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Abstract

Small open reading frames (ORFs) have been systematically disregarded by automatic
genome annotation. The difficulty in finding patterns in tiny sequences is the main rea-
son that makes small ORFs to be overlooked by computational procedures. However,
advances in experimental methods show that small proteins can play vital roles in cellu-
lar activities. Hence, it is urgent to make progress in the development of computational
approaches to speed up the identification of potential small ORFs. In this work, our focus
is on bacterial genomes. We improve a previous approach to identify small ORFs in
bacteria. Our method uses machine learning techniques and decoy subject sequences
to filter out spurious ORF alignments. We show that an advanced multivariate analy-
sis can be more effective in terms of sensitivity than applying the simplistic and widely
used e-value cutoff. This is particularly important in the case of small ORFs for which
alignments present higher e-values than usual. Experiments with control datasets show
that the machine learning algorithms used in our method to curate significant align-
ments can achieve average sensitivity and specificity of 97.06% and 99.61%, respectively.
Therefore, an important step is provided here toward the construction of more accurate
computational tools for the identification of small ORFs in bacteria.

Introduction
It is well known that small proteins (<100 amino acid
residues) play a vital role in several important cellular activ-
ities in all sorts of organisms, including prokaryotes (1, 2).
Small proteins in prokaryotes may act, for instance,

as intercellular signals, intracellular toxins and kinase
inhibitors (3–5). Hobbs et al. cite additional key functions
such as: acting as antibiotics, structural role, alteration in
membrane fluidity, acting as metal chaperones and regula-
tion in larger proteins (6). In Salmonella, the protein MgtR
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composed of only 30 amino acids binds to the virulence fac-
tor MgtC, causing its degradation (7). In Bacillus subtilis,
the protein Sda of only 46 amino acids represses sporula-
tion by inhibiting kinase KinA (8, 9). In Staphylococcus
aureus, small proteins composed of 20 to 22 amino acids
are excreted during infection causing membrane disruption
of neutrophils, leading to cell lysis (10).

It is also worth mentioning the small proteins that are
encoded by bacterial dual-function small RNAs (sRNAs)
that are RNA molecules composed of 50 to 350 nt and
regulate gene expression as well as proteins (11–16). Even
though the role of proteins encoded by sRNAs is still await-
ing elucidation, it is likely that such proteins act in many
cases in conjunction with the riboregulation in the same
physiological pathway, both in a complementary manner
and independently (16, 17).

An important type of short peptide, termed signal pep-
tide, composed of 20–30 amino acids, has also been long
reported in the literature (18). Signal peptides are present
at the N-terminus of a vast number of nascent proteins that
are aimed for the secretory pathway. In bacteria, the sig-
nal peptides mark proteins to direct them to the SecYEG
protein-conducting channel. In addition, signal peptides
have been shown to play a key role in regulation of protein
biogenesis (18).

Although the importance of small proteins is widely rec-
ognized, the genome annotation processes have not yet
achieved satisfying results concerning the detection of small
open reading frames (ORFs) (2, 19–21). In particular in
this work, we address the challenge of in silico detection
of small ORFs in bacteria, for which the current obsta-
cles result in a very reduced number of annotated small
ORFs in the main public repositories. The difficulties can
be explained by the fact that small ORFs are hidden in
the huge number of random ORFs that a genome might
contain. Additionally, small ORFs present peculiar charac-
teristics that are not yet known. As a result, both in silico
approaches, namely intrinsic and extrinsic, are affected
(1–3, 5, 19–23).

In the intrinsic approach, the sequence under analysis
is scrutinized regarding its coding potential as well as the
presence of distinct features such as the ribosome binding
site (RBS). However, the reduced size of sORFs means also
reduced amount of information. Furthermore, as described
by Warren et al. (22), a small ORF might present a com-
position that is completely anomalous when compared to
large ORFs. The authors show that the guanine-cytosine
(GC) content in several prokaryotes might be highly vari-
able, meaning that no pattern can be inferred. Hemm et
al. also demonstrate the small ORF peculiarity in a previ-
ous work, where they confirm the existence of short-protein
coding genes without any discernible RBS (24).

The extrinsic approach, in turn, is based on similar-
ity between conserved sequences among different species,
i.e. the procedure is essentially searching for homologous
sequences. However, the search is carried out in databases
(DBs) of proteins that are already annotated, which is not
an interesting solution for small ORF detection because the
number of annotated small ORFs up until now is extremely
low (3, 22).

For eukaryotes, the studies to detect small ORFs have
been intensive (25–28). It is also worth mentioning the
availability of some important tools for small ORF detec-
tion in eukaryotes: sORF finder (29), PhyloCSF (30),
HAltORF (31) and uPEPperoni (32).

The number of computational methods for identifica-
tion of small ORFs focused on prokaryotes, however, is
scarce. Warren et al. described a methodology for a large-
scale analysis of missing genes in all annotated prokaryotic
genomes (22). In the course of this paper, we refer to
the Warren and colleagues’ work as MGP (missing genes
in prokaryotes). In MGP, the authors use the extrinsic
approach trying to circumvent its limitations through the
comparison also of unannotated parts of the genomes. Sup-
pose gene a in genome A and gene b in genome B are yet
unknown. If a is similar to b, then both might be identi-
fied when we compare A to B. However, if the goal is a
broad analysis using all annotated prokaryotic genomes,
the computational costs involved might turn the whole
study into an infeasible process. To overcome this issue,
the authors developed a methodology—explained in the
next section—combined with a high-performance comput-
ing platform to identify overlooked genes in the annotation
of all prokaryotic genomes in GenBank. The results showed
that, indeed, there is strong evidence that the number of
small genes systematically ignored in prokaryote genome
annotation is very high. Still, the authors demonstrate that
this fact occurs mainly due to the incapacity of current
computational tools to detect small ORFs. They list 1153
missing gene candidates, where the vast majority are small
(≤300 nt). In addition to a rather variable GC content,
Warren and colleagues point out that only 127 candidates
could have an RBS assigned. Furthermore, many such
identified genes could not be detected by traditional com-
putational tools for gene prediction such as Glimmer (33),
EasyGene (34) and GeneMark (35), possibly because of the
yet-unknown divergent characteristics of small ORFs.

Up until 2012, the work of Warren et al. was the
only one to tackle such a large-scale analysis for prokary-
otes. A similar effort that led to a computational tool
termed COMBREX was then published in 2012 by Wood
and coworkers (23). In COMBREX, the program Glim-
mer is used to select missing gene candidates that are then
submitted to a search for homologous sequences using
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BLAST (36). The authors also demonstrated that most of
their uncovered genes are small.

Aiming to identify small genes, Goli and Nair
extracted 117 coding attributes from six prokaryotic organ-
isms: physicochemical and conformational properties (65
attributes), k-mer frequencies (84 attributes), GC content
and its fraction at different codon positions (4 attributes),
codon usage bias (6 attributes), amino acid properties
(2 attributes) and rho statistic (16 attributes) (37). By using
Fast Correlation Based Feature Selection, the authors could
reduce the initial set to 22 attributes with high discrimi-
nant power. ML algorithms were then used on the final
dataset to build a predictive model that was evaluated by
cross validations and presented high accuracy. However,
the authors did not perform genome-wide experiments.
Their results were limited to validations in the training set
composed of pre-selected coding and non-coding sequences
of DNA fragments ( i.e. not entire ORFs) of the six chosen
organisms.

ÓhÉigeartaigh et al. developed SearchDOGs, a software
that uses BLAST searches combined with a synteny analysis
approach to automatically detect missing genes in bacterial
genomes (38). The authors identified 155 gene candidates
in the Shigella boydii sb227 genome, including 56 candi-
dates of length < 60 codons. As stated by the authors, the
analysis proposed in the method is limited to species that
are phylogenetically close. Their approach identifies unan-
notated genes for which an ortholog exists and is annotated
in another species.

A recent preprint was released by Li andChao describing
a de novo approach based on ML, namely, support vec-
tor machines, to identify small ORFs in bacterial genomes
(39). First, the authors identified discriminant attributes by
studying known small proteins in Escherichia coli. Then,
they built an ML model that could achieve 92.8% of accu-
racy in a 10-fold cross validation. Further experiments with
549 bacterial genomes were performed using their model,
leading to the identification of >100,000 novel small ORF
candidates. Unfortunately, the authors do not show impor-
tant statistical measures such as sensitivity and specificity.
Consequently, when it is described that a discriminant
probability of 0.9 was used in further experiments, for
example, it is possible that their results presented good
specificity but poor sensitivity. Additionally, we found no
mention regarding the availability of their computational
tool.

In spite of the fact that the work of Warren et al. has
provided a great contribution demonstrating that small
genes have been systematically ignored in the annotation of
prokaryote genomes, the MGP methodology has room for
many improvements, especially concerning sensitivity (40).
Furthermore, the authors present the method, but they did

not make a computational tool available. In this work, we
propose an improvement of MGP with a focus on small
ORFs in bacteria, as the identification of long ORFs—i.e.
those that encode proteins with 100 or more residues—has
already well-established solutions. We describe a method
built upon ML techniques together with the use of decoy
subject sequences to improve elimination of false BLAST
alignments. We show that this is more effective than using
traditional e-value thresholds. Our results also demonstrate
that the whole procedure, named here OCCAM, could
maintain specificity and sensitivity at high levels, and obtain
similar specificity yet superior sensitivity when compared
with MGP.

Methods

Extraction of queries and construction of the
subject DB

The first phase of our approach is to build queries and
the subject DB, similarly to MGP. The idea is to provide
the possibility of comparing intergenic ORFs of sequenced
genomes to all possible ORFs of the same genomes. Only
ORFs with length in a certain range are considered. The
sequences from which the ORFs are extracted are replicons
(chromosomes and plasmids) of all bacterial genomes avail-
able in the RefSeq repository of the National Center for
Biotechnology Information (41). Data were downloaded
in February of 2014, totaling 2281 genomes. Considering
only genomes whose identifier starts with ‘NC’, i.e. finished
genomes, and ignoring sequences for which the annota-
tion has inconsistencies, we could select 4239 replicons to
proceed with our work.

Figure 1, taken from thework ofWarren and co-workers
(22), illustrates the steps for each DB construction. ORF
extraction is performed like inMGPwith the difference that
our focus is on small ORFs, including very small ORFs, i.e.
we consider ORFs of length between 36 and 300 nts. Note
that inMGP longORFs are allowed and very small ones are
ignored (they consider only ORFs ≥99 nt). Another differ-
ence is that in MGP only the start codons ATG, GTG and
TTG are taken into account. Our computational tool uses
these same start codons as default, but allows also the use of
CTG and ATT in its parameterization. Furthermore, in our
case, although all ORFs of the available bacterial genomes
are extracted, the user can consider as query only ORFs of
organisms of interest instead of ORFs of all organisms in
RefSeq as done in MGP.

To build the queries and the subject DB, as can be seen
in Figure 1, the coordinates of the extracted ORFs are
compared to the coordinates of the current annotation.
Then, the ORFs are split into three categories: (1) anno-
tated—those corresponding to already-annotated ORFs;
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Figure 1. Construction of queries and the subject database (adapted from the work of Warren et al. (22)). The original figure can be identified by
white-background shapes. Illustrated in gray, the differences in our case are: only ORFs of length between 36 and 300 are considered; the start
codons CTG and ATT may also be taken into account in addition to ATG, GTG and TTG; and the sequences that compose the subject DB are the ones
coming from the three groups plus their reverse.

(2) entity-overlapping—those overlapping with some anno-
tated entity (coding genes, RNA genes, pseudogenes, etc.);
and (3) intergenic—those isolated from any other already-
annotated genomic entity. After this separation, all ORFs
are translated to amino acid sequences. The query datasets
are then constructed with ORFs of group 3, whereas the
subject DB is conceived with all groups. However, it is
important to highlight here another important difference
regardingMGP. In our case, the subject DB is filled with the
sequences of all groups in addition to the reverse of these
sequences. The use of reverse—or decoy—sequences is a
fundamental feature to permit the identification of random
alignments, as described in the following sections.

Another important thing to point out is that we fur-
ther split the resulting ORFs into two extra categories: very
small ORFs (vsORFs), which are those composed of 36 (11
residues) to 90 (29 residues) nucleotides; and small ORFs
(sORFs), which are those composed of 93 (30 residues)
to 300 (99 residues) nucleotides. This separation is impor-
tant because the BLASTP parameters are optimized in the
case of query sequences containing fewer than 30 amino
acids. Also, such a stratification makes possible to use more
restrictive filters on alignments of vsORFs that are even
harder to identify. Note that we are aware that ‘small’ and
‘very small’ are arbitrary and ambiguous terms. Hence, our
intention is by no means to establish a definition concern-
ing ORF size ranges. On the other hand, this distinction
is necessary here for practical reasons, mainly the reasons
described above, i.e. an optimized BLASTP execution and a
different filtering process of the resulting alignments, since

very small ORFs are more easily confounded with ran-
dom sequences. Note that separate runs are performed for
both categories (distinct datasets and distinct parameteri-
zation), which means that the category split also facilitates
the reporting of results. It is also important to clarify that
the minimum size of 11 residues was defined according to
the shortest proteins that we could find in the literature at
the time that we started our research. Recent works, how-
ever, have been described proteins < 11 residues long (42).
Even though such proteins are out of the scope of our work,
the size ranges are parameters of our programs, which
means that the extraction of queries and the construction of
the subject DB, as illustrate in Figure 1, can be performed
with alternative ORF lengths according to the user needs.

The ORF category breakdown is shown in Figure 2. As
can be seen in the chart of all small ORFs (Figure 2a),
the number of annotated small ORFs is very low, spe-
cially considering that a bacterium has typically thousands
of protein-coding genes composed of 100 or more amino
acid residues. The number of annotated vsORFs is particu-
larly small, i.e. the amount of 4219 means an average value
smaller than 2 annotated vsORFs per bacterial genome.
Another interesting thing is the room for finding new small
ORFs, as can be noted by inspecting the intergenic por-
tions. The number of intergenic small ORFs is three orders
of magnitude greater than the number of annotated small
ORFs (for both sORFs and vsORFs). The overlapping
regions also express a significant potential for new small
ORFs. However, similarly to Warren and co-workers, we
preferred to explore only the intergenic regions.
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Figure 2. Category breakdown of small ORFs. (a) The whole set of small ORFs obtained for all bacteria in RefSeq. (b) Small ORFs of the eight bacteria
that we used in our experiments.

Datasets used in the experiments
For our experiments, we selected the genomes of eight
bacteria: E. coli str. K12 substr. MG1655, Bacillus sub-
tilis 168, Pseudomonas aeruginosa PAO1, Staphylococ-
cus aureus MRSA252, Actinobacillus pleuropneumoniae
serovar 5b L20, Caulobacter crescentus CB15, Mycobac-
terium tuberculosis H37Rv uid57 777 and Mycoplasma
hyopneumoniae 7448, for which the resultingORF datasets
were named with the prefixes: Ec, Bs, Pa, Sa, Ap, Cc, Mt
and Mh, respectively, alluding the bacterium names. Addi-
tionally, the suffixes vso and so were also used to compose
the dataset names to indicate whether a given dataset con-
tains vsORFs or sORFs, respectively. Therefore, Bs_vso
and Bs_so, for instance, are the names of the datasets
containing vsORFs and sORFs, respectively, of B. sub-
tilis. Those bacteria were chosen because of their broad
use in biological studies and/or their importance in terms
of economy as well as public health (43–47). The acces-
sion numbers of each genome can be found in supporting

File S1. The number of intergenic small ORFs that served
as query sequences in the BLAST searches—for each of
the 16 resultant datasets—can be visualized in Figure 2b
(red for vsORFs and brown for sORFs). Also, the start
codon distribution in each dataset is depicted in supporting
File S2.

Control query datasets were additionally built using
small ORFs of E. coli, B. subtilis, P. aeruginosa and
S. aureus to measure how accurate OCCAM is to iden-
tify significant alignments among the plethora of random
alignments that occur in the case of short sequences. Each
control dataset, regarding a bacterium, was built using
the sequences of annotated small ORFs, which are thus
positive cases, plus shuffled sequences of intergenic small
ORFs, which are negative examples, similarly to the work
of Ladoukakis et al. (26). In this way, it becomes easier
to identify true/false positives as well as true/false negatives
when evaluating data mining algorithms. If an annotated
small ORF is detected by the computational tool as a
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missing gene, then it is obviously a true positive. If a shuf-
fled sequence of an intergenic ORF is reported as a missing
gene, then it is certainly a false positive. It is important
to notice that the number of shuffled sequences in a con-
trol dataset is far greater than the number of annotated
sequences. In the case of B. subtilis, for instance, the resul-
tant vsORF control dataset contains five annotated vsORFs
used as positive examples, and 5259 shuffled intergenic
vsORFs as negative examples, as can be seen in Figure 2b.
Therefore, the probability of our programs to identify an
annotated (i.e. a positive) sequence as a missing gene by
chance is close to zero.

The letter ‘a’—alluding ‘annotated’—was used to com-
pose the names of the control datasets. Hence, Ec_avso
and Ec_aso, for example, are the names of the control
datasets containing annotated/shuffled vsORF sequences
and annotated/shuffled sORF sequences, respectively, of
E. coli. Therefore, as we used four bacteria, we ended up
with eight control datasets, i.e. each bacterium gave rise to
two datasets: one for vsORFs and another for sORFs.

The control datasets are also useful to show that decoy
sequences can in fact be applied in an efficient approach
to detect spurious alignments, as can be seen in the result
section.

BLASTP execution and alignment processing

Once the DBs are built, the next step is to execute BLASTP
to compare query sequences to subject sequences for iden-
tifying homologs. As in MGP, we use mpiBLAST that
promotes a huge gain in performance through paralleliza-
tion of BLAST programs (48). After the search, we analyze
the resulting alignments looking for evidence of new genes
not reported in the current genome annotation.

In MGP, the resulting alignments of BLASTP are fil-
tered using e-value ≤10−5. ORFs are then labeled in two
stages. First, for each query, its best alignment—regarding
e-value and identity—to a sequence of a distinct replicon is
inspect. Thereafter, the query is labeled using the following
classification:

(i) Absent annotation (AA)—if the query aligns to an
annotated ORF and the query coverage as well as
the subject coverage are at least 80%;

(ii) Genomic artifact (GA)—if the query aligns to an
entity-overlapping ORF and the query coverage as
well as the subject coverage are at least 80%; and

(iii) Potentially missing gene—if the query aligns to an
intergenic ORF pertaining to a different taxonomic
family, the query coverage as well as the subject cov-
erage are at least 80%, and the average coverage of
any other alignment suggesting a different label is
at least 20% less than the average coverage of the

best alignment. This 20% criterion can be thought
as a reinforcement of the evidence that the ORF is
potentially a missing gene.

Those queries for which no alignment could be found
according to the criteria above are labeled unclassified.

The second stage of MGP is to further analyze poten-
tially missing genes to find evidence that they are really
missing. In this step, ORFs labeled potentially missing
genes are clustered. A pair of such ORFs are joined if they
align to each other. The members of groups that contain at
least two ORFs of distinct taxonomic family are labeled
missing gene (MG). The restriction concerning different
taxonomic families—used in the first and second stage for
the missing gene case—is to guarantee enough phylogenetic
distance so that the evidence provided by the alignment is
strong, i.e. the alignment did not happen simply because the
genomes have very similar sequences due to phylogenetic
proximity.

Once more, some significant differences between
OCCAM and MGP have to be described concerning the
way ORFs are labeled according to the alignments.

The first distinction concerns the way random align-
ments are identified. Instead of using an e-value cutoff, our
method applies a target-decoy database (TDDB) approach,
which is largely used in mass spectrometry data analysis for
protein identification (49–51), associated with ML algo-
rithms, as proposed previously also for proteomics (52).
Our goal is to filter out random alignments without com-
promising sensitivity. Especially in the case of very small
ORFs, where e-values tend to be higher, the threshold value
10−5 might be very stringent. The gain in sensitivity pro-
vided by our method to separate random alignments is a
major contribution provided in this work. We also pick the
best query alignment, but using the probabilities generated
by the resulting ML model (see details later on in the text),
instead of considering isolated parameters such as e-value
and identity.

Second, regarding the criteria to identify evidence of
homology, OCCAM considers a minimum query and sub-
ject coverage of 80% for sORFs, as in MGP. However, we
realized that the occurrence of this percentage is not rare in
random hits of vsORFs—which are not covered in MGP. In
the dataset Ec_avso, for instance, a wrong hit was reported
with query coverage = 92.31%, subject coverage = 100%
and an identity= 84.62%. Therefore, it is necessary to con-
sider a higher minimum coverage. Additionally, a minimum
percentage of identity is also necessary, as can be seen in the
same example. We also found examples in our datasets that
have shown not to be random, where the coverage percent-
age was high for both query and subject, the e-value was
very low, but the percentage of identity was around 40%.
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A hit with such a low identity is difficult to be trusted as a
sign of homology (the percentage of conservation was even
lower). It reinforces the need of considering also a mini-
mum value for identity. Analyzing the control datasets, we
could notice that a minimum of 80% for the three variables:
minimum query coverage, minimum subject coverage and
minimum identity is a suitable value for sORFs, while for
vsORFs—which are more prone to random alignments—a
minimum of 90% for the same variables is more adequate.

The third difference between OCCAM and MGP is
related to the stage to provide more evidence that the MG
classification is correct. In the work of Warren et al., the
second phase of the alignment analysis is a clustering proce-
dure. It aims at placing similar ORFs that were considered
potentially missing genes in the same group to provide an
evidence that they are indeed missing genes. It is impor-
tant to note, however, that the MGP clustering is possible
because the BLASTP search takes as queries all ORFs iden-
tified in all sequenced prokaryote genomes. However, the
computational resources to perform such a high-cost search
are rare. Warren et al. used a high-performance distributed
platform to accomplish their work. They do not mention
the time needed to perform such a huge BLASTP search in
their work. However, especially in our case where a much
bulkier query and subject DBs are obtained due to con-
sidering very small ORFs, such a BLASTP search would
probably take months to be accomplished, even in a high-
performance platform. As can be seen in our experiments,
the TDDB+ML step for separating significant hits plus
the above-mentioned homology criteria (minimum cover-
age/identity) were enough to guarantee a good specificity,
which is a challenging aspect of computational solutions
(40). As a result, we could eliminate the clustering proce-
dure without compromising the quality of the results. With
the exclusion of the clustering phase, it is possible to use
as queries only ORFs of the target organisms, making run-
ning time feasible even in simpler computational platforms.
Note that in our approach the subject DB still includes
the small ORFs of all sequenced bacterial genomes in Ref-
Seq. Additionally, the α score—proposed by Warren et al.
—and the β score—conceived in this work—are provided
as options to the user to further assess the quality of the
classification. See the details of those scores in subsequent
sections.

Finally, an important difference between our method
and MGP concerns ORFs classified as GA. In MGP, this
type of ORF is ignored. However, overlapping genes have
been widely reported in the literature (53). For this reason,
although we keep the classifications GA and MG distinct
according to the alignment—as describe earlier in the text—
and do not include entity-overlapping ORFs in the query
DB, GAs might be also considered as potentially missing

genes in our work. To consider a GA query as potentially
missing gene, the alignment must be to a replicon of a dif-
ferent taxonomic family—just as in the case of a query that
aligns to an intergenic ORF—so as to minimize the chance
that the alignment is meaningless.

The TDDB approach

The most successful procedure hitherto to identify and
quantify proteins in a complexmixture is the so-called shot-
gun proteomics for which the strategy liquid chromatogra-
phy coupled with tandem mass spectrometry (LC-MS/MS)
is a fundamental part (54, 55). In this procedure, thousands
of spectra—each corresponding to a peptide—are gener-
ated. For each spectrum, the goal is to reveal the sequence
of the peptide represented by the observed set of peaks.
Typically, sequences are assigned by performing a search
in a protein sequence DB from which computationally pro-
duced peptide sequences are compared to the pattern of
peaks of each spectrum. The best spectrum hit, i.e. the
sequence assignment presenting the best scores, is reported
as the most probable sequence of the spectrum (56). How-
ever, the error rate in this spectrum interpretation process
is very high, which led to studies for automatizing curation
of sequence assignments (52, 57, 58).

A very popular method to evaluate spectrum-sequence
matches is the target-decoy search strategy. In this method,
besides using the target protein sequences, a DB composed
of decoy sequences are also included in the assignment pro-
cedure. There are roughly two ways to use such sequences.
In one approach, target and decoy DBs are used inde-
pendently, which means that two separated searches are
performed using one subject DB at a time. In another strat-
egy, a unique composite TDDB is created and only one
search is necessary. Typically in both schemes, decoy DBs
may be conceived by reversing or shuffling the target DB
sequences (59). For any of these methods, the resulting false
sequences have to be produced in a way that it is reason-
able to assume that a wrong hit has an equal probability
to come from either DB (target or decoy). In this case, the
number of decoy hits is an excellent estimate to the num-
ber of wrong hits among target ones. Therefore, one can
try different threshold values for the hit scores and mea-
sure the false discovery rate (FDR) counting the number of
decoy hits (49–51). The threshold values that indicate an
acceptable quantity of random target hits ( e.g. 1% FDR)
are then taken to filter out wrong sequence assignments.
Figure 3 illustrates how FDR can be estimated using decoy
sequences. Note that the decoy hits are used exclusively to
predict the number of wrong matches among target hits,
which are, naturally, the only results of interest, i.e. decoy
hits are subsequently disregarded.
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Figure 3. Illustration of how FDRs can be estimated using a compos-
ite target-decoy DB (from the work describing the method MUMAL by
Cerqueira et al. (52)). In this example, only one score (univariate analy-
sis) is used. The hits are presented in descending order, i.e. the highest
score is on top. For a given threshold value, the number of decoy
hits with score greater or equal to this value is used to estimate the
number of wrong matches among target hits obtained using the same
threshold.

Here, the TDDB technique is used for BLASTP searches.
To our knowledge, this is the first work that applies TDDB
to this purpose. We have chosen to construct a compos-
ite subject DB, i.e. target and decoy sequences are main-
tained in only one DB, meaning that just one search is
needed. Additionally, decoys are produced by reversing
target sequences keeping the amino acid distribution.

Let s[i..j] represent a subsequence of a sequence s with
size n, where i and j∈1, 2, ..., n and i≤ j. A decoy sequence
is obtained from an amino acid sequence s by concatenating
the letter ‘M’ (methionine) to the reverse of s[2..n].

The objective to be achieved with TDDB is to replace
the use of a fixed e-value threshold as seen in the MGP
method (e≤10−5) because it might mean a poor sensitiv-
ity. Especially in the case of vsORFs, greater e-values are
common in good hits. Therefore, instead of defining a fixed
threshold, a TDDB approach with multiple scores is used to
identify random alignments, increasing sensitivity without
worsening FDR.

Figure 4 illustrates how a TDDB approach might help to
identify random BLASTP alignments. This is similar to the
illustration presented in Figure 3, but this time real data are
shown in a two-dimensional space. The figure shows two
plots of α score vs. bit score where data points represent
alignments. Red data points indicate alignments of inter-
genic ORFs to target sequences, whereas blue data points

indicate alignments of intergenic ORFs to decoy sequences.
The plots concern the E. coli datasets: Ec_vso and Ec_so,
respectively. In Figure 4a and b, it can be seen a well-
defined cloud of random alignments (mixed blue and red
data points), where approximately one half is composed of
alignments to target sequences, while the other half is com-
posed of alignments to decoy sequences. Significant hits
can be identified as the red data points outside the dense
cloud, because regions with only target hits mean regions
with F̂DR= 0. Therefore, decoy hits can be used to pin
down target hits that arose by chance. Similar plots can be
viewed in supporting File S3 for the other datasets. We use
ML techniques to perform a multivariate analysis of decoy
hits in order to select target hits of interest (regions of low
FDR), as described below.

Classification attributes

Before providing the details concerning the ML techniques
used in this work to identify the cloud of random hits,
it is important to describe the attributes that the learn-
ing algorithms take into account to evaluate alignments of
intergenic ORFs to sequences in the subject DB.

Six attributes are used. Four of them are standard
BLAST alignment quality parameters: bit score, percent
query coverage, percent subject coverage and percent iden-
tity. The other two attributes are the scores α and β.

The α score—proposed in MGP—is also called unique-
ness score and is a measure of the robustness of a classifica-
tion. Let I be the average percent identity of an alignment
given by averaging the percent identity values with respect
to the query and subject length. For instance, the percent
identity regarding the query is the number of identities in
the alignment divided by the length of the query times one
hundred. The uniqueness score is then given by: α= I1 − I2,
where I1 is the highest I among the alignments that sup-
port the classification, while I2 is the highest I among the
alignments that indicate an alternative classification.

The β score—proposed here—is a count of alignments
that corroborate the classification given by the best align-
ment. Thus, it resembles, to a less extent, the clustering
process in MGP. A high β value provides more confidence
to the ORF categorization because it means that besides the
best alignment indicating a certain ORF category, the query
ORF also aligns to other subject ORFs that put this query
in the same category. Therefore, a high β score for an MG
hit, for instance, means that the query ORF aligns to many
intergenic ORFs of distinct organisms, which is a strong
indication that the assignment of the MG category to the
query ORF is correct.
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Figure 4. Plots of α score vs. bit score to E. coli datasets: Ec_vso (a) and Ec_so (b). Blue data points are decoy hits, while red data points represent
target hits.

Analyzing target and decoy hits by ML
techniques to select significant hits

Although the TDDB technique provides an interesting
solution to identify groups of significant hits, it is often not
explored to its full potential because only one or two scores
are typically used, even when there are other important
scores related to the hit quality. Additionally, in a stan-
dard TDDB analysis, thresholds are pursued for each score
individually, i.e. scores are not investigated in conjunction,
which could define more interesting decision boundaries to
separate random and meaningful hits.

To overcome the above-mentioned drawbacks,
Cerqueira and coworkers proposed a method in shotgun
proteomics termed MUMAL, where artificial neural net-
works (ANN) are used to perform a multivariate TDDB
analysis. In their work, six scores are used as input
attributes of an ANN to compose hyperplanes for defining
decision boundaries that perform well even in non-linearly
separable data (52).

In MUMAL, hits are formatted as an ARFF file to be
used in Weka (60, 61), a suite of ML algorithms imple-
mented in Java. Hits to decoy sequences are considered
class 0, while hits to target sequences are labeled class 1.
As already mentioned, a significant part of instances of
class 1 are wrong hits (similarly to what is illustrated by
red data points in the dense clouds of Figure 4a and b),
i.e. they are very similar to hits of class 0 that are obvi-
ously incorrect. Therefore, as described by Cerqueira et
al., datasets constructed this way can be considered as
very noisy. After some experiments with ANN and sup-
port vector machine (62), the authors reported that ANNs
were capable to cope better with their noisy data. They
describe, in addition, that even not obtaining a very good
ML model, due to the characteristics of the datasets, they
compensate this issue with the use of decoys for identifying
group of hits presenting low FDR. This is accomplished

by trying different discriminant probabilities. Note that in
MUMAL, the chosen ANN approach applies the sigmoid
as activation function in order to produce output values in
the range [0, 1] that can be interpreted as probabilities. The
value 0.5 is the default discriminant probability to separate
instances of class 0 and class 1. However, other probability
thresholds are explored to estimate FDR by the equation:

F̂DR=
DT

NT -DT
, (1)

where DT is the number of decoy hits with probability
greater or equal to threshold T, and NT is the total num-
ber of hits (decoys and targets) obtained using the same
threshold value. All discriminant probabilities that lead to
FDRs varying from 0% to 100% are reported such that the
user has the chance to choose the set of hits presenting the
most appropriate FDR. Typically, an FDR of 1% is chosen
because Elias et al. and Balgley et al. have shown that this
value is the best trade-off between sensitivity and precision
(49, 54).

Once more, we bring those ideas applied to shotgun pro-
teomics to our problem. As inMUMAL, we also format the
data as an ARFF file to use an ANN approach in the Weka
suite, as recommended by the authors. Given an intergenic
ORF, if its best alignment is to a decoy sequence (reverse
sequence in the subject DB), then it is labeled 0 (blue data
points in Figure 4a and b). Otherwise, i.e. the ORF best
alignment is to a target sequence, then the label 1 (red data
points in Figure 4a and b) is assigned.

An important contribution in our case, however, is that
we use an ANN approach associated to an algorithm imple-
mented in Weka called threshold selector. This algorithm
changes the mid-point probability threshold of a classi-
fier in order to optimize some performance measure. In
this work, precision concerning class 1 was chosen as
the measure to be optimized. Hence, the ANN output
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probabilities are rearranged so that the group of instances
with P≥0.5 are exclusively of class 1 (maximum preci-
sion), i.e. with F̂DR= 0. Furthermore, we use the option
of the threshold selector algorithm (TSA) to expand the
ANN output probabilities to the interval [0, 1], i.e. prob-
abilities are normalized so that the lowest value is mapped
to 0, while the greatest value is mapped to 1. As a result,
the new probabilities provide a more consistent notion of
the hit quality. In MUMAL, due to the noisy aspect of the
datasets, the raw probabilities given by the ANN are useful
for FDR estimation, as stated above, but useless to assess
the hit quality individually. In our case, with the normal-
ization provided by TSA, probability values become useful
to assess the alignment.

It is also important to highlight that the division in two
groups performed by TSA, i.e. the separation of instances
according to the 0.5 mid-point, provides the identification
of the cloud of random hits. Instances with P<0.5 are hits
in the group corresponding to the cloud, while instances
with P≥0.5 (the group with no decoys, i.e. F̂DR= 0) rep-
resent hits out of the cloud, i.e. hits regarded as significant
alignments. In a sense, decoy hits are thus used to make the
ML algorithms learn what is a random hit. The obtained
model is then able to relocate those label-1 instances that
are detected as random to the label-0 group.

At this point, it is important to call attention to the pecu-
liar usage of classification algorithms in OCCAM. Nor-
mally, supervised algorithms use some training set to build
a predictivemodel to be used in future examples. Hence, the
goal is typically to maximize model generalization to assure
accuracy in coping with unknown instances. For this rea-
son, the obtained models are usually validated on test sets
that must be distinct from the training set in order to assure
generality. In our case, however, the aim is to recognize and
eliminate spurious alignments in a given dataset, i.e. it is not
the case of applying the obtained model on a distinct data.
Each alignment dataset will thus has its own overfitted ML
model. For each dataset, the idea is to apply the ANN+TSA
strategy to build an ML model that uses decoy hits to learn
what is a wrong target hit in the given data. Remember that
in the obtained model the mid-point probability threshold
is changed by TSA in a way that examples with P≥0.5
are all target hits, i.e. F̂DR= 0. In practice, the resulting
model relocates spurious target hits—that were originally
in class 1—to class 0. Therefore, instead of using one or
two scores in a naive way—as illustrated in Figure 3—we
propose the use of ML to provide a multivariate analysis
of decoy-target hits, leading to more elaborated decision
boundaries to define regions of low FDR values. Note that
the most typical use of a target-decoy approach is explor-
ing scores individually (as seen in Figure 3), which results
in poor linear decision boundaries.

After this process of relocating low-quality target align-
ments, the resulting labels can be thought as useless align-
ments (label 0) and potentially useful alignments (label 1).
What to do with label-1 hits is a matter of a particular
objective, as explained in the next section. This relabel-
ing procedure is illustrated in the result section for the case
presented in Figure 4.

Selecting hits of interest

After identifying non-random target hits (set of target align-
ments with F̂DR= 0%), by using a TDDB approach for
the search and ML algorithms for assessing the resultant
hits, the next phase is to deal with them according to the
objective of a particular study. Note that not being ran-
dom does not mean that the alignment is valuable. Often,
it can be observed a certain similarity between genomes of
phylogenetically distant organisms because they were origi-
nated from a common ancestor. Therefore, even in the case
of MGs for which the alignments are considered only to
ORFs of organisms of a different taxonomic family, it is
common the situation where many alignments occur due
to a remaining similarity, especially for small sequences. In
this case, many good hits are expected, i.e. they are out of
the cloud of random hits, but they do not mean function
conservation.

As a consequence, some further filtering has to be done.
Here, our objective is the same as described in the work
of Warren et al., i.e. use homology to identify absent
annotations and missing genes. For this reason, as already
described, we use the value of 80% for query coverage, sub-
ject coverage and identity in the case of sORFs, and 90%
for the same variables in the case of vsORFs. However, it
is important to note that in OCCAM the user is free to
apply any other filtering according to a specific aim. For
instance, we have observed several significant alignments
with query coverage = 100% and identity = 100%, but a
low subject coverage (e.g. 30%). In many of these cases, the
alignment is to a suffix of an already-annotated ORF. Such
alignments might mean cases of inconsistent gene start sites,
which is reported as a very frequent problem in the current
annotation of prokaryotic genomes (63). These alignments
were not further analyzed because they are out of the scope
of the study reported here. However, it is important to
highlight that such a study is an interesting possibility and
demonstrates the importance of the flexibility provided by
OCCAM, letting the user apply different additional filters
according to convenience. Another example is the possi-
ble use of the scores α and β. In OCCAM, the user can
apply different threshold values of these scores regarding
a particular aim, for instance, to ensure strong specificity
so as to minimize bench work. It is important to notice
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Figure 5. OCCAM pipeline. In green are the steps to be performed only once for a given version of genomes and respective annotations. In blue are
the steps to be executed for each organism of interest.

that our experiments show that the TDDB+ML approach
alone can deliver very good sensitivity and specificity. But
letting the user free to use whatever suits him/her is an
important feature of a computational tool. The fact that
our effort resulted in a free software is one of the important
contributions of this work, especially because the resulting
programs are highly parameterized.

Summarizing the OCCAM method

Figure 5 summarizes the OCCAM pipeline. In green, it
is illustrated the steps to build queries and the subject
DB. Unless the genomes and annotations in use require
an update, those steps have to be performed only once.
Depicted in blue are the steps to be executed for each
organism under study. The possibility to execute these
steps only for the organism of interest is an important
contribution of this work. It allows the use of affordable
computational platforms, i.e. no complex and expensive
high performance computing platform is needed to per-
form a huge BLAST search for queries extracted from all
bacterial genomes. Note that this is particularly critical
when considering vsORFs, because the number of such
small ORF candidates in a single genome is far higher com-
pared to the case where only longer ORFs are taken into
account.

It is also opportune to highlight the data mining
approach of OCCAM. Table 1 summarizes the data min-
ing procedures of MGP and OCCAM to the case of missing

genes. As the details were already described, we emphasize
here just the main differences:

(i) OCCAM uses decoy sequences associated with ML
algorithms to filter out random BLASTP alignments.
This is a major contribution as a univariate analysis,
i.e. using only e-value to assess hit quality, is certainly
less comprehensive than a multivariate ANN model.
The use of e-value may be particularly problematic
in the case of small ORFs for which greater e-values
are common;

(ii) We realized that besides demanding high query/
subject coverage, filtering by a meaningful identity
is also an important criterion to denote evidence
of homology. We use an 80% minimum cover-
age/identity for sORFs and an 90% minimum cover-
age/identity for vsORFs. MGP uses an 80% coverage
(and identity is not considered), but vsORFs are not
included in their work;

(iii) Even though our results show that the steps described
in the two items above are enough to obtain good
sensitivity and specificity, α and β scores can be used
to apply more stringent filters, for instance, to mini-
mize in vitro experiments by focusing on small ORFs
that present very strong evidence of being a missing
gene. The β score, in particular, resembles in some
extent the clustering procedure in MGP, and can be
thus used in a similar fashion to a more restrictive
filtering.



Page 12 of 22 Database, Vol. 00, Article ID baaa067

Table 1. General differences in the data mining procedures of MGP and OCCAM to analyze an intergenic query ORF alignment

for the case of a missing genes.

Identifying significant BLASTP
hits

Finding evidence of homology Obtaining more evidence for
potential MGs

MGP e-value ≤10−5. Significant query and subject
coverage as well as the 20%
criterion.

Clustering procedure.

OCCAM A decoy DB approach plus ML
techniques.

Significant query and subject
coverage as well as identity.

Threshold values for the scores
α and β may be used.

Finally, in addition to the characteristics described in
Table 1, it is also important to remember that GA ORFs
that fit the same criteria applied to potentially missing
genes (including the minimum coverage/identity principle)
are also considered missing genes in OCCAM.

Main metrics

For some of the results shown in the next section, the main
metrics used to evaluate our approach are accuracy (Ac),
sensitivity (Sn), specificity (Sp) and precision (Pr) described
in Equations 2, 3, 4 and 5, respectively.

Ac=
TP+TN

TP+TN+FP+FN
·100, (2)

Sn=
TP

TP+FN
·100, (3)

Sp=
TN

FP+TN
·100, (4)

As already described, precision is also applied as the
optimization parameter that TSA uses to relocate the mid-
point probability threshold of the ANN classifier so that
hits with P≥0.5 are those out of the cloud of random hits
(F̂DR= 0).

Pr=
TP

TP+FP
·100, (5)

In the presented equations, TP, TN, FP and FN are the
number of true positives, true negatives, false positives and
false negatives, respectively.

Results and discussion

All experiments were run in a computer of 96 processors
Intel® Xeon® CPU X7550, 2.00 GHz, 8 CPU cores and
396 GB of shared memory.

To the ORF searches, we used the command line
BLASTP version 2.2, setting -evalue 100 so that no even-
tually correct alignment presenting a high e-value is missed.
For vsORFs, the task parameter was set to blastp-short,
whereas for sORFs this parameter was set to blastp. Note
that while the blastp option means the execution of a stan-
dard BLASTP search, the blastp-short option means that

BLASTP automatically optimizes the search parameters,
such as the substitution matrix and the word size, for
queries shorter than 30 residues. Except for the parame-
ters evalue and task, all the other parameters of BLASTP
were kept with their default values.

To deploy the described ML methods in our com-
putational tool, we used the API of the Weka ML
toolkit, version 3.7, that implements all algorithms and
techniques already mentioned. For TSA, the parame-
ter setting was: classifier = MultilayerPerceptron,
evaluationMode = Entire training set, measure =

PRECISION, and rangeCorrection = Correct based on
min/max observed. For ANN, the parameter setting was:
trainingTime = 1000. All other parameters for both
algorithms were kept with their default values. Note that
the standard ANN in Weka—which was used here—is
an implementation of the Multilayer Perceptron architec-
ture (62) with one hidden layer containing ⌈m+c

2 ⌉ neurons,
where m is the number of attributes and c is the num-
ber of classes. As we use six attributes and one class, the
number or neurons in the hidden layer is 4. The activa-
tion functions of the neurons are the sigmoid function. The
input layer is composed of six nodes each representing an
attribute.

Using all processors, the construction of the DBs—as
described in Figure 1—took nearly 5 hours. It is impor-
tant to remember that this step is performed only once for
a given version of the genomes and their annotations. An
mpiBLAST run for one bacterium using all processors took
on average 3.5 hours to search the small ORFs of the organ-
ism against the subject DB. The other steps do not need
parallel computing. The ML model construction and its
application for one organism took 1 minute on average,
and the filtering procedures took negligible execution times.
Therefore, after constructing the DBs, any new search for
small ORFs of a target bacterium takes approximately 3.5
hours.

Showing the suitability of decoy sequences to
support the identification of random target hits

As previously described, we have chosen to construct decoy
sequences by reversing real ORF amino acid sequences.
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Figure 6. Showing that a wrong hit has the same probability of being decoy or target.

This is a widely used approach in shotgun proteomics.
Most importantly, if the composite target-decoy subject
DB is constructed in such a way that in a future search a
wrong hit has an equal probability of being target or decoy,
then the number of decoy hits can be used as an excel-
lent estimate for the number of wrong target hits, which
also results in a very efficient FDR estimate, as already
described (49–51, 59). Figure 6 shows that this is the case
in our work. This experiment used the BLASTP results
of the control datasets. We counted the number of decoy
and target hits regarding the queries obtained by shuffling
the intergenic ORFs of the respective organisms (see how
the control datasets were built in Section ‘Datasets used in
the experiments’). As the shuffled sequences are not real
ORF sequences, their reported alignments are obviously
wrong. Therefore, if the reported hits are approximately
half decoys and half targets, it is reasonable to assume that
the target-decoy approach to FDR estimation is appropri-
ate. For each control dataset, we performed the following
proportion hypothesis test: H0: pd =0.5; H1: pd ̸=0.5,
where pd is the proportion of decoy hits. Figure 6 shows the
resulting P-values in each case. It can be seen that none of
them supported the rejection ofH0 for any of the customary
significance levels: 0.01, 0.05 and 0.10.

Illustrating the relabeling process

We performed experiments to illustrate the process of rela-
beling random target hits guided by decoy hits. Figure 7
shows the automatic identification of the clouds of random
alignments presented previously in Figure 4a and b. After
obtaining the ANN+TSA models using the datasets Ec_vso
and Ec_so, and applying the respective models to the same
datasets to perform the FDR analysis, the instances are

relabeled according to their probabilities. Figure 7a and b
shows plots for the datasets Ec_vso and Ec_so, respec-
tively, where instances with P<0.5 are labeled 0 (blue)
and instances with P≥0.5 are labeled 1 (red). Compar-
ing Figure 4a with Figure 7a as well as Figure 4b with
Figure 7b, it can be seen in general that red points inside
and close to the cloud were relabeled to 0 (blue), while
red points clearly out of the cloud were kept with label 1
(still red).

The identification of random alignments depicted in
Figure 7 can be expressed also in numerical terms by the
resulting confusion matrix. Tables 2a and 2b show the con-
fusion matrices for Ec_vso and Ec_so, respectively, after
applying the ANN models on the same data to perform the
FDR analysis as described previously.

As can be seen, the relabeling process was as expected,
i.e. the decoy hits (class 0) were all correctly classified
as 0, while a meaningful number of class-1 instances
were relocated to class 0, i.e. they were originally class
1 (alignment to a target sequence), but were classified—
thus relabeled—as class 0. Those relabeled instances are
the ones pertaining to the cloud of random alignments,
while the class-1 instances kept as such are those outside the
cloud.

Therefore, the original labels in the datasets are inter-
preted as 0: alignment to a decoy sequence, and 1: align-
ment to a target sequence, whereas the labels after the ML
model application are interpreted as 0: random alignment,
and 1: significant alignment.

It is also interesting to note the proportion of random
hits among class-1 instances comparing Ec_vso with Ec_so.
For Ec_vso, only 2% (177) of class-1 hits could be part
of the 0% FDR group. For Ec_so, in turn, the 0% FDR
group is composed of 55% (530) of target instances. This
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Figure 7. Plots of α score vs. bit score to E. coli datasets: Ec_vso and Ec_so. Clouds of random alignments are identified by relabeling instances
according to the obtained ML model. These plots are the same plots presented in Figure 4a and b, but here all label-1 hits considered random
alignments were relabeled to 0. Therefore, the blue data points are those regarded as random, while red data points are considered significant
alignments.

Table 2. Confusion matrices for E. coli datasets. (a) Ec_vso, (b) Ec_so.

(a) Predicted class (b) Predicted class

0 1 0 1

Actual 0 7396 0 Actual 0 359 0
class 1 8182 177 class 1 440 530

difference is also expected because shorter sequences are
more prone to random alignments. The same experiment
performed to the other datasets led to the same patterns
observed in Figure 7. The plots for the other datasets can
be viewed in supporting File S3.

Testing the ANN+TSA approach for hit curation

The goal of the previous experiment was to illustrate the
coherence of our ML models. Figure 7 and Table 2 show
that the models are presenting the behavior for which they
were built, and the use of decoy hits appears to be an appro-
priate means to show the learning algorithms what is a
wrong hit. Nevertheless, to provide a convincing valida-
tion of our ANN+TSA approach as a powerful filter to
eliminate hits occurred by chance, we applied the result-
ing models built from hits of the datasets Bs_vso, Bs_so,
Ec_vso, Ec_so, Pa_vso, Pa_so, Sa_vso and Sa_so on hits
of the control datasets Bs_avso, Bs_aso, Ec_avso, Ec_aso,
Pa_avso, Pa_aso, Sa_avso and Sa_aso, respectively. Hence,
for each validation test, we used the ANN+TSA algo-
rithms on one dataset and applied the resulting model on
another (the control). Testing this way was the solution that
we found to computationally evaluate the models gener-
ated for each original dataset. Consider dataset Ec_vso, for
instance. After applying our described ML strategy on the
alignments found by the BLASTP search, it would result

in a set of target hits with F̂DR= 0. However, as in this
case the experiment is being performed on the computa-
tional level, it is not possible to affirm whether those hits
are in fact positives. Similarly, we cannot confirm whether
the ignored target hits are really negatives. On the other
hand, if the resulting model built with Ec_vso alignments
is applied on alignments found for Ec_avso—for which
we know the positive and negative ORFs (annotated and
shuffled intergenic ORFs, respectively)—it is possible to
recognize true and false predictions. Therefore, for each
control dataset, we selected the top-ranked target hits with
probability greater than or equal to the discriminant prob-
ability found by TSA in the training dataset (threshold for
which precision is maximum, i.e. F̂DR= 0) as the positive
instances (significant hits), and the top-ranked target hits
with probability less than the discriminant probability as
the negative instances (hits to be disregarded). Next, we
identified the annotated small ORFs and the false (shuf-
fled) small ORFs among the queries of all top-ranked
target hits. As a result, the positive hits whose queries
were found as annotated were labeled true positives, while
the positive hits whose queries were found as false ORFs
were labeled false positives. Negative hits, in turn, were
either labeled as true negatives when their queries were
identified as false small ORFs or labeled as false nega-
tives when their queries were identified as annotated small
ORFs.
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Table 3. Testing the ANN+TSA approach. The models were built using hits of four bacteria, and then were applied on the hits

of the control datasets of the same organisms. Note that no filtering—such as minimum coverage and identity—is applied

here, i.e. this experiment regards only the use of decoy hits and ML algorithms for alignment curation.

Dataset # top-ranked hits TP FP TN FN Ac Sn Sp Pr

Ec_avso 2848 25 0 2819 4 99.86 86.21 100 100
Ec_aso 668 332 4 325 7 98.35 97.94 98.78 98.81
Bs_avso 2609 5 0 2604 0 100 100 100 100
Bs_aso 745 484 0 255 6 99.19 98.78 100 100
Pa_avso 1664 1 0 1663 0 100 100 100 100
Pa_aso 729 205 0 512 12 98.35 94.47 100 100
Sa_avso 3001 7 3 2991 0 99.90 100 99.90 70
Sa_aso 490 320 3 164 3 98.78 99.07 98.20 99.07
Mean 99.30 97.06 99.61 95.99

Table 3 shows the result of this experiment. Note that
ANN+TSA alone was enough to result in a very effective
curation procedure. The average values for accuracy, sen-
sitivity, specificity and precision were, respectively, 99.30,
97.06, 99.61 and 95.99.

Comparing OCCAM with MGP using the control
datasets

To the best of our knowledge, there are only five previous
works that aimed specifically for small ORFs in bacteria,
as described in the introduction. The methods COMBREX
and SearchDOGs can find only what is described here
as absent annotation, i.e. unidentified genes of a species
that have annotated homologs in other species. Further-
more, COMBREX uses Glimmer to preselect candidates.
However, small genes in prokaryotes are missing precisely
because programs such as Glimmer cannot detect them.
Also, SearchDOGs analyzes only the set of genomes given
as input. It is up to the user to decide which genomes to
include. In fact, the authors describe in their manuscript
that SearchDOGs is not suitable for large-scale analyses.
Therefore, those two methods are clearly less sensitive than
our approach. Note that OCCAM seeks for homologs in
all bacterial genomes and considers annotated and unanno-
tated homologs. Finally, the work of Goli and Nair as well
as the work of Li and Chao do not provide a computational
tool. As a result, we made comparisons only with MGP.
Note that the comparisons were partial, as shown next,
because the MGP authors did not provide a computational
tool either.

To perform a first comparison between OCCAM and
MGP, we used the same control datasets mentioned in the
previous experiment. Even though theMGP computational
tool is not available, filtering out hits by e>10−5 is trivial.
Furthermore, the step of requiring a significant coverage
for the query and the subject sequences of a hit is identical

in both methods (see Table 1), with the observation that a
minimum query/subject coverage of 90% for vsORFs was
used also for MGP, which does not consider such category
of ORFs. Therefore, we could compare both methods until
the point of coverage filtering, i.e. nor the 20% criterion/the
clustering procedure were performed for MGP neither the
identity (or any other attribute) filtering was performed for
OCCAM.

Table 4 shows this first comparison. It can be noted
that the methods presented the same results for vsORFs,
which are present in a small quantity in the datasets. For
sORFs, on the other hand, OCCAM could reach a higher
sensitivity, i.e. it could select 44 more hits than MGP
(1226 vs 1182).

It can be also noted in Table 4 that both methods could
reach maximum specificity and precision. When choosing
a very restrictive e-value cutoff, such as 10−5 (specially
in the case of small ORFs), it is not difficult to achieve
good specificity. However, sensitivity might be harmed.
The challenge is exactly applying some filtering approach
that keeps specificity high, i.e. which leads to a result that
will not make biologists spend time and money with too
many false positives, while not harming sensitivity, i.e. not
missing important small ORFs that might be responsible for
essential functions in the organism. The OCCAM results
shown in Table 4 demonstrate that it is possible to find
a solution with better sensitivity without compromising
specificity.

In this vein, as ANN+TSA alone (Table 3) already leads
to very good sensitivity and specificity (mean of 97.06 and
99.61, respectively), the user has the option of applying
this approach and then inspecting the selected alignments
carefully instead of using automatic filters. This flexibil-
ity that the user has to perform an attentive analysis to
maximize sensitivity—or alternatively to apply rigorous fil-
ters to maximize specificity—is a key characteristic of the
OCCAM computational tool.
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Table 4. Comparing OCCAM with MGP. The comparison is with the part of the MGP method that we could reproduce here. To

filter out random hits, OCCAM uses ANN+TSA, while MGP uses the e-value cutoff 10−5. As a general evidence of homology,

both OCCAM and MGP use minimum query and subject coverage for further filtering. In each line, the OCCAM results are

shown first (top) and the MGP results are shown next (bottom).

Dataset # top-ranked hits TP FP TN FN Ac Sn Sp Pr

Ec_avso 2848 23 0 2819 6 99.79 79.31 100 100
23 0 2819 6 99.79 79.31 100 100

Ec_aso 668 285 0 329 54 91.92 84.07 100 100
276 0 329 63 90.57 81.42 100 100

Bs_avso 2609 3 0 2604 2 99.92 60 100 100
3 0 2604 2 99.92 60 100 100

Bs_aso 745 439 0 255 51 93.15 89.59 100 100
425 0 255 65 91.28 86.73 100 100

Pa_avso 1664 1 0 1663 0 100 100 100 100
1 0 1663 0 100 100 100 100

Pa_aso 729 189 0 513 27 96.30 87.50 100 100
184 0 513 32 95.61 85.19 100 100

Sa_avso 3001 5 0 2994 2 99.93 71.43 100 100
5 0 2994 2 99.93 71.43 100 100

Sa_aso 490 281 0 168 41 91.63 87.27 100 100
265 0 168 57 88.37 82.30 100 100

Sum/Mean 1226 0 11345 183 96.58 82.40 100 100
1182 0 11345 227 95.68 80.80 100 100

Comparing OCCAM with MGP in the
identification of absent annotations

Another experiment to compare OCCAM with MGP was
regarding the small ORFs classified as absent annotation.
In this case, it is also possible to compare both methods,
because to consider a small ORF as AA, it suffices to iden-
tify those significant query alignments to already annotated
ORFs with high query/subject coverage (80% and 90%
for sORFs and vsORFs, respectively). Figure 8 shows the
identification of AAs in both methods for all datasets of
the eight organisms used in this work. In this case, the
OCCAMmethod was used as designed, i.e. for each dataset
containing the resulting query BLASTP alignments of an
organism—including alignments to decoy sequences—an
ML model was built to relocate random class-1 hits to
class 0. The hit details of all small ORFs found as AA
by OCCAM for the eight tested bacteria can be found in
supporting File S4.

It can be seen in Figure 8 the higher sensitivity that
OCCAM could again achieve. OCCAM identified 255
more hits when compared with MGP, meaning a 35.52%
increase in sensitivity. It is important to notice that
OCCAM could detect the same 718 AAs found by MGP
plus another 255 hits that were lost by the latter due to
presenting e-values greater than 10−5. Once again, the dif-
ferences are particularly notable in the case of sORFs. For
vsORFs, the results were nearly the same. The only differ-
ence was for B. subtilis for which OCCAM could find two

extra AAs. The much higher number of sORFs compared
with vsORFs also stands out. It is expected as the number of
annotated vsORFs is even lower compared to the number
of annotated sORFs.

Note that this experiment is a robust validation of our
proposed ML method for alignment curation, because the
results shown in Figure 8 can be considered true positives.
Remember that a query ORF is considered an absent anno-
tation if it aligns to a validated/annotated ORF of a distinct
organism.

It is worth noting that even for well-studied bacteria,
such as E. coli, the number of absent annotations is very
expressive. It is occurring probably because small ORFs
are not considered in the annotation process in general,
nor in homology analysis neither in studies to identify new
genes. As we provide a software, and the output includes
other scores (e.g. percentage of identity, percentage of gaps,
percentage of positives, etc.), the user can apply more
restrictive conditions if deemed necessary. For instance, in
addition to considering high coverage, one could apply a
percentage of identity greater than or equal to 80%. In the
case of E. coli, it would still lead to expressive numbers:
15 AA vsORFs (all the ones considering only coverage,
as shown in Figure 8) and 289 AA sORFs (still a high
value). Interestingly, being even more stringent, the num-
ber of sORFs—out of the 326 reported in Figure 8—with
percentage of identity equal to 100% is 177, which is still
a significant value for a widely studied bacterium. For all
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Figure 8. Identification of AAs in OCCAM and MGP for all datasets. (a) vsORF chart. (b) sORF chart. Total number of AAs for OCCAM: 973. Total
number of AAs for MGP: 718. The difference of 255 is exactly the number of hits with e-value > 10−5.

other bacteria, the observation was the same, i.e. the major-
ity of AA hits presented percentage of identity greater than
or equal to 80%, which reinforces the evidence of homol-
ogy in those hits. Thus, even being more restrictive to
consider a hit query as an absent annotation, the number
of small ORFs labeled AA in all eight bacteria is still high,
mainly considering that most of these bacteria have been
studied for decades. This fact corroborates the affirmation
that the annotation processes in the case of prokaryotes
have been clearly flawed for small genes.

Applying the whole OCCAM pipeline to identify
MGs

After the comparison shown above involving absent anno-
tations, we proceeded with the identification of MGs for

the same eight bacteria. It is important to remember in
this case that only hits to unannotated ORFs in a different
family is considered. Furthermore, besides the ML tech-
niques to identify significant hits, and the application of
the minimum coverage criterion, it is required a high per-
centage of identity (80% for sORFs and 90% for vsORFs),
as described in Table 1. Once again, we emphasize that
the previous experiments have shown that the ANN+TSA
procedure per se is an effective curation step. But the user
has the chance of applying more filters if specificity is a key
issue. As a general procedure for identifying MGs, we sug-
gest to apply ANN+TSA, and then the minimum coverage
as well as the minimum identity filters.

Table 5 shows the results after applying the full sug-
gested pipeline to identify MGs on the eight datasets.
The hit details of all small ORFs found as MG by



Page 18 of 22 Database, Vol. 00, Article ID baaa067

Table 5. Results after applying the OCCAM pipeline on all

datasets to identify missing genes. It is also shown the found

hits that presented e >10−5. It can be seen that half the MG

hits reported by OCCAM would be missed by MGP.

Dataset # MGs # MGs with e>10−5

Ap_vso 4 1
Ap_so 0 0
Bs_vso 0 0
Bs_so 0 0
Cc_vso 0 0
Cc_so 0 0
Ec_vso 1 1
Ec_so 0 0
Mt_vso 1 1
Mt_so 0 0
Mh_vso 0 0
Mh_so 0 0
Pa_vso 5 3
Pa_so 3 1
Sa_vso 0 0
Sa_so 0 0
Total 14 7

OCCAM in the tested bacteria can be found in support-
ing File S5. Because the conditions to identify MGs are
more rigorous—especially the different-family criterion—
we could obtain very few MG small ORFs. This time, it
was not feasible to compare OCCAM with MGP, because
it is not possible to run the whole MGP pipeline with-
out a software. Nevertheless, Table 5 shows the hits with
e>10−5—totaling 7—that would be obviously missed by
MGP, i.e. certainly, 50% of MGs reported by OCCAM
would not be detected by MGP.

In vitro validation of small ORFs is still challenging
(40). However, in order to provide some evidence that
the selected hits presented in Table 5 correspond in fact to
MGs, we analyzed publicly available RNA-Seq data of the
organisms covered in this work to at least verify whether
those found small ORFs are expressed by the respective
bacteria. The NCBI Sequence Read Archive (SRA) repos-
itory (64) was chosen to search for transcriptomic data
of experiments involving the four organisms for which
OCCAM reported MGs (Table 5). No experiments could
be found for the serovar of A. pleuropneumoniae con-
sidered in this work. For the other three bacteria, on
the other hand, the encountered experiments confirmed
that all small ORFs reported for the considered strains of
E. coli, M. tuberculosis and P. aeruginosa are expressed. It
was verified by performing a BLAST search with default
parameters using the online tool SRA BLAST (64). For
each organism, the search procedure used as queries the

DNA sequences of the ORFs reported in Table 5, while the
subject sequences were the reads produced in the experi-
ments that we could find in SRA for the given organism.
Note that in SRA BLAST, the subject sequences can be
defined by simply informing the accession number of the
experiments. The accession numbers of the RNA-Seq stud-
ies/experiments found for each organism are listed in the
supporting File S6. For each small ORF of the three ana-
lyzed organisms, the BLAST results showed a clear stack of
reads aligned to the ORF sequence, covering 100% of this
sequence.

A similar experiment was next performed using also the
SRA repository and the SRA BLAST tool, but this time with
ribosome profiling data. Unfortunately, this type of data
is still scarce. Nevertheless, we could find two studies for
P. aeruginosa and E. coli. The accession numbers of those
studies and respective experiments can be found in the sup-
porting File S7. The procedure was the same as reported
above for RNA-Seq data, i.e. for each bacterium, we used
as queries the DNA sequences of the ORFs identified as
MGs, and as subject the reads pertaining to the experi-
ments of the study found in SRA. As already seen, Table 5
shows that OCCAM could find one vsORF for E. coli. For
P. aeruginosa, in turn, our method reported five vsORFs
and three sORFs. The SRA BLAST searches found high-
quality alignments—with 100% identity—for the vsORF
of E. coli, for three out of the five vsORFs of P. aeruginosa,
and for all three sORFs of this same organism. Therefore,
seven out of nine small ORFs detected by OCCAM as MGs
in that two bacteria were supported by the found data as
translated ORFs.

The seven putative novel small ORFs identified by
OCCAM, for which we could find validating RNA-Seq and
ribosome profiling data, are detailed in Table 6. Note in the
table that the three worst alignments (lines 1, 3 and 4), i.e.
the ones with the lowest bit scores and highest e-values,
presented β >1, which means that those ORFs aligned to
other intergenic ORFs that corroborate the MG classifi-
cation. It shows how a multivariate analysis, as proposed
here, is important. If the e-value is the only attribute to
be checked, for instance, there is a risk of missing impor-
tant ORFs. In the case of those three worst alignments,
the α score values are also low. Therefore, the β values
together with the values of identity, query coverage and
subject coverage resulted in a high probability produced by
the ML model, avoiding a false negative situation. Those
three cases also indicate the importance of using the β score
for assessing the resulting alignments. The value β=106 of
the ORF identified in Table 6 as Pa vsORF 3 is noteworthy,
and provides a strong evidence of the correctness of theMG
classification.
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Table 6. Seven putative novel small ORFs identified by OCCAM. Further details, including the respective nucleotide and amino

acid sequences, can be found in supporting File 5. The following abbreviations were used below: Ec (E. coli), Pa (P. aerugi-

nosa), aa (amino acids), s_cod (start codon), st (strand), coor (coordinates), bs (bit score), e (e-value), id (identity), qc (query

coverage), sc (subject coverage), P (probability).

# aa s_cod st coor bs e % id qc sc α β P

Ec vsORF 13 ATG − 2247 517 46.0 0.001 100 100 100 32.87 5 0.88
2 247 558

Pa vsORF 1 25 ATG − 2232 344 80.4 9E-14 100 100 100 52.95 1 0.99
2 232 421

Pa vsORF 2 14 GTG + 2232 413 48.1 3E-4 100 100 100 40 4 0.93
2 232 457

Pa vsORF 3 13 TTG + 2079 443 45.2 0.002 100 100 100 53.54 106 0.92
2 079 484

Pa sORF 1 55 ATG + 2232 204 84.0 2E-14 98.18 100 100 98.18 3 0.99
2 232 371

Pa sORF 2 43 TTG + 2234 617 62.8 3E-8 97.67 100 100 97.67 1 0.99
2 234 748

Pa sORF 3 43 ATG − 2234 553 52.8 3E-5 97.67 100 100 97.67 1 0.99
2 234 684

All performed searches using RNA-Seq and ribosome
profiling data reported above can be easily reproduced
by using the sequences of the identified ORFs (see sup-
porting File 5) and the accession numbers of the stud-
ies/experiments in SRA (see supporting Files 6 and 7).

Unfortunately, other publicly available data of in vitro
experiments could not be found to support further val-
idations. Even in recent days, most studies to uncover
coding genes aim for proteins composed of 100 or more
residues, which means that scarce data regarding small pro-
teins are available. We performed a deep search for small
proteins throughout several public DBs of mass spectrom-
etry, for instance, but negligible data could be found. As
stated by Hemm et al. (42), even with the advancements
in the sensitivity of mass spectrometers, the identification
of small proteins remains a complex issue. Comprehen-
sive searches using online tools for detecting motifs were
also performed without success. The lack of recognized
patterns in small ORFs are a major issue in their elucida-
tion, as described in detail by Warren and colleagues (22).
The authors show that small ORFs present a variable GC
content and can rarely have an RBS assigned. Note that
most of the bacteria used in our experiments are broadly
covered in several studies worldwide. However, even for
such organisms, data regarding small proteins are insuffi-
cient. For this reason, we presented a multifaceted series of
experiments—including computational validations as well
as transcription and translation analyses—that taken in
conjunction point to a useful computational method for
promoting advances in the elucidation of small ORFs in
bacteria.

Conclusions
If compared to studies on small ORF detection in eukary-
otes, very few comprehensive works proposing computa-
tional methods with a focus on small ORFs in bacteria can
be found in the current literature.

COMBREX and SearchDOGs are limited to the cases
described here as absent annotations, i.e. they cannot reveal
novel genes. Therefore, they are clearly less sensitive than
our approach. Even if we consider only AAs, it is important
to remember that SearchDOGs analyzes only the genomes
that are given as input by the user, whereas OCCAM
searches all bacterial genomes available. The number of
candidate genes predicted by SearchDOGs for E. coli
K-12, for instance, was 270. As reported in our results, 341
AAs could be identified by OCCAM for that same organ-
ism, which means a 26.3% increase. Note that the putative
genes identified by SearchDOGs include also long genes.
Therefore, if only short genes are taken into account, the
OCCAM superiority is even higher.

Goli and Nair as well as Li and Chao present interesting
approaches, but do not provide a computational tool. Also,
the work of Warren and colleagues, termed here MGP, is an
in-depth study, but the authors did not deliver a software
either.

In this work, we propose an amelioration of MGP.
We present the method OCCAM, which is fundamen-
tally comprised of an ML procedure associated with the
use of decoy sequences included in BLAST searches to
identify small ORFs in bacterial genomes. One important
improvement of our work is the effectiveness of the pro-
posed ML algorithms to filter out spurious alignments. For
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this task, MGP—and so many other procedures based on
alignments—uses a fixed threshold for e-value, namely,
all alignments with e>10−5 are eliminated from further
analyses. This is a dangerous criterion in terms of sen-
sitivity, especially in the case of small ORFs for which
e-values are higher when compared with usually studied
ORFs. In our case, instead of using a single attribute to
judge an alignment, the ANN+TSA procedure applies six
attributes, where one of them—the β score—is proposed
here. Furthermore, the alignments to decoy sequences are
used by the ML algorithms to both learn what is a ran-
dom alignment and control the FDR, in addition to attain
a probability value to each alignment. This value expresses
the conjunction of six attributes and serves as an important
quality parameter of a given alignment. Experiments with
control datasets demonstrated that the ANN+TSA alone
can reach average sensitivity and specificity of 97.06% and
99.61%, respectively. Besides providing a solution for the
particular problem posed here, we conjecture that the pro-
posed method for curating alignments might be tested as
a replacement of simplistic cutoff-value approaches used in
alignment-oriented solutions for other problems in biology.

Another important contribution of this work is the
implementation of a set of programs. Our software pro-
vides great flexibility to the user. The effectiveness of
ANN+TSA and the possibility of using different filters
(parameter setting) to curate alignments enabled the elim-
ination of the clustering phase of MGP. It means that we
could implement programs that allow the analysis of spe-
cific genomes given as input. Note that MGP performed
BLASTP searches for ORFs of all prokaryotic genomes.
It demands a very powerful and expensive computational
platform, particularly when very small ORFs are included,
as in our case. In OCCAM, because the user runs our
software only for genomes of interest, affordable computa-
tional platforms can handle the execution of all programs
needed. Giving the user the power of choosing several
parameters is a key advantage. The filtering by FDR, for
instance, is an important adjustment that the user can
make. Here, we have chosen to work with FDR=0, and
this is the default value of our programs. However, other
FDR values can be set. For example, a 1% FDR is con-
sidered an interesting choice, because it still means a low
rate of false positives, but might mean a higher sensitivity
(49, 54). Even the ORF size is parameterized. We focused
only on small ORFs and used specific size ranges, as already
described, but other range values might be used, i.e. longer
or shorter ORFs can be included in the genome screening
procedure.

Notably, even for a well-studied bacterium such as
E. coli, a potential vsORF could be detected, not to men-
tion the many absent annotations found by OCCAM. It
demonstrates that small ORFs have been in fact systemati-
cally neglected.

It is clear that a combined approach that includes com-
putational tools and in vitro validation is essential for
successfully identifying small ORFs (40). In vitro analy-
sis alone is too expensive and time-consuming, while using
only computational tools is not enough for a definitive con-
firmation. The importance of computational procedures
is to minimize the number of spurious identifications so
that the in vitro experiments are also minimized. In this
sense, accurate algorithms are fundamental, particularly in
the case of methods that work specifically on small ORFs,
as proposed here, for which current solutions still leave
much room for improvement. We are confident that the pre-
sented study is an important step in the direction of building
advanced computational tools that can strongly support the
bench work in the identification of small ORFs in bacterial
genomes.
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