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Unraveling the Role of Vegetables
in Spreading Antimicrobial-Resistant Bacteria:

A Need for Quantitative Risk Assessment

Christina Susanne Hölzel,1 Julia Louisa Tetens,1 and Karin Schwaiger2

Abstract

In recent years, vegetables gain consumer attraction due to their reputation of being healthy in combination with low
energy density. However, since fresh produce is often eaten raw, it may also be a source for foodborne illness. The
presence of antibiotic-resistant bacteria might pose a particular risk to the consumer. Therefore, this review aims to
present the current state of knowledge concerning the exposure of humans to antibiotic-resistant bacteria via food of
plant origin for quantitative risk assessment purposes. The review provides a critical overview of available information
on hazard identification and characterization, exposure assessment, and risk prevention with special respect to potential
sources of contamination and infection chains. Several comprehensive studies are accessible regarding major
antimicrobial-resistant foodborne pathogens (e.g., Salmonella spp., Listeria spp., Bacillus cereus, Campylobacter spp.,
Escherichia coli) and other bacteria (e.g., further Enterobacteriaceae, Pseudomonas spp., Gram-positive cocci). These
studies revealed vegetables to be a potential—although rare—vector for extended-spectrum beta-lactamase-producing
Enterobacteriaceae, mcr1-positive E. coli, colistin- and carbapenem-resistant Pseudomonas aeruginosa, linezolid-
resistant enterococci and staphylococci, and vancomycin-resistant enterococci. Even if this provides first clues for
assessing the risk related to vegetable-borne antimicrobial-resistant bacteria, the literature research reveals important
knowledge gaps affecting almost every part of risk assessment and management. Especially, the need for (comparable)
quantitative data as well as data on possible contamination sources other than irrigation water, organic fertilizer, and
soil becomes obvious. Most crucially, dose–response studies would be needed to convert a theoretical ‘‘risk’’ (e.g.,
related to antimicrobial-resistant commensals and opportunistic pathogens) into a quantitative risk estimate.
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Introduction

Vegetables are essential for healthy nutrition and
obesity reduction in Western civilizations, due to a high

nutrient density, correlated with low energy density (Darmon
et al., 2005). They are defined as ‘‘a plant, root, seed, or pod
that is used as food, especially in dishes that are not sweet’’ in
the Cambridge dictionary. In 2003, WHO and FAO started an
initiative to promote fruit and vegetable consumption for
health worldwide, with a recommended minimum intake of
400 g fruits and vegetables per day (www.who.int).

However, vegetables are also implicated in foodborne out-
breaks due to various—most often unknown—sources of
contamination, the most recent familiar case in Europe being

the enterohemorrhagic Escherichia coli (EHEC) outbreak of
2011, with 4321 reported cases, of which at least 50 had been
fatal (Robert-Koch-Institute, Germany, cited from Buchholz
et al., 2011). Besides other unusual features, the outbreak strain
was characterized as an extended-spectrum beta-lactamase
(ESBL) producer due to the presence of blaCTX-M15 genes
(Mellmann et al., 2011). The press reported extensively on
antimicrobial resistance (AMR), but not on the fact that this
resistance was meaningless for therapy, due to contraindication
of antibiosis in EHEC infections (see Hazard Identification and
Characterization section).

According to the FAO definition, quantitative risk assess-
ment is based on four steps: hazard identification, hazard
characterization, exposure assessment, and risk characterization
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(www.fao.org). In this definition, hazard identification means to
identify impacts on human health and the circumstances under
which the danger is present, whereas hazard characterization
aims to quantitatively or qualitatively evaluate the adverse ef-
fects on human health (e.g., using dose–response relationship).
Exposure assessment provides the likely degree of consumption
or intake of the hazardous agent, and the risk characterization
tries to offer an estimate of the likely adverse effect in the target
population by integrating the first three steps.

There have been well-recognized approaches for risk as-
sessment related to general microbial hazards imposed by
vegetable consumption (Hamilton et al., 2006; Franz et al.,
2010; Danyluk and Schaffner, 2011; Pang et al., 2017). How-
ever, no specific quantitative risk assessment has been pub-
lished for hazards related to antimicrobial-resistant bacteria
(ARB) in vegetables, although AMR is seen as an obligate
‘‘risk amplifier’’ in public awareness. Steps to assess specific
risks due to AMR would involve all steps of quantitative risk
assessment. This starts from hazard identification (i.e., is a
known adverse health effect aggravated by AMR features of
the causative agent? Does an adverse health effect arise from
spread of antibiotic resistance features in commensals, which
otherwise would not be considered as microbial hazards?) but
also includes hazard characterization as well as exposure
assessment.

This literature survey aims to initiate a discussion on
quantitative risk assessment related to the spread of antibiotic
resistance in the vegetable food chain. For this purpose, we
tried to provide an overview over current screening data
starting from 2007. To allow risk prevention, sources of
contamination were highlighted as well. Finally, important
knowledge gaps were identified, which should be addressed
in the future to facilitate quantitative risk assessment within a
reasonable term.

Literature Search and Exclusion Criteria

Our PubMed search combined the keywords ‘‘antimicro-
bial resistance’’ or ‘‘antibiotic resistance’’ with ‘‘vegetables’’
or ‘‘fresh produce’’ in May 2018. We aimed to provide a
systematic overview on recent screening data for antibiotic-
resistant bacteria isolated from vegetables, so we covered the
period from January 2007 to April 2018 and found 169
studies, after excluding double hits. The search result com-
prised 93 studies that reported screening data for antibiotic
resistance in vegetable-borne isolates (Tables 1–7). We ex-
cluded 22 obvious mishits (one study dealing with the inhi-
bition of bladder cancer cell proliferation by mustard oil, for
example) and 13 studies that did not investigate vegetable-
borne isolates (instead, these studies reported on, e.g., rep-
tiles). Eight studies were excluded since they did not attribute
resistant isolates to their source (these studies presented re-
sistance rates from different sources, e.g., meat and vegeta-
bles, as one common value). We excluded opinion reports,
reviews (unless they comprised relevant screening data), and
publications that described modeling or method implemen-
tation or whole genome sequencing data of single isolates (in
total 14 studies). We also excluded three studies in a language
other than English (Polish, Ukrainian, and Chinese). One
study that would not have met the exclusion criteria was
excluded afterward since it presented mainly resistance data
for Escherichia coli and vancomycin, a substance that is not

effective in Enterobacteriaceae. All other studies presenting
intrinsic resistance data (e.g., erythromycin in Salmonella
spp.) were kept since significant results for acquired resis-
tance were presented as well.

All 13 experimental studies returned by the keywords were
included in the text (e.g., experimental application of manure
or biosolids to soil), as were two studies that reported meta-
genomic screening data.

Besides our systematic approach, we used targeted searches
with individual keywords to add details (e.g., on vegetable
consumption).

Hazard Identification and Characterization

A recent outbreak due to vegetables was related to a
multiresistant strain of EHEC O104:H4, which produced
ESBL enzymes (Buchholz et al., 2011). Did this fact add
adverse effects to the outbreak? In general, antibiotics are not
the first-line agents for treatment of diarrhea (Guerrant et al.,
2001). On the contrary, for EHEC, as compiled by Goldwater
and Bettelheim (2012), antibiotics—and especially beta-
lactams—are even contraindicated due to the fact that cell-
wall-impaired dead bacteria release more toxin (Tarr et al.,
2005; Smith et al., 2012). Even subinhibitory concentrations
are thought to increase toxin production and/or toxin release
(Grif et al., 1998). Thus, in the absence of treatment indica-
tion, AMR could not lead to treatment failure. However, for
other bacterial infections such as systemic listeriosis, anti-
biotic therapy is the treatment of choice (Safdar and Arm-
strong, 2003), and clinical resistance against first-line
antibiotics is likely to impose additional health hazards.
Centers for Disease Control and Prevention report recent
cases of listeriosis in the United States due to vegetable
consumption, which led to several deaths (www.cdc.gov); it
is unknown whether these deaths were related to treatment
failure or other reasons such as delayed diagnosis.

Providing comprehensive hazard identification of all food-
borne pathogens associated with vegetables goes beyond the
scope of this review. Thus, three more general situations will
be exemplarily illustrated and connected to AMR: (1) pri-
mary foodborne infectious disease due to obligatory or op-
portunistic pathogens, (2) foodborne microbial intoxication,
(3) foodborne colonization, maybe followed by opportunistic
disease after a considerable time-shift (Fig. 1a–c).

Primary foodborne infectious disease is seen after infec-
tion with pathogenic serovars of, for example, Salmonella
enterica subsp. enterica, Campylobacter spp., Listeria mono-
cytogenes, Bacillus cereus, and E. coli (e.g., EHEC, Shiga-
toxin producing E. coli [STEC]) (Butler et al., 2015). In case
of systemic infection, as already mentioned, antimicrobial
treatment is often indicated (except for EHEC), and AMR to
clinically relevant antimicrobial drugs will lower the number
of therapeutic options (Fig. 1a). In contrast, foodborne Sta-
phylococcus aureus exclusively causes food poisoning due to
the presence of preformed heat-stable toxins independent of
viable bacteria (Kadariya et al., 2014). Thus, this kind of food
poisoning is self-limiting, and antibiotic treatment is never
indicated (Fig. 1b). However, S. aureus might cause oppor-
tunistic infections of wounds like cuts (van de Sande-
Bruinsma et al., 2015), which might occur during food
preparation and might call for topical treatment. Only a
limited number of B. cereus lineages (Ehling-Schulz et al.,
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2005) are able to cause mere food poisoning due to the
presence of cereulide (see Rosenquist et al., 2005, for ex-
ample). Instead, in most cases, B. cereus needs to infect the
organism to cause gastrointestinal disease (due to synthesis of
Nhe and other enterotoxins in the intestine; EFSA, 2016).
This is similar to the situation seen in Clostridium perfringens
(Uzal et al., 2014). Antibiotic treatment of B. cereus infec-
tions is recommended in severe disease, whereas it is un-
reasonable in self-limited food poisoning (Spiliopoulou et al.,
2014). C. perfringens might contribute to antibiotic-
associated diarrhea (Borriello et al., 1984; Kim et al., 2017b);
treatment of choice is discontinued primary antibiosis; only
severe cases might be treated with glycopeptides or metro-
nidazole (Bergogne-Bérézin, 2000).

A particular situation is found for organisms that are able
to colonize the human gastrointestinal tract (Fig. 1c), such as
E. coli or enterococci. These bacteria are useful indicators for
AMR (Franklin et al., 2001; Schwaiger et al., 2011b) and
were included in a recent EFSA recommendation to provide
harmonized European monitoring of AMR (EFSA, 2012), as
authorized by Directive 2003/99/EC. In addition, E. coli
might produce ESBL enzymes, and this ESBL production (or
other resistance phenotypes) might complicate the treatment
of opportunistic infections. However, it is impossible to relate
such colonization to a particular foodborne source, such as it
is done for foodborne outbreaks: the onset of opportunistic

infectious disease (e.g., urinary tract infection due to ESBL
E. coli) might sporadically happen years after ingestion of the
contaminated food. Thus, according to Depoorter et al.
(2012), the human health risk posed by a given exposure to
foodborne ESBL E. coli cannot be estimated yet.

In general, the situation described in Figure 1a–c applies
for all foods, not only vegetables. However, the risk to en-
counter infection or colonization is elevated in vegetables,
due to a high share of raw consumption.

Opportunistic pathogens (and apathogenic commensals)
might further serve as a vehicle for the transfer of antimi-
crobial resistance genes (ARGs) to pathogens. This might
happen in the intestine, but also before consumption as ob-
served on lettuce with a resistance gene of clinical relevance
in humans (blaSHV18, Jung and Matthews, 2016). DNA is
partly degraded by heat, so raw consumed food is also more
likely to pass high concentrations of ARGs into the human
intestine.

In terms of hazard identification, additional hazard due to
AMR is identified in systemic foodborne infection and in
opportunistic colonization, but not in self-limiting diarrhea
and intoxication.

In terms of hazard characterization, dose–response rela-
tionships are the most critical point for quantitative risk as-
sessment. In case of obligate pathogens that would be
antibiotically treated (Fig. 1a), the dose–response relationship

Table 3. Studies on Antimicrobial-Resistant Pseudomonads in Vegetables

Species

No. of
isolates

from
vegetables Specification of vegetables

Tested antimicrobials
(method) Region Source

Pseudomonas
aeruginosa,
Pseudomonas
putida

295, 106 Fruit, root, bulbous
vegetables, salads, and
cereals

Amikacin, apramycin,
cefepime, ceftazidime,
ciprofloxacin, colistin,
doxycycline (only in P.
putida), enrofloxacin,
gentamicin, imipenem,
neomycin, netilmicin,
piperacillin1tazobactam,
streptomycin, tobramycin,
(microdilution)

Germany Schwaiger et al.
(2011a)

P. aeruginosa 88 Lettuce, white cabbage,
red cabbage, carrots,
sweet pepper, cucumber,
and tomatoes, mixed

Ampicillin, aztreonam,
ceftazidime,
chloramphenicol,
ciprofloxacin, gentamicin,
imipenem,
sulfamethoxazole–
trimethoprim,
tetracycline (disk
diffusion)

Jamaica Allydice-Francis
and Brown
(2012)

Pseudomonas
spp.

35 Leaf lettuces, tomatoes,
and carrots

Amikacin, cefepime,
cefotaxime, ceftazidime,
ciprofloxacin, imipenem,
gentamicin (disk diffusion)

Portugal Jones-Dias et al.
(2016)

Each study
<25

n.d. n.d. n.d. Bezanson et al.
(2008); Hassan
et al. (2011);
Estepa et al.
(2015)

Font normal: resistance tested but not found; underlined: resistance in one single isolate; bold face: resistance in two or more isolates.
Resistance defined as in the original study.
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is that of foodborne disease, so data are available for many
pathogens. In contrast, dose–response data are completely
missing for stable intestinal colonization or opportunistic ex-
traintestinal disease. For colonization, hints are provided from
studies using oronasal infection to colonize animals: Schoeni
and Doyle (1994) isolated E. coli O157:H7 from cecal tissue of
single chickens 3 months after experimental inoculation with as
low as 2.6 · 101 colony-forming unit (cfu).

Exposure Assessment

Produce and human consumption of vegetables

Community members of the EU produced vegetables
(including melons and strawberries) on a total area of
224,126,000 ha in 2016 (http://ec.europa.eu). In Germany,
more than 8000 farms produced 3,672,660 tons of vegetables
for human consumption (www.destatis.de); roots, salads, and
other vegetables that are commonly consumed raw consti-
tuted approximately one-third of this produce. According to
EFSA data (https://dwh.efsa.europa.eu) based on 60 studies
(1997–2015) from 25 countries, the mean daily consumption
of vegetables and vegetable products in adults ranged from
62 g per capita in Sweden to 382 g in Romania, with exces-
sive consumption observed in individuals (99th percen-
tile = 1047 g); these figures do not include plant products such
as grains or legumes.

Prevalence of ARB in vegetables

A PubMed search combining the keywords ‘‘antimicrobial
resistance’’ or ‘‘antibiotic resistance’’ with ‘‘vegetables’’ or
‘‘fresh produce’’ covered the period between January 2007
and April 2018. After applying the exclusion criteria as de-
scribed above, 93 hits were condensed in Tables 1–7.

The studies included bacteria of more than 20 different
genera (Tables 1–7), mainly E. coli, S. enterica subsp. enterica,
Listeria spp., enterococci, pseudomonads, and B. cereus. To

provide basic information from the studies, resistances are
marked as present or absent in Tables 1–5 (irrespective of
whether they are acquired or intrinsic). Additionally, preva-
lences are included in Tables 6 and 7. In general, comparisons
between studies should be avoided since different choices of
breakpoints introduce significant bias when comparing resis-
tance data according to the European EUCAST organization
with the U.S. Clinical and Laboratory Standards Institute
(CLSI). Moreover, many studies lack the information of whe-
ther they used appropriate reference strains in antimicrobial
susceptibility testing.

For Salmonella, studies are hard to compare due to a high
diversity in serotypes. A huge number of vegetables (more
than 100,000 samples) were investigated in the United States
from 2002 to 2012, resulting in isolation of 152 Salmonella
strains, of which as few as 10 had detectable AMRs (Reddy
et al., 2016; Table 1). However, CLSI warned that Salmo-
nella might be falsely reported as susceptible to several an-
tibiotics (CLSI M100-S22E, table 2A in the CLSI document)
due to differences between in vitro and in vivo susceptibility.
Yoke-Kqueen et al. (2008) reported 56.7% of 134 isolates
with a multiple antimicrobial resistance (MAR) index of
more than 0.2. However, erythromycin was included in the
MAR. Corrected for this fact, 44.3% of isolates from Ma-
laysian vegetables were resistant to two or more antibiotics
(mainly tetracycline+streptomycin—substances that are not
the first- or second-line drugs in human therapy of salmo-
nellosis). Relevant multiresistance (>5 resistances, including
third-generation cephalosporins) was found in Salmonella
Albany, Salmonella Brunei, and Salmonella Kralingen (Yoke-
Kqueen et al., 2008).

All identified studies dealing with AMR in vegetable-borne
B. cereus (n isolates = 39–110, Table 1) referred to Korean
fermented or traditional food (Lee et al., 2012; Kim et al.,
2015; Yim et al., 2015), thus statements are restrained to a
limited variety of food and regions. In addition, resistance was
assessed only by means of disk diffusion, and the source and

Table 6. Comparative Prevalence (%) of Antimicrobial-Resistant Escherichia coli in Meat

and Vegetables (NonSelective Approach; Calculated from Percent Positive Samples

and Percent Resistant Isolates)

Antibiotic
Retail chicken

(n = 250)
Retail pork

(n = 250)
Vegetables

(farm+retail, n = 1001)

Amoxicillin–clavulanate 13.65a 2.37b 1.10b

Ampicillin 34.58a 5.90b 1.70c

Piperacillin 23.33a 4.34b 0.40c

Cefaclor 9.30a 2.76b 1.90b

Cefoxitin 2.40 0.78 1.30
Cefuroxime 1.95 0.39 0.80
Imipenem 1.65a 0.00b 0.00b

Gentamicin 1.13a 0.39a,b 0.10b

Streptomycin 23.63a 7.12b 0.30c

Tobramycin 0.00 0.39 0.00
Chloramphenicol 3.60a 1.17a,b 0.50b

Florfenicol 0.00 0.39 0.60
Ciprofloxacin 3.98a 0.39b 0.00b

Enrofloxacin 4.50a 0.39b 0.00b

Colistin 0.00 0.39 0.30
Doxycycline 30.53a 9.46b 0.50c

Sulfamethoxazole—trimethoprim 31.35a 5.51b 0.20c

Different superscripts in a row: values differ significantly in a chi-squared test (Fisher’s exact test, if expected values are below 5 per cell).
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validity of breakpoints is unclear, since these studies did not
refer to CLSI or other acknowledged standards, but to the
secondary literature. Apart from substances to which B. cereus
should be considered as intrinsically resistant (e.g., ampicillin,
oxacillin, penicillin, cefepime, rifampin), resistance rates were
moderate, with complete susceptibility to gentamicin, imipe-
nem, ciprofloxacin, tetracycline, and vancomycin in one study
(Kim et al., 2015). However, resistance to vancomycin—a
first-line therapeutic in (extraintestinal) B. cereus infections—
was reported in 1/87 isolates from fermented soybeans (Yim
et al., 2015) and 5/39 isolates from Sunsik (Lee et al., 2012), a
ready-to-eat food made from grains, fruits, and vegetables.

Significant data for L. monocytogenes (n = 144, Table 1)
from fresh and frozen vegetables were reported from a Polish
study using E-test with CLSI-breakpoints for listeria and
staphylococci (Korsak et al., 2012): only one vegetable-borne
isolate had detectable AMR at all (to tetracyclines). In Turkish
ready-to-eat salad, listerial AMR was most pronounced to
erythromycin and cephalothin (Gurler et al., 2015). However,
cephalosporin resistance is considered as an intrinsic feature of
L. monocytogenes (Collins et al., 2012), and erythromycin is
not considered as a treatment of choice (Morvan et al., 2010).

Campylobacter jejuni (n = 33, Table 1) from Malaysian
‘‘salad style vegetables’’ had moderate resistance rates ex-
cept for intrinsic resistances and erythromycin resistance
(60.6%; Khalid et al., 2015). The latter fact might be re-
markable since macrolides have for long been used as a
therapy of choice (Blaser et al., 1979; Engberg et al., 2001).

However, the study is generally limited by the fact that
breakpoints were outdated (taken from a document from
2003, when the CLSI was still named NCCLS). In any case,
fluoroquinolones—a first-line therapy of today—were highly
effective in this study.

Resistance data for E. coli (60–239 isolates, Table 2) dif-
fered significantly between studies; this might be related to
the very different locations (South Africa, India, United
States, South America, Europe, Lebanon, Iran), the different
nature of samples, and the different choice of antibiotics and
breakpoints.

The majority of studies reported pronounced resistance to
streptomycin and tetracyclines—a finding of limited signifi-
cance, given the fact that clinical breakpoints cut within
natural populations. However, studies also reported signifi-
cant resistance to amoxicillin combined with clavulanic acid
(>15%) (e.g., Araújo et al., 2017) or resistance to carbape-
nems (Shakerian et al., 2016) and third- or fourth-generation
cephalosporin as well as presence of blaTEM1-genes (Araújo
et al., 2017). Remarkably, Gómez-Aldapa et al. (2016) re-
ported 100% resistance to amikacin and colistin in diar-
rheagenic E. coli pathotypes from Mexican cactus salads.
The study referred to CLSI; however, CLSI does not provide
a breakpoint for colistin in E. coli. In addition, colistin re-
sistance was assessed by disk diffusion, a practice that is
discouraged nowadays (www.eucast.org).

For pathogenic E. coli, one study assessed the prevalence of
plasmid-borne colistin resistance genes mcr1/mcr2 in STEC E.

FIG. 1. Impact of antimicrobial resistance in different situations following vegetable-borne (a) infection, (b) intoxication,
or (c) colonization (schematic illustration). *not for EHEC infection
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coli from the United States; not a single positive isolate was
found in 1000 strains from different sources, including about
230 isolates from vegetables (Mavrici et al., 2017).

Due to their environmental sources, pseudomonads are
frequently found in vegetables. Pseudomonads are not con-
sidered as major foodborne pathogens; however, six studies
were identified, which reported resistance data of up to 401
Pseudomonas isolates from, mostly Pseudomonas aeruginosa
(Table 3). Using microdilution and DIN58940-breakpoints
where available, one study identified significantly higher re-
sistance rates to aminoglycosides in Pseudomonas isolates
from fruit vegetables compared with root vegetables or salads
(Schwaiger et al., 2011a). In this study, resistance also included
antibiotics used in clinics, such as gentamicin, tobramycin,
amikacin, ciprofloxacin, colistin, piperacillin, ceftazidime,
imipenem, or meropenem; however, such resistances were rare
(Schwaiger et al., 2011a). Using CLSI breakpoints and disk
diffusion, most of these resistances were also observed in Ja-
maican vegetable isolates, apart from resistance to carbape-
nems (Allydice-Francis and Brown, 2012).

Cronobacter spp. acts as a foodborne pathogen in immu-
nocompromised patients (Healy et al., 2010) and will then be
antibiotically treated, for example, with ampicillin plus genta-
micin or chloramphenicol (Lai, 2001). However, vegetable
isolates were characterized by a high rate of pansusceptible
strains and lacked resistance against clinically relevant anti-
microbials (Vojkovska et al., 2016; Table 4). For Enterobacter
spp. (n = 264), several AMRs were significantly lowered at
retail, compared with farm level, pointing toward a need for
sampling close to consumption for particular questions of risk
assessment (Schwaiger et al., 2011a; Table 4). Once more,
resistance depended on the vegetable group: resistance to co-
listin was significantly more frequent in Enterobacter cloacae
from fruit vegetables than from roots (Schwaiger et al., 2011a).

None of the studies on Gram-positive cocci (Table 5) re-
ported staphylococci to be resistant to vancomycin, a criti-
cally important antibiotic especially for infection caused by
methicillin-resistant S. aureus (MRSA). Korean leafy vege-
tables were partly contaminated with multiresistant MRSA
strains (Hong et al., 2015). One methicillin-susceptible isolate
was resistant to linezolid, a first-line drug for the treatment of
MRSA-infected wounds (Gurusamy et al., 2013). Single
linezolid-resistant strains of Enterococcus faecalis (1/100) and
Enterococcus faecium were isolated from German vegetables
(Schwaiger et al., 2011a). One linezolid-resistant E. faecium
was detected in Canadian vegetables as well (Allen et al.,
2013). Detectable resistance in E. faecalis isolates (n = 20)
from Portuguese ready-to-eat salad was restrained to tetracy-
clines and erythromycin due to the presence of tet(M), tet(L),
and erm(B) (Campos et al., 2013). From Tunisia, Ben Said
et al. (2016) reported additional resistance to high level con-
centrations of aminoglycosides and chloramphenicol. By
multilocus sequence typing, Leavis et al. (2006) identified
vegetable-borne ARB of a so-called high-risk enterococ-
cal clonal complex. Importantly, vancomycin–teicoplanin-
resistant enterococci were isolated from fresh produce or its
environment in Korea (Kim et al., 2017a).

Human exposure to vegetable-borne ARB

Assessing the exposure of humans to vegetable-borne
ARB is not the same as assessing the prevalence of AMR in

vegetable-borne bacteria: Considerable exposure to ARB
might arise in a situation when bacteria are rarely found, but
frequently resistant, or vice versa in the situation when AMR
is moderate, but the prevalence of bacterial contamination is
very high. For Salmonella or Listeria spp., both prevalence of
bacteria and prevalence of AMR within vegetable-borne
bacteria are low (Reddy et al., 2016). For other bacteria such
as pseudomonads, prevalence of bacteria is high, but the
prevalence of clinically significant resistance is low.

Vice versa, the prevalence of E. coli or E. faecalis is much
lower in vegetables than in food of animal origin, but the
prevalence of AMR is remarkably high for some antibiotics
and, although rare, resistances to critically important isolates
are present as well. For E. coli, we had the chance to com-
paratively calculate the prevalence of ARB (prevalence of
bacteria · prevalence of resistance) in pork, poultry, and
vegetables from two studies (Schwaiger et al., 2011a, 2012
and unpublished data) using identical methods; pork and
poultry were included for the sake of comparison. The
studies resembled each other in identical (nonselective)
bacterial isolation, identical susceptibility testing (micro-
dilution, DIN 58940-81), and identical source of break-
points. Results are shown in Table 6. In total, the prevalence
of E. coli was lowest in vegetables (3.4% compared with
75% in chicken and 25% in pork). However, for several
antibiotics, the prevalence of resistant E. coli was quite
comparable between pork and vegetables. This was because
a much lower prevalence of E. coli in vegetables was ac-
companied by a high prevalence of resistance: up to 55% of
the vegetable-borne E. coli were resistant to beta-lactams.

For quantitative risk assessment, it would be crucial to know
not just the prevalence but also the concentration of ARB in
vegetables since risk characterization has to consider dose-
related data. However, this information is more than rare.
Some of the studies listed in Tables 1–7 quantified bacteria
(e.g., Hassan et al., 2011; Campos et al., 2013; Holvoet et al.,
2013; Araújo et al., 2017; Du Plessis et al., 2017) but did not
specifically refer to ARB. To assess these data, selective
quantification for resistant bacteria would be needed, which is
performed even rarer. Relevant data are provided by Ruimy
et al. (2010), who reported densities of resistant bacteria as
high as 104 cfu/g of product for Gram negatives grown in the
presence of tetracycline, chloramphenicol, and nalidixic acid.
Yang et al. (2016) quantified antibiotic-resistant endophytic
bacteria in experimentally grown pak choi and found con-
centrations of up to 9 · 102 per g.

Risk Characterization

Risk characterization integrates the informations from hazard
identification, hazard characterization, and exposure assess-
ment into a quantitative estimate of risk (probability of adverse
outcome or number of cases). Hazard identification related to
resistant bacteria has to account for the fact whether this resis-
tance is of therapeutic interest. This review revealed that clini-
cally relevant antibiotics are underrepresented in current studies
so that many pathogen-AMR combinations listed above do not
imply any therapeutic consequence (hazard). However, ESBL
production in Enterobacteriaceae or linezolid resistance in en-
terococci and staphylococci is surely of clinical interest.

Risk characterization would also include hazard character-
ization, which means dose–response relationships. Infectious
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doses vary in the individual host and situation; for many en-
vironmental bacteria, such infectious doses have not been de-
fined at all. In addition, the amount of opportunistic pathogens
or commensals, which is necessary to produce stable coloni-
zation in the human intestine, is unknown for most bacteria, and
dose–response studies are absent. For foodborne outbreaks in
general, case numbers are also used as a substitute in hazard
characterization if dose–response data are missing. However,
no specific case numbers are available for infectious disease
due to vegetable-borne ARB.

In the absence of known colonization doses or known fre-
quencies of colonization events, at least qualitative data might
help to further characterize the risk. Thus, attempts were made
to identify genetically related antimicrobially resistant organ-
isms in food and human intestines or human clinical samples in
a distinct region and period (e.g., Abriouel et al., 2008; Hannah
et al., 2009; Burgos et al., 2014), but without showing sig-
nificant association. Several studies tried to relate the presence
of ARB in human feces to consumption behavior and found
that vegetarians are at higher risk to carry ARB (Elder et al.,
1993; Sannes et al., 2008). However, Sannes et al. (2008) also
showed that this might be linked to a confounder related to the
lifestyle of vegetarians: traveling abroad.

Exposure assessment identified vegetables as a relevant
vehicle in terms of a high consumption frequency and in
terms of frequent bacterial contamination in a ready-to-eat
state. However, the exposure to clinically relevant pathogens
or to commensals conferring clinically relevant resistance is
low, compared with other food like meat.

Ultimately, taking together the individual steps of risk as-
sessment, we have to state that the absence of dose–response
data and the absence of published estimates on treatment failure
due to AMR in foodborne infections do not allow quantitative
risk characterization for vegetable-borne ARB yet.

Risk Prevention: Sources of Contamination

While sprout seeds from Egypt were considered as the
most probable outbreak source for the multinational EHEC
outbreak in 2011, the primary source of sprout contamination
remained unknown. This is seen in most outbreaks (not only)
related to vegetables, thus indirect clues are important for
assessing infection chains. In rare cases, molecular typing of
bacterial isolates from possible sources and contaminated
vegetables is available to strengthen these indirect clues.

Irrigation water as a source of ARB

Worldwide, the FAO indicates a need for irrigation water
as high as 1500 km3/year; of this irrigation water, 7.38% are
used for vegetables and roots (www.fao.org, data from 2012).
Groundwater constitutes 38.9% of this irrigation water, the
rest is taken from sources such as surface water or used water,
which are more easily prone to microbial contamination than
groundwater. Microbial concentrations in irrigation water are
generally much lower than they are in organic fertilizers;
however, filter effects of soil might concentrate microor-
ganisms at soil surfaces, and irrigation is more continuously
applied to vegetables than is organic fertilizer. Blaak et al.
(2015) found that Dutch surface water contains 2.2 · 102

multidrug-resistant E. coli (median) and up to 6 · 102 ESBL
E. coli per microliter.

Several studies found that irrigation water and vegetables
shared the same clones, as confirmed by repetitive-element
polymerase chain reaction (rep-PCR: BOX-, REP-, and ERIC-
PCR) ( Jongman and Korsten, 2016; Araújo et al., 2017).
Njage and Buys (2015) identified irrigation water as a pos-
sible pathway of transmission for ESBL E. coli.

Soil and organic fertilizer as sources of ARB

Vegetables produced in or close to soil—such as carrots
and leaf vegetables—are at special risk for contamination
with soil-borne bacteria, either belonging to natural soil mi-
crobiota or introduced into soil by manure fertilization. While
the application of manure in ready-to-eat crops is discour-
aged, for example, by the U.K. Food Standards Agency
(www.food.gov.uk); it is not generally prohibited by Euro-
pean law. In Germany, however, the use of liquid manure for
top dressing is interdicted by national law; any vegetables
must not be planted earlier than 12 weeks after fields had been
fertilized with liquid manure.

Several studies focused on the prevalence of ARB or AMR
genes in vegetables at harvest and the soil from which these
vegetables were harvested (Marti et al., 2013, 2014; Wang
et al., 2015; He et al., 2016; Lau et al., 2017; Tien et al.,
2017); these studies found temporary—if any—impact of
manuring compared with natural soil, which has a natural
base level of ARG due to the presence of antimicrobial-
producing microorganisms (Nesme and Simonet, 2015).
Ruimy et al. (2010) showed that resistance scores were sig-
nificantly higher in vegetables grown in or close to soil
compared with fruits and vegetables grown above the soil.
Rahube et al. (2014, 2016) reported that human biosolids are
a relevant—but also temporary—source of ARG on vegeta-
bles at harvest, and Duan et al. (2017) found that ARG
contents in soil and lettuce decreased after experimental ap-
plication of biochar. Zhu et al. (2017) reported eightfold
higher absolute copy numbers or ARG in manure-fertilized
Chinese organic lettuce compared with conventionally pro-
duced lettuce; this difference was mainly due to different
microbial communities in both types of samples. One recent
study searched for ARGs in the viral DNA fraction (bacte-
riophages) from vegetables and soil and found that concen-
trations were highest for lettuce and soil, pointing toward soil
as a relevant source of ARGs (Larrañaga et al., 2018).

Antibiotic residues in manure or soil might be more critical
than is presence of manure-borne ARB, due to higher persis-
tence. Antibiotic residues were able to select antimicrobially
resistant endophytic bacteria, which are not removed by wash-
ing or peeling (Zhang et al., 2017; Esteban-Cuesta et al., 2018).

Direct contamination by humans

To our knowledge, systematic studies on human contami-
nation of vegetables with ARB during production or proces-
sing are missing, as is systematic source tracking by molecular
microbiological methods.

In the 2011 EHEC outbreak, it was assumed that, in a
regional suboutbreak, vegetable dishes were contaminated by
an infected caterer (www.rki.de). Genotyping raised suspi-
cion that (multiresistant) S. aureus from Korean leafy vege-
tables were of human origin (Hong et al., 2015); the presence
of new class 3-integrons in a pathogenic strain of Klebsiella
pneumoniae was related to clinical sources by Jones-Dias
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et al. (2016). As an additional hint, we found that fruit veg-
etables were generally more likely to be contaminated with
ARB than other vegetables; touching by consumers is dis-
cussed as a possible explanation, although not proven yet
(Schwaiger et al., 2011a). A similar hypothesis was presented
by Mesbah Zekar et al. (2017). Weak food hygiene standards
on Nigerian farm were shown to correlate with higher bac-
terial loads in cut lettuce (Oyinlola et al., 2017), but these
standards included only some parameters of personal hygiene
besides a couple of nonhuman hygiene factors, such as sur-
face water irrigation and manure application.

Besides the mentioned routes of contamination, other plau-
sible ways of contamination include a broad variety of sources,
either for the primary products (e.g., Salmonella contamination
by reptiles and amphibians, Gorski et al., 2013) or during
transport, processing, and distribution. Macrorestriction plus
pulsed-field gel electrophoresis suggested that two different
kinds of vegetables from two different countries were con-
taminated with a clonal E. coli strain due to packaging and
distribution at the same factory. The role of processing is fur-
ther illustrated by cut salads, which are generally considered as
a risk food (www.fda.gov): here, processing is not only a
possible source of cross-contamination but also a factor in-
creasing water activity (thus decreasing microbial stability).

Outlook: Transfer of ARB to Humans by Food
of Plant Origin—Current Lacks and Future
Needs for Risk Assessment

A considerable share of studies used nonvalidated methods,
reported intrinsic resistance, dealt with nonpathogenic bacteria,
or provided data on AMRs/ARGs of low clinical relevance.
Such limitations should be proactively addressed, if present.
Commensal bacteria might be useful indicator organisms and
serve as donors for AMR genes in the gut; in addition, the label
pathogenic/nonpathogenic is conferred more carefully than in
former since pathogenesis is more and more treated as a non-
static interaction between strain-specific virulence and sus-
ceptibility of individual hosts. However, this fact gives even
more emphasis to a need for prudent study design, overcoming
the actual strategy of ‘‘count and collect’’ in favor of more
functional approaches leading to dose–response data.

Important lacks of knowledge affect almost every part of
risk assessment and management, starting from identifying
sources of contamination and ending up to the black box of
intestinal and infectious processes long after consumption.
With regard to sources of contamination, search for plant-
derived ARB should include processing and distribution
steps since contamination close to consumption is more
likely to result in human exposure, and human contamination
might be more likely to introduce strains with AMR against
human therapeutics. Further research should thus focus on
clinically relevant antibiotics, should provide (or reject) ev-
idence of transmission at clonal level, and should clarify and
quantify the involvement of commensals in ARG transfer to
pathogens as well as in extraintestinal opportunistic infec-
tions after transmission by food. Future studies addressing
these gaps would be more than welcome.
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Larrañaga O, Brown-Jaque M, Quirós P, Gómez-Gómez C,
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mont S, Lecuit M, Courvalin P, Le Monnier A. Antimicrobial
resistance of Listeria monocytogenes strains isolated from
humans in France. Antimicrob Agents Chemother 2010;54:
2728–2731.

Nesme J, Simonet P. The soil resistome: A critical review on
antibiotic resistance origins, ecology and dissemination poten-
tial in telluric bacteria. Environ Microbiol 2015;17:913–930.

Niyomdecha N, Mungkornkaew N, Samosornsuk W. Serotypes
and antimicrobial resistance of Salmonella enterica isolated
from pork, chicken meat and lettuce, Bangkok and Central
Thailand. Southeast Asian J Trop Med Public Health 2016;
47:31–39.

Njage PMK, Buys EM. Pathogenic and commensal Escherichia
coli from irrigation water show potential in transmission of
extended spectrum and AmpC b-lactamases determinants to
isolates from lettuce. Microb Biotechnol 2015;8:462–473.

Oyinlola LA, Obadina AO, Omemu AM, Oyewole OB. Pre-
vention of microbial hazard on fresh-cut lettuce through
adoption of food safety and hygienic practices by lettuce
farmers. Food Sci Nutr 2017;5:67–75.

Pang H, Lambertini E, Buchanan RL, Schaffner DW, Pradhan
AK. Quantitative microbial risk assessment for Escherichia coli
O157:H7 in fresh-cut lettuce. J Food Prot 2017;80:302–311.

Pesavento G, Calonico C, Ducci B, Magnanini A, Lo Nostro A.
Prevalence and antibiotic resistance of Enterococcus spp. iso-
lated from retail cheese, ready-to-eat salads, ham, and raw
meat. Food Microbiol 2014;41:1–7.

Rahube TO, Marti R, Scott A, Tien YC, Murray R, Sabourin L,
Duenk P, Lapen DR, Topp E. Persistence of antibiotic re-

sistance and plasmid-associated genes in soil following ap-
plication of sewage sludge and abundance on vegetables at
harvest. Can J Microbiol 2016;62:600–607.

Rahube TO, Marti R, Scott A, Tien YC, Murray R, Sabourin L,
Zhang Y, Duenk P, Lapen DR, Topp E. Impact of fertilizing
with raw or anaerobically digested sewage sludge on the
abundance of antibiotic-resistant coliforms, antibiotic resis-
tance genes, and pathogenic bacteria in soil and on vegetables
at harvest. Appl Environ Microbiol 2014;80:6898–6907.

Randall LP, Lodge MP, Elviss NC, Lemma FL, Hopkins KL,
Teale CJ, Woodford N. Evaluation of meat, fruit and vegeta-
bles from retail stores in five United Kingdom regions as sources
of extended-spectrum beta-lactamase (ESBL)-producing and
carbapenem-resistant Escherichia coli. Int J Food Microbiol
2017;241:283–290.

Rasheed MU, Thajuddin N, Ahamed P, Teklemariam Z, Jamil
K. Antimicrobial drug resistance in strains of Escherichia coli
isolated from food sources. Rev Inst Med Trop Sao Paulo
2014;56:341–346.

Raufu I, Bortolaia V, Svendsen CA, Ameh JA, Ambali AG,
Aarestrup FM, Hendriksen RS. The first attempt of an active
integrated laboratory-based Salmonella surveillance pro-
gramme in the north-eastern region of Nigeria. J Appl Mi-
crobiol 2013;115:1059–1067.

Reddy SP, Wang H, Adams JK, Feng PCH. Prevalence and
characteristics of Salmonella serotypes isolated from fresh
produce marketed in the United States. J Food Prot 2016;79:
6–16.

Rodriguez-Palacios A, Ilic S, LeJeune JT. Clostridium difficile
with moxifloxacin/clindamycin resistance in vegetables in
Ohio, USA, and prevalence meta-analysis. J Pathog 2014;
2014:158601.

Rosenquist H, Smidt L, Andersen SR, Jensen GB, Wilcks A.
Occurrence and significance of Bacillus cereus and Bacillus
thuringiensis in ready-to-eat food. FEMS Microbiol Lett
2005;250:129–136.

Ruimy R, Brisabois A, Bernede C, Skurnik D, Barnat S, Arlet G,
Momcilovic S, Elbaz S, Moury F, Vibet M-A, Courvalin P,
Guillemot D, Andremont A. Organic and conventional fruits
and vegetables contain equivalent counts of gram-negative
bacteria expressing resistance to antibacterial agents. Environ
Microbiol 2010;12:608–615.

Safdar A, Armstrong D. Antimicrobial activities against 84
Listeria monocytogenes isolates from patients with systemic
listeriosis at a comprehensive cancer center (1955–1997). J
Clin Microbiol 2003;41:483–485.

Sannes MR, Belongia EA, Kieke B, Smith K, Kieke A, Van-
dermause M, Bender J, Clabots C, Winokur P, Johnson JR.
Predictors of antimicrobial-resistant Escherichia coli in the
feces of vegetarians and newly hospitalized adults in Min-
nesota and Wisconsin. J Infect Dis 2008;197:430–434.

Schoeni JL, Doyle MP. Variable colonization of chickens per-
orally inoculated with Escherichia coli O157:H7 and subse-
quent contamination of eggs. Appl Environ Microbiol 1994;
60:2958–2962.

Schwaiger K, Helmke K, Hölzel CS, Bauer J. Antibiotic re-
sistance in bacteria isolated from vegetables with regards to
the marketing stage (farm vs. supermarket). Int J Food Mi-
crobiol 2011a;148:191–196.

Schwaiger K, Hölzel C, Bauer J. Detection of the macrolide-
efflux protein A gene mef(A) in Enterococcus faecalis. Mi-
crob Drug Resist 2011b;17:429–432.

Schwaiger K, Huther S, Hölzel C, Kämpf P, Bauer J. Pre-
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