductivities of wadsleyite and ringwoodite reported by Xu et al. [41] were assigned to the relatively
higher concentration of structural water in their measured samples. They also stated that the
observed conductivity jump at the depth of 410 km is possibly caused by the jump of the water
content in the transition zone. Furthermore, Dai and Karato [3] performed EC measurements in
synthetic polycrystalline wadsleyite using the Kawai-1000t multi-anvil pressure and an EIS analyzer.
Their experiments were carried out at conditions of pressure of 15 GPa, temperature range of 873–1673 K,
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three solid oxygen buffers (e.g., Ni–NiO, Mo–MoO2 and Re–ReO2) and frequency range of 10−2–106 Hz.
They found that under really dry conditions, the wadsleyite aggregates with a low measured EC has a
relatively high activation enthalpy of 147 kJ/mol. On the contrary, the hydrous wadsleyite samples
with different water content have lower activation enthalpies (86–91 kJ/mol). The last finding implied
that the electrical conductivities of dry and water-rich wadsleyite are related to different conduction
processes, either small polaron or proton, and the total EC results from the following relation:

σ = σpolaron + σproton (16)

For each conduction mechanism, the fitted equation of EC of the wadsleyite aggregates has been
described as:

σi = A·Cr
W · f

q
O2
· exp(−∆H/RT) (17)

where, the quantities CW, fO2 and ∆H have the same meaning as in Equation (9) and the parameters A,
r, q and R stand for constants [3].

Figure 11 shows the EC of dry and water-rich wadsleyite aggregates (740 ppm) as a function
of oxygen fugacity, under conditions of 15 GPa, 873–1273 K and three solid buffers (e.g., Mo–MoO2,
Ni–NiO and Re–ReO2) [3]. At a given temperature and pressure, the EC of wadsleyite aggregates
will be enhanced with increasing the water content (CW), which is expressed as σ ∝ Cr

W with the
r value equal to ~0.72. Under anhydrous conditions, the EC of sample increases with increasing
oxygen fugacity from the Mo–MoO2 to Re–ReO2 solid buffer. The dependence of EC on the oxygen
fugacity, expressed by the q-exponent (0.050) can provide a robust evidence of an iron-related defect,
such as small polaron of Fe•Mg. However, the opposite tendency of EC along with oxygen fugacity
is observed in hydrous wadsleyite, and the obtained negative q-exponent value (−0.058) revealed
that some hydrogen-related defects can play a vital role in the electrical transport process in the
transition zone. However, in both dry and hydrous samples, EC increases with increasing temperature
from 873 to 1273 K. In comprehensive consideration of magnetotelluric sounding conductivity data
(10−2–10−1 S/m) and mineralogical composition (60% of wadsleyite and 40% of majorite) of transition
zone, the ~1000–3000 ppm of water is indispensable to account for the observed high conductivity
anomaly in the Pacific region.

Figure 11. The influence of oxygen fugacity on the EC of (a) dry and (b) water-rich wadsleyite
aggregates (740 ppm) under conditions of 15 GPa and 873–1273 K. Oxygen fugacity is controlled by
three solid buffers, i.e., Mo–MoO2, Ni–NiO and Re–ReO2 (Reproduced with permission from Dai and
Karato, Earth Planet. Sci. Lett.; published by Elsevier, 2009 [3]).
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5. Some Remarks on the Evaluation of the Electrical Conductivity of Mantle Minerals

An important issue that has to be considered when interpreting the conductivity data is the
frequency range of the applied ac-voltage that the measurements are carried out. Electrical impedance
spectroscopy makes feasible to distinguish different conduction mechanisms in the overall electrical
response of a measured mineral under HP-HT conditions, if the recorded spectrum ranges from a few
mHz to several MHz, as it has been already mentioned in Section 2. However, misleading results
can be obtained if the conductivity of the mineral under investigation is measured only at a single
(low) frequency. This could be the case of hydrous minerals with different water content, where the
interaction of water in the form of proton charges with the electrodes is significant, resulting in the
formation of the electrical double layer (EDL) that manifests as a tail in the low frequency range of the
impedance spectrum. For example, reported values of EC of wadsleyite by Manthilake et al. [13] and
majorite garnet by Yoshino et al. [92,109] are lower than that measured by Dai and Karato [3,38] and
Karato and Dai [109]. This underestimation of conductivity values in these cases is clearly justified
by the higher electrical impedance measured at a low frequency value (0.01 Hz and 0.1 Hz), which
actually appears increased due to the contribution of the electrodes polarization [109].

It is worth mentioning that the correct estimation of EC of minerals should be based on the proper
selection of the equivalent circuit that fits satisfactory to the experimental data, which is obviously
more complex than a simple R-C circuit in parallel that has been used in many cases in the past.
Thus, the use of EIS is inevitable for the correct calculation of conductivity in hydrated minerals in
polycrystalline form measured at high T, where ionic diffusion plays a significant role due to the charge
accumulation in electrodes.

Based on the previous considerations about the necessity of EIS measurements for the proper
estimation of EC of minerals, Figure 12 shows the Arrhenius plots of the EC of the major minerals
discussed in the present work, derived exclusively from EIS measurements. The calculated parameters
of the fitting data to the Arrhenius law according to Equation (5) are summarized in Table 1. We observe
that, in almost all cases the Arrhenius behavior describes sufficiently the temperature dependence
of the EC of the major mantle minerals. Furthermore, EC varies more than 5 orders of magnitude
(10−6 S/m to 10−1 S/m), with the effect of temperature being stronger than that of pressure. According
to the data presented in Table 1, the estimated activation enthalpy, ∆H of the dry minerals is higher
than that of the hydrous minerals. In particular, for all the hydrous minerals, ∆H is less than 89 kJ/mol
with the exception of polycrystalline ringwoodite, where ∆H reaches the value of 104 kJ/mol. On the
contrary, in dry minerals, ∆H ranges between 108–180 kJ/mol. It is also remarkable that the anisotropic
behavior of EC of olivine single crystals observed above moderate temperatures (T > 750 K) is more
pronounced in the case of hydrous sample, while for the dry olivine sample, the degree of anisotropy
is quite similar to that of the hydrous orthopyroxene [37]. In general, it is evident the necessity to
perform measurements over a wider temperature range, especially at high temperatures (T > 1400 K)
where ionic conductivity should be dominant.
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Figure 12. Arrhenius plot of EC of the major minerals in the upper mantle and the transition zone
of Earth. The calculated parameters of the fitting lines are summarized in Table 1. The fitting lines
are limited to the measured temperature and pressure ranges, without any extrapolations. Lines of
the same color correspond to a certain mineral. Not all of the data in Table 1 are depicted in this
figure, because of their large overlap. Solid lines correspond to single crystals and dashed lines to
polycrystalline samples.

In the cases where the pressure-dependence of EC has been measured, the important defect
parameter of activation volume, ∆V has been determined, as it is shown in Table 1. The activation
volume, defined as the pressure derivative of activation Gibbs free energy, ∆V = −[∂gact/∂P]T, is related
to the EC via the relation ∆V ≈ −kBT[∂ ln σ/∂P]T and thus, a negative value is assigned to a process
where gact (or conductivity) increases, as pressure increases. It is remarkable that, according to the
reported values of ∆V in Table 1, a negative sign is observed in most cases of hydrous minerals, such as
olivine and garnet [34,38,39] while, dry samples exhibit positive values of a few cm3/mol [38,40,41,64].

In ferromagnesian minerals, EC is mainly due to the diffusion of Mg2+ and Fe2+ cations, the
charge transfer between Fe3+ and Fe2+ (or small polaron transport via the hopping mechanism) and
the diffusion of H-related species, as it has been pointed out in Section 2.2 [54].

In the first case, diffusion takes place via the vacancy mechanism (V′′M) and the activation
volume is the sum of the formation and migration volume of the vacancy defect, i.e., ∆V = VF + VM.
The formation volume VF of a mono-vacancy should be smaller than the atomic volume, due to the
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induced inward relaxation of the lattice while, the migration volume is usually much lower than
the atomic volume. Thus, this conduction mechanism should be related to positive values of the
activation volume, of a few cm3/mol. In the case of hopping of small polarons in minerals, reported
conductivity measurements by Yoshino et al. indicate negative values of the activation volume [110].
As no formation of vacancies or interstitials is involved, negative values of ∆V should be related to
an inward relaxation of the lattice during the charge transfer. Regarding the diffusion of H-related
defects such as protons, the interstitial mechanism should dominate due to the small size of H,
and thus, ∆V should only include the migration volume of the interstitial H-related defect, as no
formation of defects is required. Taking into account that interstitial diffusion is generally weakly
pressure-dependent, we expect that the values of ∆V for H conduction should be low and negative, if
an inward relaxation takes place during the migration of H species from the equilibrium position to the
saddle-point position. The case of negative activation volumes has been also reported in conductivity
measurements of limestone samples and has been attributed to the enhanced proton conduction due to
the pressure-induced dissociation of water located at the grain boundaries [111]. Papathanassiou et al.
and Sakellis et al. [112–115] have also reported negative activation volumes in hydrated rocks such as
leukolite, limestone, granodiorite and amphibolites. They concluded that water enhances the value of
the negative ∆V and also lowers significantly the energetic threshold of the activated process.

As previously pointed out, the conduction mechanisms in hydrated minerals such as
hydrogen-bearing olivine and its high-pressure polymorphs involve the diffusion of hydrogen-related
defects and the diffusion of ions (Mg2+, Fe2+) at low and high temperatures, respectively. Thus, in a
given temperature range dominated by a single conduction mechanism, electrical conductivity can
be derived from the Nernst-Einstein relation, if the self-diffusion coefficients of an individual species
are known in this temperature range. As a recent example, we can mention the work by Novella et
al. [22] who studied the anisotropy of H self-diffusion in olivine single crystals at conditions of the
upper mantle (2 GPa and 1023–1173 K) and calculated the H-enhanced EC of anisotropic and isotropic
hydrous olivine by applying the Nernst-Einstein equation.

Opposed to the previous study, Karato [95,116] has proposed a theory to explain (a) the
experimentally observed discrepancy of the activation enthalpies of electrical conductivity and
diffusion in H-bearing olivine, and (b) the transition from isotropic behavior of olivine electrical
conductivity observed at low-T to anisotropic one at high-T. According to this hybrid model, isotope
diffusion coefficient is given by the harmonic mean of the different forms of hydrogen (free proton, one
or two protons at M-site, etc.).

Regardless of the use of the harmonic mean to relate isotopic diffusion coefficients with
the individual diffusion coefficients of the different forms of H, or the arithmetic mean of the
diffusion coefficients of different defect species that contribute to the EC in minerals, the electrical
conductivity-diffusion correlation could be treated on a thermodynamic basis, according to the so-called
cBΩ thermodynamic model. This model proposed by Varotsos and Alexopoulos [117] describes
effectively the defect processes in materials, by relating the self- or hetero-diffusion coefficients of
a single mechanism with the elastic and expansion properties of the host material. Specifically, the
activation Gibbs free energy, gact related to the formation and migration of a point defect is a function
of the bulk thermo-elastic properties, i.e., gact = cBΩ, where B denotes the isothermal bulk modulus,
Ω is the mean atomic volume and c is a constant that depends on the diffusion mechanism. Thus, the
Arrhenius behavior of the diffusion coefficients is expressed as, D(T, P) = Do exp(−cBΩ/kBT) and the
point defect thermodynamic parameters, such as activation enthalpy, ∆H and activation volume, ∆V
are given by the following relations [117]:

∆H = cΩ
{

B− Tβ− T
∂
∂T

]
P

}
, ∆V = cΩ

{
∂
∂P

]
T
− 1

}
(18)

where βdenotes the volume thermal expansion coefficient of the material which depends on temperature
and pressure.
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The significance of the model lies in its applicability to the case of ionic conduction in minerals
observed at high-T or proton conduction at lower T, where the self-diffusion coefficients, and
consequently the electrical conductivity calculated through the Nernst-Einstein relation, can be
estimated over a broad temperature and pressure range, if the thermo-elastic properties of the mineral
under investigation (i.e., B, ∂/∂T]P, ∂/∂P]T and β) are known in these P-T conditions. In addition,
the important point defect parameter of activation volume can be calculated as a function of T and P,
giving further insights to the investigation of the related conduction mechanism, as it has been pointed
out previously [118–120].

The cBΩ model has been successfully implemented in diverse types of materials, including solid
solutions and minerals [121–124]. Some recent examples of geophysical interest include the diffusion
of He in olivine studied in the framework of the cBΩ model by Vallianatos and Saltas [53] and the work
by Zhang and his coworkers who have studied self- and hetero-diffusion in (Mg,Fe)2SiO4 polymorphs,
as well as hetero-diffusion (H, Na, K) in plagioclase feldspar [122–124]. In the latter case [124], the
cBΩ model underestimates the electrical conductivity but gives some constraints to the reported
experimental results.

6. Conclusions

Electrical conductivity of minerals (olivine, orthopyroxene, clinopyroxene, garnet, wadsleyite,
ringwoodite, etc.) in the upper mantle and mantle transition zone are very sensitive to several
factors including temperature, pressure, water content, crystallographic orientation and iron content.
The proper determination of EC of minerals in a broad temperature and pressure range requires the
utilization of complex electrical impedance spectroscopy measurements. The iron-related hopping of
small polaron and the hydrogen-related defects are possibly the two dominant conduction mechanisms
in anhydrous and hydrous Fe-bearing silicate minerals within the depth range of mantle. The trace
structural water of mantle minerals plays a crucial role in explaining the high conductivity anomaly
and the water distribution in the deep mantle. By combining self-diffusion measurements in minerals
over a narrow temperature range with their thermo-mechanical properties in an extended range of P-T,
the EC can be estimated by the Nernst-Einstein equation, applying a well-established thermodynamic
model. This can shed more light on the underlying conduction mechanisms at high-T and high-P
conditions, thus extending the use of conductivity profiles to geophysical models.
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Abbreviations

CPE Constant phase element
COMPRES Consortium for Material Properties Research in Earth Sciences
EIS Electrical impedance spectroscopy
EC Electrical conductivity
FTIR Fast Fourier infra-red
HP High pressure
HT High temperature
HTHPSEI High-temperature and High-pressure Study of the Earth’s Interior
NAM Nominally anhydrous mineral
WC Tungsten carbide

Nomenclature

σ (S/m) Complex electrical conductivity
σo (S/m) Pre-exponential factor
∆E (kJ/mol) Activation energy
∆H (kJ/mol) Activation enthalpy
∆V (cm3/mol) Activation volume
Cw (ppm) Water content (in H/106Si)
fO2 (Pa) Oxygen fugacity
Z* (Ω) Complex impedance
B Isothermal bulk modulus
β Volume thermal expansion coefficient
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