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A B S T R A C T   

New strategies to combat hunger are a current and urgent demand. The increase in population has 
generated a high demand for products and services that affect food production, cultivation areas, 
and climate. Viable and sustainable alternative sources have been sought to meet food quality 
requirements. In this context, edible insects are a good source of macro-nutrients, and bioactive 
compounds confer biological properties that improve their nutritional aspects and benefit human 
health. This review aims to present the benefits and contributions of edible insects from the point 
of view of the biological contribution of macronutrients, and bioactive compounds, as well as 
consider some anti-nutritional aspects reported in edible insects. It was found that insects possess 
most of the macronutrients necessary for human life and are rich in bioactive compounds 
commonly found in plants. These bioactive compounds can vary significantly depending on the 
developmental stage, diet, and species of edible insects. However, they also contain phyto-
chemicals in which anti-nutrients predominate, which can adversely affect humans with aller-
genic reactions or reduced nutrient viability when consumed in high amounts or for prolonged 
periods. Hydrocyanide, oxalates, soluble oxalate, and phytate are the most studied anti-nutrients. 
However, the doses at which they occur are far below the limits in foods. In addition, anti- 
nutrient levels decrease significantly in processing, such as oven-drying and defatting methods. 
However, there are few studies, so more trials are needed to avoid generalizing. Therefore, edible 
insects can be considered complete food.   

1. Introduction 

Throughout history, humans have fed on different protein sources, including insects. The consumption of these organisms, called 
entomophagy, not only contributes to diet but also plays a cultural, traditional, religious, and ecological role [1]. FAO has considered 
the consumption of insects as a viable and sustainable strategy to combat hunger in developing countries and as a high-protein quality 
food alternative for the increase of population predicted for 2050 [2]. About 2000 of the approximately one million known insect 
species are edible (also considering their developmental stage), which are an excellent source of protein, amino acids, lipids, minerals, 
and vitamins [3,4]. The protein content of edible insects ranges from 50 to 70 % DW [3,5]and lipids from 10 to 50 % DW. Additionally, 
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insect bioactive compounds are also of interest since therapeutic purposes have been documented due to the health-promoting 
properties of these components [6,7]. 

Polyphenols are the most abundant and studied bioactive compounds. These compounds are subclassified into phenols, including 
phenolic acids, coumarins, lignin, and tannins; and flavonoids, which include flavones, chalcones, isoflavones, aurones, anthocyanins, 
and flavanols [8–11]. Disease prevention by consuming polyphenolic compounds in the diet has been documented in epidemiological 
studies [12–14]. Polyphenols are natural antioxidants that help decrease oxidative stress generated by free radicals, protecting against 
heart diseases, cancer, autoimmune diseases, inflammation, and obesity [14–17]. Insects cannot synthesize polyphenolic compounds; 
however, these organisms can accumulate them during their larval stage through diet [18]. In the specific case of flavonoids, their 
presence in insects has been related to their chemical defense, mating, intraspecific visual communication, and pigmentation [19–21]. 
Furthermore, insect proteins are hydrolyzed, forming small peptides of up to 20 amino acids and a weight of no more than 60 kDa, 
known as biopeptides, linked to beneficial health properties [7]. Dietary fiber, represented mainly by chitin from the insect 
exoskeleton, also provides an important biological activity [22]. Similarly, vitamins and minerals present in insects benefit human 
health [5]. Because there have been few reviews on bioactive compounds in edible insects, this review will address the biological 
activities of bioactive compounds in edible insects, considering also the antinutritional aspects, information not covered in other 
reviews [23,24]. In addition, this review aims to protect the bioactive compounds of the whole insect and its macronutrient fractions. 

2. Search strategy 

The qualitative systematic review presents the most relevant articles that matched the characteristics of edible insects that provide 
biological and antinutrient activity available in electronic resources such as Science Direct, Google Scholar, and PubMed. The strategy 
to search articles was the words such as bioactive compounds, edible insects, secondary metabolites, antinutrients, biological activity, 
as well as specific molecules included in the above, for example, proteins, lipids, carbohydrates, minerals, antioxidant molecules, or 
the main antinutrients studied such as oxalates, phytic acid, cyanogenic glycosides, and saponins. This review focuses on the state of 
the art of the last five years. Although not excluded, some studies between 2000 and 2018 were very few, especially on the anti- 
nutritional aspects. 

3. Biological activity of nutritional components of edible insects 

The use of synthetic substances for human food production is restricted because they have been linked to biochemical processes 
that damage human health; therefore, the search for natural compounds with beneficial biological activities has increased [25]. Edible 
insects are a good source of compounds with diverse biological activities, for example, antioxidant activity. In this line, free radicals 
generated in natural biological processes can induce oxidative stress, affecting lipids, proteins, ribonucleic acid (RNA), and deoxy-
ribonucleic acid (DNA), triggering aging processes and chronic diseases [26]. Several insect species contain high amounts of bioactive 
compounds that have been found helpful in treating wounds, microbial infections, bleeding, respiratory disorders, rheumatism, cough, 
cancer, and diarrhea [27–29]. The chemical composition of insects varies depending on developmental stage, diet, habitat, and species 
[30]. 

4. Protein 

Protein represents the highest percentage of macronutrients in edible insects; therefore, their amino acid profile has been exten-
sively studied regarding functional importance and biological value [31]. In this sense, the protein concentrates and hydrolysates 
research in these organisms offers diverse applications due to their better solubility, palatability, and digestibility [32]. The variability 
of amino acids is vast as it depends on the species and stage of development (i.e., larva, egg, adult). For example [33], found that 
glutamic acid was the predominant amino acid of the 17 identified in Allomyrina dichotoma, Protaetia brevitarsis, Tenebrio molitor, 
Teleogryllus emma, and Gryllus bimaculatus. Within these 17 amino acids, eight essential and one conditionally essential were found. Of 
the essentials, lutein was predominant in the five insects, followed by valine, except for P. brevitarsis, where valine was more abundant 
than leucine. In addition, Chakravorty et al. reported the nutritional composition of pink Chondacris and eastern Brachytrupes, two 
insects consumed by Indian tribes, with 65–69 % of protein, composed of 18 amino acids, highlighting a high amount of leucine and 
valine (8 and 7 % respectively) and low concentrations of methionine (0.5 %) [33]. Finally [34], who analyzed the edible insect species 
in Mexico Ascra cordifera and Brachygastra melifica, which presented an amount of methionine (sulfur amino acid) of 18–21 mg/g, 
similar to the recommended for adults (22 mg/g) by Ref. [35]. 

Another area that has generated interest derived from edible insect protein hydrolysates is the production of bioactive peptides or 
biopeptides. They participate in peptide-enzyme interactions that alter the enzyme conformation and inhibit the enzyme’s metabolic 
activity [36], a viable and promising mechanism given the potential effects on the reduction of hypertension, inflammation, type 2 
diabetes, microbial infections, immune disorders, and oxidative stress [37]. Such biopeptides have demonstrated antimicrobial [38] 
and antidiabetic properties by inhibiting alpha-glucosidase and dipeptidyl peptidase IV, reducing blood glucose [39,40]. Similarly, 
inhibition of the angiotensin-converting enzyme and antihypertensive activity has been demonstrated [3]. Moreover, the biological 
activity (i.e., the amount of protein the organism can utilize is a relevant characteristic of the protein quality. In this sense [5], indicates 
that some edible insects, such as termites, crickets, grasshoppers, and moths, have a higher biological value and, therefore, higher 
protein quality than some other ingredients, such as casein; additionally, they also explain that their availability can be affected by the 
heat treatment to which these amino acids are exposed. 
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Further, different mechanisms for free radical scavenging and the activation of the endogenous antioxidant enzyme system have 
been attributed to edible insect biopeptides, contributing to the balance of the oxidative stage [1]. However, a deeper understanding of 
these biological activities must be addressed and studied further. Examples of more biological activities identified by the proteins of 
edible insects are mentioned in Table 1. 

5. Lipids 

Lipids are the second most significant macronutrient fraction in edible insects, where unsaturated fatty acids (UFAs) are in higher 
percentages than saturated fatty acids (SFAs) [74]. However, this proportion varies according to the species, developmental stage, diet, 
environmental factors, and whether the insects are wild or cultivated [75]. In this regard [76], reports a high oleic and palmitic acid 
content in Tenebrio molitor and Acheta domesticus. In comparison, Hermetia illucens is characterized by a high lauric acid content and a 
medium-SFA [77]. Additionally, the ratio of UFAs to SFAs influences some biological activities, as suggested by Ref. [78], which 
indicates that a polyunsaturated fatty acid (PUFAs)/SFAs ratio of 0.45 or higher may contribute to cancer prevention and that such 
composition more closely resembles the characteristics of vegetable oil than those of animal fat [79]. Moreover [80], describes that 
edible insects contain more PUFAs, suggesting lower cholesterol content. Lipid compounds such as carotenoids, phytosterols, and 
tocols are related to anti-inflammatory, antioxidant, and hypercholesterolemic properties [79,81]. Finally, insects are also a source of 
saturated fatty acids omega 6 and 9. Compounds that play a significant role in human health and nutrition, reducing hypertension and 
autoimmune disorders and helping as anti-inflammatory and in some neurological processes [82]. Examples of more biological ac-
tivities identified in the lipids of edible insects are mentioned in Table 1. 

Table 1 
Examples of biological activity of edible insect compounds.  

Insect name Developmental stage Biological activity Bioactive compounds Reference 

Tenebrio molitor (Mealworm)  Antioxidant Phenolic compounds, 
Tocopherols, Chitosan 

[41,42] 

Larvae Anti-inflammatory Proteins [43]  
Antidiabetic Crude protein, 

Protein hydrolysates 
[44]  

Antihypertensive 
Anti-obesity 

Crude protein, 
Protein hydrolysates 
Protein, chitin, UFAs and PUFAs 

[44,45] 
[46,47] 

Hermetia illucens (Soldier fly)  Antioxidant Protein concentrate, 
Protein hydrolysates, Oil rich in n-3 HUFA 

[48–50] 

Larvae Anti-inflammatory Oil rich in n-3 HUFA, Oil [49,51]  
Antilipidemic Oil rich in n-3 HUFA [49] 

Musca domestica (House fly)  Antioxidant Protein hydrolysates 
Polypeptide 
Chitosan 

[25, 
52–54] 

Larvae Anti-inflammatory Cecropin-A2 (4301 Da) 
Serine protease inhibitor MDSPI16 

[54,55]  

Antidiabetic Amino Acids DPP-IV [56]  
Antihypertensive Protein isolates [57]  
Antilipidemic Protein-enriched extract [58,59] 

Acheta 
Domesticus (Cricket) 

Adult Antioxidant Oil, Protein hydrolysate [46,60,61] 

Gryllodes sigillatus (Cricket)  Antioxidant Peptide fractions 
Protein hydrolysates 

[62–64]  

Anti-inflammatory Peptide fractions [63–65] 
Adult Antidiabetic Protein isolate 

Peptide hydrolysates 
Peptide fractions 

[62,65,66]  

Antihypertensive Protein hydrolysates 
Peptide fractions 

[62,65] 

Alphitobius diaperinus (Lesser mealworm)  Antioxidant Peptide hydrolysates [67] 
Larvae Antihypertensive Peptide hydrolysates [67] 

Tessaratoma papillosa (Stink Bugs) Nymph and Adult Antioxidant 
Anticarcinogenic 

Phenolic acid 
Flavonids 
Tocopherols 
Amino acid 

[68] 

Sphenarium purpurascens (Grasshopper) Nymph and Adult Antioxidant 
Antimicrobial activity 

Protein hydrolysates 
Phenolic compounds 
Chitin 

[69] 

Protaetia brevitarsis (White-spotted flower chafer) Larvae Antioxidant 
Anti-apoptosis 
Anti-inflammatory 
Antibacterial 

Protein extracts 
Ethanolic, and methanolic extracts 
Peptide fractions 

[70–73] 

HUFA, highly unsaturated fatty acids; UFAs, unsaturated fatty acids, and PUFAs polyunsaturated fatty acids. 
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6. Carbohydrates 

Chitin, a polysaccharide considered dietary fiber, forms the cuticle and the supporting exoskeleton, and represents up to 50 % of 
carbohydrates in insects [3]. This compound stimulates the immune system [83], provides protection against possible parasitic and 
allergic infections [84], modulates the intestinal microbiota [85,86], and has antimicrobial, antioxidant, antifungal, and 
anti-inflammatory properties [26,87]. Although this compound is considered a source of fiber for humans, its elimination improves 
protein digestibility [88]. Additionally, it is known that in some cases, chitin triggers tissue inflammation by activating the expression 
of host chitinases, generating an allergic reaction in people susceptible to this compound [89]. There is no description of other types of 
carbohydrates in edible insects [90]. In addition, a recent study shows how chitin has fat-binding capacity in insects such as Gryllus 
bimaculatus and Acheta domesticus, showing higher values in fat absorption capacity [91]. 

7. Minerals, vitamins, and bioactive compounds 

Edible insects are also a source of minerals (e.g., copper, iron, magnesium, manganese, phosphorus, selenium, and zinc), vitamins 
(e.g., riboflavin, pantothenic acid, biotin, and folic acid), and other bioactive compounds [92,93] that are generally obtained from 
plants (e.g., phenolic compounds, terpenoids, steroids, glycosides, organic acids, carotenoids, and sulfur compounds) (Table 2) [26, 
94]. These micronutrients can vary in concentration and presence from species to species, growth conditions, diet, and developmental 
stage [95,96]. Insects contain more calcium and iron than beef, chicken, or pork. However, more research is required to describe the 
most predominant minerals in insects, whose proportion varies depending on the species, insect feed, and place of origin [3,97]. 
Studies on the content of vitamins in insects are scarce. Still, some studies have demonstrated they contain carotene, vitamins B1, B2, 
B6, C, D, E, and K. Species such as Orthoptera and Coleoptera contain folic acid, but further studies are needed [6,98]. 

8. Anti-nutrients 

The composition of edible insects is diverse. This diversity includes substances or phytochemicals that protect insects against 
predators, contribute to mate attraction during the reproductive process and help them hunt and feed [6]. However, some of these 
phytochemicals are called anti-nutrients as they negatively affect humans, such as allergenic reactions and reduced nutrient viability 

Table 2 
Examples of minerals, vitamins, and bioactive compounds identified in edible insects.  

Insect name Developmental 
stage 

Identified Compounds Reference 

Patanga succincta L. (Bombay 
locust) 

Adult aPotassium (349.80), Phosphorus (266.90), Calcium (65.60), Magnesium (39.40), Sodium 
(515.90). 

[99] 

Bombyx mori (Silkworm) Adult aPotassium (492.90), Phosphorus (392.20), Sodium (128.40), Magnesium (157.70), 
Calcium (92.20). 

[99] 

Acheta domesticus (Cricket) Adult aSodium (998.50), Potassium (457.70), Phosphorus (424.30), Calcium (88.70), Magnesium 
(63.80). 

[99] 

Oryctes rhinoceros (Rhinoceros 
beetle) 

Larvae aCalcium (368.0), Sodium (931.50), Iron (1.20), Magnesium (145.2), Vit B1 (5.90), B12 
(70.43), B2 (27.19), Vit E (24.09), Vit K (7.43). 

[100] 

Brachystola magna 
(Grasshopper) 

Egg aVit C (19.860), Vit E (21.93), Vit D (2.710), B6 (0.430), B3 (0.540), B1 (0.075), B9 (0.020), 
Vit A (0.150). 

[101] 

Brachystola magna 
(Grasshopper) 

Adult aVit C (34.55), Vit E (145.36), Vit D (5.25), B6 (0.580), B3 (0.670), B1 (0.090), B9 (0.023), 
Vit A (0.390). 

[101] 

Liometupum apiculatum 
(Escamoles ant) 

Egg aVit E (2.22), Vit D (0.0036). [102] 

Acheta domesticus (Cricket) Adult aVit E (33.13). [103] 
Ruspolia differens 

(Grasshopper) 
Adult aVit B3 (3.01–3.22), B2 (0.84–0.96), Folic acid (0.34–0.35), Vit A (0.106–0.221). [104] 

Chlosyne lacinia (Patch 
butterfly) 

Larvae bIsorhamnetin 3-O-hexaside, Hispidulin 4′-O-hexoside, Hispidulin (Flavonoid). [105] 

Bombyx mori L (Silkworm) Cocoons bQuercetin, Isoquercetin, Quercetin 3-O-rutinoside, Kaempferol, Alcaloids, Terpenes and 
Lignans. 

[106] 

Antheraea pernyi (Chinese oak 
silkworm) 

Larvae b Flavones, Flavonols, Flavonoids, Flavanones, Polyphenols, Isoflavones, Anthocyanins, 
Proanthocyanidins. 

[19] 

Pieris brassicae (Large white 
butterfly) 

Larvae and adults bFlavonols: Kaempferol-3-O-sophoroside-7-O-glucoside, Kaempferol-3-O-sophoriside; 
phenolic acids: ferulic acid and sinapinic acid. 

[107, 
108] 

Rondatia menciana (Mulberry 
white caterpillar) 

Cocoon bQuercetin 3-O-galactosyl-galactoside, Kuercetin-3-O-galactoside, Kaempferol 3-O-galac-
tosyl-galactoside, Kaempferol 3-O-galactoside, Quercetin 3-O-β-D-galactopyranosyl-(1 → 
3)-β-D-galactopyranoside, Kaempferol 3-O-β-D-galactopyranosyl-(1 → 3)-β-D- 
galactopyranoside (Flavonols). 

[109] 

Holotrichia parallela (Large 
black chafer) 

Adults bGallic acid, Protocatechuic acid, Catechin, Epicatechin, Protocatechualdehyde, 4- 
hydroxyacetophenone, Ferulic acid, Resveratrol, Quercetin. 

[110]  

a Essential mineral and vitamin content per 100g of insect samples (mg/100g). 
b Bioactive compounds identified in edible insects. 
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when consumed in high quantities or for long periods [5]. Table 3 shows some anti-nutrients in edible insects and their effects on 
humans. 

The main anti-nutrient compounds detected in edible insects are oxalates, phytic acid, cyanogenic glycosides, and saponins. These 
anti-nutrients have been linked to the chelation of minerals and proteins, decreasing their absorption and lowering availability. Samuel 
and Humtap [117] propose that anti-nutrients bind to digestive enzymes, creating a blockage in feed degradation and preventing 
absorption [113]. Oxalates chelate calcium and magnesium that are released in the digestive system, decreasing, or preventing their 
absorption. The low availability of calcium affects bone formation, hormonal and enzymatic functions, and osmotic and nerve impulse 
mechanisms [100]. Additionally, prolonged ingestion of oxalates can induce kidney stone formation, as they are filtered through this 
organ for excretion [118]. The presence of phytic acid decreases the absorption of calcium, iron, magnesium, and zinc, minerals linked 
to various processes such as growth, reproduction, mental capacity, blood oxygenation, and proper functioning of the cardiac system. 
Cyanogenic glycosides (HCN) disrupt the transfer of electrons to oxygen molecules by combining with the catalytic ion of the enzyme 
cytochrome oxidase, inducing the inhibition of cellular oxidation [119]. Finally, saponins can eventually generate complexes with zinc 
and iron, decreasing their availability [120]. On the other hand, the study by Gachini et al. shows that anti-nutrient levels decreased 
significantly on processing such as oven and sun drying or defatted sun-dried and defatting oven drying methods by 2%–70 %, with 
oxalates and phytates having decreased in the edible insects [116]. 

9. Conclusion 

Insect biomass has recently increased interest in using fractions, e.g., protein, lipid, and chitin, as food and feed ingredients. These 
fractions could be a suitable alternative to industrial applications because they are an essential source of macronutrients, micro-
nutrients, and bioactive compounds that provide them with biological properties that positively impact human health; however, they 

Table 3 
Anti-nutrients in edible insects.  

Insects Name Developmental 
stage 

Anti-nutrient Effect Reference 

Anaphe spp. (African silk) Pupae Heat resistant thiaminase Seasonal ataxic syndrome [111] 
Gymnogryllus lucens 

(Cricket) 
Adult Hydrocyanide (2.187 mg/kg) 

Oxalates (13.20 mg/kg) 
Soluble Oxalate (8.80 mg/kg) 
Phytate (0.283 mg/kg) 
Tannin (0.329 mg/kg) 

HCN 
Limit the availability of some minerals 

[112] 

Heteroligus meles (Yam 
beetle) 

Adult Hydrocyanide (2.734 mg/kg) 
Oxalates (28.40 mg/kg) 
Soluble Oxalate (22.0 mg/kg) 
Phytate (0.28 mg/kg) 
Tannin (0.379 mg/kg) 

HCN 
Limit the availability of some minerals 

[112] 

Henicus whellani  Oxalates (9.3 g/100 g), Alkaloids (52.3 g/100 
g) and saponins (53.3 g/100 g) 

Limit the availability of some minerals and 
proteins 

[113] 

Macotermes facilger 
(Termite) 

Adult Oxalates (14.08 g/100 g), Saponins (57.0 g/ 
100 g) 

Limit the availability of some minerals and 
proteins 

[113] 

Rhynchophorus 
Phoenicis (Palm 
weevil) 

Adult Hydrocyanide (2.422 mg/kg) 
Oxalates (17.60 mg/kg) 
Soluble Oxalate (13.2 mg/kg) 
Phytate (0.289 mg/kg) 
Tannin (0.405 mg/kg) 

HCN 
Limit the availability of some minerals 

[112] 

Zonocerus variegatus 
(Grass-hopper) 

Adult Hydrocyanide (3.202 mg/kg) 
Oxalates (26.40 mg/kg) 
Soluble Oxalate (8.80 mg/kg) 
Phytate (0.281 mg/kg) 
Tannin (0.430 mg/kg) 

HCN 
Limit the availability of some minerals. 

[112] 

Cirina forda (Westwood) Larvae Oxalates (4.11 mg/100g) 
Phytic acid (1.02 mg/100g) 

Limit the availability of some minerals [114] 

Oecophylla smaragdina 
(Ant) 

Adult Phytic acid (171.0 mg/100g) 
Tannin (496.67 mg/100g) 

limits the availability of some minerals and 
reduce the absorption of proteins 

[115] 

Odontotermes sp. 
(Termite) 

Adult Phytic acid (141.23 mg/100g) 
Tannin (615.0 mg/100g) 

limits the availability of some minerals and 
reduce the absorption of proteins 

[115] 

Ruspolia differens 
(Grasshopper) 

Adult Oxalates (14.03 mg/100g) 
Phytates (0.41 mg/100g) 
Tannins (0.93 mg/100g) 

Limit the availability of some minerals and 
proteins 

[116] 

Nasutitermes spp. 
(Winged termites) 

Adult Oxalates (7.88 mg/100g) 
Phytates (0.67 mg/100g) 
Tannins (1.69 mg/100g) 

Limit the availability of some minerals and 
proteins 

[116] 

HCN: High hydrocyanide levels have been implicated in cerebral damage and lethargy in humans and animals. A lethal dose of HCN is 35 mg. 
Permissible levels of Oxalate in the human body are 250 mg/100g; a maximum concentration range of 250–500 mg/100 g of phytic acid, and 
150–200 mg/100g of tannins in food samples. 
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also have anti-nutritional compounds with adverse effects. Studies reported in this review found that the antinutrients of the edible 
insects found are within the permitted limits at non-toxic levels, so they cannot threaten their use as food sources in humans. However, 
there are few studies, so more trials are needed to avoid generalizing. On the other hand, edible insects provide various bioactive 
compounds such as amino acids, fatty acids, vitamins, minerals, and antioxidant compounds, which have outstanding biological ac-
tivity as anti-inflammatory, antidiabetic, antihypertensive, antilipidemic, to mention a few. The results reviewed in this work justify 
that edible insects are a potential, complete, and safe product for human consumption with biological activity. They are not discarded 
as a natural alternative for treating various chronic diseases and thus contribute to the benefit of human health. In addition, Insects are 
a viable and feasible strategy to combat hunger and thus contribute to the goal set by the United Nations in the 2030 Agenda for 
Sustainable Development. 

Author contributions 

Ana Angelica Feregrino-Perez: Writing – review & editing, Project administration, Conceptualization. Humberto Aguirre-Becerra: 
Supervision, Investigation. María de la Luz Sánchez-Estrada: Writing – original draft, Investigation, Formal analysis 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgments 

The authors want to thank the Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT) of México for its schol-
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[15] H. Karagecili, M.A. Yılmaz, A. Ertürk, H. Kiziltas, L. Güven, S.H. Alwasel, İ. Gulcin, Comprehensive metabolite profiling of berdav propolis using LC-MS/MS: 
determination of antioxidant, anticholinergic, antiglaucoma, and antidiabetic effects, Molecules 28 (2023) 1739, https://doi.org/10.3390/ 
MOLECULES28041739, 28 (2023) 1739. 
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