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Abstract: In recent years, mathematical models have developed into an important tool for cancer
research, combining quantitative analysis and natural processes. We have focused on Chronic
Lymphocytic Leukemia (CLL), since it is one of the most common adult leukemias, which remains
incurable. As the first step toward the mathematical prediction of in vivo drug efficacy, we first
found that logistic growth best described the proliferation of fluorescently labeled murine A20
leukemic cells injected in immunocompetent Balb/c mice. Then, we tested the cytotoxic efficacy
of Ibrutinib (Ibr) and Cytarabine (Cyt) in A20-bearing mice. The results afforded calculation of the
killing rate of the A20 cells as a function of therapy. The experimental data were compared with the
simulation model to validate the latter’s applicability. On the basis of these results, we developed a
new ordinary differential equations (ODEs) model and provided its sensitivity and stability analysis.
There was excellent accordance between numerical simulations of the model and results from in vivo
experiments. We found that simulations of our model could predict that the combination of Cyt and
Ibr would lead to approximately 95% killing of A20 cells. In its current format, the model can be used
as a tool for mathematical prediction of in vivo drug efficacy, and could form the basis of software for
prediction of personalized chemotherapy.

Keywords: A20 cells; cytotoxicity rate; in vivo experiments; logistic cancer growth rate; mathematical
model; personalized chemotherapy; stability analysis; tumor dynamic

1. Introduction

Recent advances in mathematical modeling have led to the development of ordinary
differential equation-based (ODE) models capable of predicting the outcome of complex
biological systems, including tumor growth [1,2]. These models have led to interest-
ing applications regarding tumor growth biology [3,4], and predictions regarding the
selection of effective therapeutic protocols aimed at reducing the toxic side effects of
chemotherapy [5–10]. However, most of these studies have focused on solid tumors, while
few computational models have been used to study blood cancers [11–14]. As parameters
such as cell growth and survival dynamics and cellular interactions within the tumor mi-
croenvironment likely differ considerably from solid tumors to leukemias and lymphomas,
it is expected that several parameters of ODE computational models need to be adapted for
blood-borne cancers [15].

Recently, several studies reported mathematical simulation models describing the
dynamics of blood cancers under the influence of various small molecule chemotherapeutic
drugs and/or immunotherapy [16–19]. These studies showed that quantitative analysis
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could be employed to investigate whether, for example, the duration of therapy could be
reduced without increasing the risk of relapse [16], or to compare the efficacy of different
treatment protocols [17].

The current models have several important limitations. First, they are built upon
simulation data rather than real-life experiments. Second, it is important to develop models
that can be applied for personalized chemotherapy dosing by taking into account the
variability of tumor cell growth rate between patients [20,21]. The ability to personalize
drug dosages should also lead to a reduction in side effects from off-target drug cytotoxic-
ity [22]. Third, many studies have demonstrated conflicting results between optimal drug
doses determined by in vitro versus in vivo experiments [23,24]. This disparity highlights
the difficulty in translating drug efficacy data from artificial cell culture conditions to the
complexity of the whole body.

In the present study, we aimed to address the first two issues noted above in relation
to the blood cancer Chronic Lymphocytic Leukemia (CLL). CLL is a malignancy of B
lymphocytes that accumulate especially in the blood, but also in lymph nodes and spleen.
It is one of the most common adult blood cancers in the western world [25]. Over the last
decade, the introduction to the clinic of new, molecular targeted, small-molecule drugs such
as the Bruton tyrosine kinase (BTK) inhibitor Ibrutinib (Ibr) and its newer derivatives has
transformed CLL therapy and contributed to the extended overall survival of patients [26].
Nonetheless, CLL patients can develop drug resistance and suffer from toxic side effects,
and the disease remains incurable [27]. Therefore, further improvements in mathematical
models are needed to assist clinicians with designing more effective treatment protocols.

To build our model, we first determined the growth rate of murine A20 leukemic cells
in immuno-competent Balb/c mice. This allowed us to formulate the logistic dynamic of
these cancer cells. Then, we conducted experiments in vivo to compare the cytotoxicity
of two drugs—Cytarabine (Cyt), an inhibitor of the enzyme topoisomerase [28] and Ibr
against the leukemic cells. The drug doses were selected by reviewing the literature on the
use of these drugs in in vivo models of cancer [29–34]. The results afforded calculation of
the killing rate of the A20 cells as a function of therapy. We compared our experimental
data with the simulation model and validated the latter’s applicability. A simplified work
scheme below (Figure 1) illustrates the whole process.

Since our model is based on in vivo experiments it is more relevant to real-life situa-
tions. By calculating the growth rate of the cancer cells from each individual, we proposed
that the model can simulate the optimal dose of the chemotherapeutic drug, a critical step
towards achieving personalized chemotherapy.

Figure 1. Schematic representation of the workflow used in this study. (A), injection of A20 leukemic
cells; (B), drug treatment; (C), in vivo examination of the effect of a drug on cancer cell viability;
(D), development of the mathematical model; (E), numerical simulations of the model; F, validation
of the model by correlation of experimental results and simulation.
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2. Materials and Methods
2.1. Cells and Drugs

A20 murine leukemic cells, originally obtained from the ATCC, were transfected with
a monomeric red fluorescent protein (mCherry) and grown in RPMI 1640 medium sup-
plemented with 10% Fetal Bovine Serum (FBS) (Thermo Fischer, Waltham, MA, USA), 1%
L-Glutamine and 0.33% Pen-Strep solution. Cells were maintained at 37 °C and 5% CO2.

2.2. In Vivo Experiments

Animals were purchased from Envigo (Jerusalem, Israel). The in vivo experiments
were approved by the Ariel University Animal Ethics Committee (Permit number IL-216-
01-21). Mice (BALB/c, female, 6 weeks, 17–19 g weight) were maintained in a controlled
environment (22 °C) with free access to food and water.

To measure the growth rate of mCherry A20 cells in vivo, 20 mice were inoculated
via the tail vein with 5 × 104 logarithmic phase cells in Phosphate-Buffered Saline (PBS).
Based on previous preliminary calibration experiments, we knew that A20 cells begin
to proliferate and appear in blood between two and three weeks following inoculation
(data not shown). Therefore, on Day 16 after inoculation, blood was collected from the
tail veins of four randomly chosen mice, and again on Day 22 from four other mice.
The samples were treated with Red Blood Cell lysis buffer (ebioscience) for 10 min at
room temperature. The reaction was stopped by the addition of an equal volume of PBS,
followed by centrifugation at 300× g for 10 mins at room temperature. The cell pellet was
resuspended in FACS buffer, and A20mCherry positive cells were measured on a CytoFLEX
(Beckman Coulter) flow cytometer. Acquired data were analyzed using FlowJo software.

On Day 22 after cell inoculation and prior to initiation of drug therapy, blood was
taken from the tail vein of each mouse, and mCherry A20 cells were measured as described
above. Drug treatment protocols using Cyt and Ibr were derived after comparing several
published protocols in which these drugs had been used in in vivo studies (Cyt- [29–31];
Ibr- [32–34]). The 20 inoculated mice were randomly divided into 5 groups: Group 1: the
Control group, which only received vehicle (PBS); Group 2: the Cyt Low group, which
received 0.12 mg/kg of Cyt for 5 consecutive days; Group 3: the Cyt High group, which
received 62.5 mg/kg of Cyt for 3 consecutive days; Group 4: the Ibr Low group, and
Group 5: the Ibr High group, which received 9mg/kg and 18 mg/kg of Ibr, respectively,
on days 1–5 and 8–10 from the beginning of the treatment. Blood was collected from the
tail vein from all mice on Day 12 after the beginning of treatment. The frequency of A20
mCherry cells in the blood samples was measured using flow cytometry, as described
above. The difference in the frequency of these cells in the blood before and after treatment
was used to calculate the leukemia growth index of each group of mice. The difference in
growth index between treated and non-treated mice was used to calculate the inhibition of
cell growth as a function of treatment.

2.3. Validation and Numerical Simulations of the Model

The data from the in vivo experiments and the parameters from Table 1 were used to
validate our model. Computer simulations were performed using fourth-order adaptive
step Runge–Kutta integration, as implemented in the ODE45 subroutine of MATLAB [35].
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Table 1. Table of parameters based on experimental results related to the model of Equations (1)–(3).

Parameter Physical Interpretation (Units) Estimated Value Reference

r A20 growth rate [h−1] 0.01 Experimental data

K Maximal tumor cell population
[cells/mouse] 4× 106 Simulation

µAC
Cytotoxicity rate in the presence of

drug [h−1]

0.001—Cyt 0.12 mg/kg
0.012—Cyt 62.5 mg/kg

0.0041—Ibr 9 mg/kg
0.0042—Ibr 18 mg/kg

0.0161—Cyt 62.5 + Ibr 9

Simulation

µCA
Deactivation rate of drug due to

killing of A2 cells [h−1]
µAC × 10 Simulation

d Periodic administration dose
[molecules/mouse]

Cyt—dose (mg/mouse)
×2.4× 1015

Ibr—dose (mg/mouse)
×1.4× 1015

Experimental data

µC
Chemical deactivation rate of

drug [h−1]
Cyt—0.231
Ibr—0.116

[36]

µA
Interaction coefficients between

effector and A20 cells [h−1] 2× 10−12 -

a
Drug amount that produces 50%

maximum effect in A20 cell
population [molecules]

2× 103 -

p Production rate of effector cells
stimulated by A20 cells [h−1] 4× 10−14 -

µEC

Mortalities rate due to the action of
the chemotherapeutic drug on

effector cells [h−1]
417 -

c
Number of A20 cells by which the

immune system response is the half
of its maximum [cell]

102 -

b
Drug amount that produces 50%
maximum effect in immune cell

population [molecules]
5× 106 -

µEA
Interaction coefficient between A20

and effector cells [h−1] 4× 10−15 [37]

µE
Natural death rate of effector

cells [h−1] 4× 10−5 -

3. Results
3.1. Determination of A20 mCherry Growth Rate

In order to determine the growth rate in vivo of A20 mCherry cells, tail vein blood was
taken on Day 16 and Day 22 after inoculation of cells, each time from four different mice
(Figure 2). The average number of A20 mCherry cells in the first and second bleeds was
assessed by positively gating cells using FSC and SSC parameters; doublets and debris were
eliminated from the analysis. The data were used to calculate the growth rate according to
the formula:

r =
ln(N(t)/N(0))

t
,

where

• N(t) = the number of cells at time t;
• N(0) = the number of cells at time 0;
• r = growth rate;
• t = time (usually in hours).
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Thus, according to Figure 2, when N(0) = 3662; N(t) = 16, 338 and t = 144 h, the growth
rate of A20 mCherry cells will be:

r =
ln(16, 338/3662)

144
= 0.01 (h−1

).

Figure 2. Growth of A20 cells in vivo. Twenty Balb/c mice were inoculated via the tail vein with
5× 104 A20 cells. On Day 16, blood was collected from the tail vein of four randomly chosen mice,
and again on Day 22 from four other mice. A20 mCherry positive cells were measured on a CytoFLEX
(Beckman Coulter) flow cytometer. Acquired data were analyzed using FlowJo software. The points
on the graph represent the average number of A20 mCherry cells measured among 2× 105 blood cells
analyzed from 4 mice. These data were used to calculate the growth rate of the cells in vivo.

3.2. Drug Cytotoxicity In Vivo

To determine the efficacy of Cyt and Ibr in vivo, five groups of mice were treated with
different doses of drugs and time periods, as described above. Tail vein blood was collected
twice from each mouse, on the day of initiation of treatment and two days after the last
treatment. At each time point, the percent change in frequency of A20 cells in each treated
mouse relative to the average frequency in the Control (untreated) group was calculated.
From these data, the average A20 frequency change for each treated group was obtained.
The difference between the average frequency in each test group and the untreated Control
group represents the percent growth inhibition as a function of treatment. The results
(Figure 3) show that the growth inhibition due to Cyt treatment was dose dependent (low
dose 9%, high dose 58%), whereas inhibition of growth due to Ibr was not (low and high
doses both about 44 %). The results are summarized in Table 2.

Table 2. Results of Experiments and Simulations.

Concentration of Drugs
(mg/kg)

Cell Growth Inhibition (%)
from the Simulation Data

Cell Growth Inhibition (%)
from the Experiment Data

Cyt 0.12 10 9
Cyt 62.5 59 58

Ibr 9 43.4 43.5
Ibr 18 44 44.5

Cyt 62.5 + Ibr 9 95 -
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Figure 3. The growth inhibition of A20 mCherry cells in vivo under the influence of different
treatment protocols. On day 22th, after A20 inoculation, blood was taken from the tail vein of
each mouse, and A20 cells were measured as described above. Cyt Low group (blue bar) received
0.12 mg/kg of Cyt for 5 consecutive days; Cyt High group (green bar) received 62.5 mg/kg of Cyt
for 3 consecutive days; Ibr Low (black bar) and Ibr High (red bar) groups received 9mg/kg and
18 mg/kg of Ibr, respectively, on days 1–5 and 8–10 from the beginning of the treatment. Blood was
collected from the tail vein on Day 12 after the beginning of treatment from all mice. The frequency
of A20 was measured using flow cytometry, as described above. The difference between the average
frequency in each test group and the untreated Control group equals percent growth inhibition as a
function of treatment.

3.3. Formulation of the Model

Based on previous studies [36,38] and our in vivo experiments described above, we
formulated an ODE model to mathematically explain the interaction between CLL cells
and chemotherapeutic drugs in vivo:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dA
dt

= rA
⎛

⎝
1−

A
K

⎞

⎠
− µA AE −

µAC AC
a +C

,

dE
dt

= −µEE +
pAE
c + A

− µEA AE −
µECEC
b +C

,

dC
dt

=
N−1
∑
m=0

dδ(t −mτ)− µCC −
µCACA

a + A
,

(1)

(2)

(3)

dA
dt

describes the dynamic of A20 mCherry cells. It is comprised of three terms. One

is positive, corresponding to the logistic cancer growth characterized by the coefficient,
r, which is limited by the maximal tumor cell number, K. The second term is negative,
corresponding to living cells becoming dead due to the interaction with effector cells with
the rate µA. The last negative term represents the log-kill hypothesis [36], with a Michaelis–
Menten drug saturation response [39], a +C; µAC is the death rate resulting from the action
of the drug on cancer cells.

dE
dt

describes the dynamic of immune effector cells. µE describes the natural death rate

of effector cells; p describes the production rate of effector cells stimulated by the cancer
cells; c describes the number of cancer cells by which the immune system response is half
of its maximum; µEA describes the interaction coefficients between cancer and effector cells
affecting immune populations; µEC describes the mortality rates due to the action of the
chemotherapeutic drug on effector cells; b describes the drug amount for which such effects
are half of its maximum in the immune cell population.
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dC
dt

describes the first-order pharmacokinetics of a drug [40] with an external source.

A dose, d, of the chemotherapeutic drug is injected every τ hours.
By modeling the injection as a shifted Dirac Delta function δ(t−mτ), m = 0, 1, . . . , N −1,

the m-th dose raises C(t) by exactly d units at t = mτ, m = 0, 1, . . . , N − 1. A full explanation
of the Dirac Delta function in its continuous-time version is given in Appendix B.

µC is the deactivation rate calculated by the formula µC =
ln(2)
t1/2

, where t1/2 is the
elimination half-life between 1–3 h (biphasic) for Cyt and 4–6 h for Ibr (www.drugbank.ca).

µCA is the rate at which drug molecules attack cancer cells. The parameter a represents
the drug concentration which produces 50% of the maximum activity of the drug in the
A20 mCherry cell population [41].

We performed a mathematical analysis of our model (1)–(3) by identifying fixed points
and their stability, and found that the system is characterized by three fixed points, one of
which is asymptotically stable (Appendix A).

3.4. Estimation of the Parameters of the Model (1)–(3)

In this section, we evaluate model parameters (Table 1) together with the detailed
methods and the literature sources for their evaluation. To have biological meaning, all
values of the parameters must be positive. We specify the initial conditions at t = 0 as:

• A(0) = 5× 104 (cells/mouse)—the initial number of A20 cells;
• E(0) = 2500 (cells/mouse)—the initial number of effector cells;
• C(0) = 0, before the treatment.

The number of drug molecules was calculated using the expression: m×Na
M , where

• m = the mass of drug in kg;
• Na = avogadro number = 6.022× 1023 (constant);
• M = the molar mass of drug (Cyt 243.217 g/mol; Ibr 440.5 g/mol.) .

For example, for 1.25 mg/mouse (62.5 mg/kg) of Cyt, i.e., 1.25 mg = 0.00000125 kg,
the number of Cyt molecules will be:

0.00000125× 6.022× 1023

243.217
= 3× 1015

= 1.25× 2.4× 1015;

for 0.36 mg/mouse (18 mg/kg) of Ibr, the number of drug molecules will be:

0.00000036× 6.022× 1023

440.5
= 5× 1014

= 0.36× 1.4× 1015;

3.5. Sensitivity Analysis of Parameter µAC

A sensitivity analysis was conducted to determine the range of parameter µAC, which
has the most significant impact on the cancer cell population under the influence of different
drugs. We aspired to fit the parameter µAC as accurately as possible for each treatment pro-
tocol in order to achieve the same growth inhibition as in the real-life experiments on mice.
As shown in Figure 3 we built a mini model for each drug concentration (Figure 4A–D).
The most appropriate value of µAC was obtained with curve (3), highlighted in red on
each sub-graph.

www.drugbank.ca
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Figure 4. The time evolution of A20 mCherry cells without any treatment (black solid lines) and with
different values of the death rate resulting from the action of the drug, µAC (red doted lines). Three
values were considered for each treatment protocol: In Figure 4A (2) µAC = 0.0001; (3) µAC = 0.001;
(4) µAC = 0.003. In Figure 4B, (2) µAC = 0.005; (3) µAC = 0.012; (4) µAC = 0.02. In Figure 4C,
(2) µAC = 0.001; (3) µAC = 0.0041; (4) µAC = 0.005; In Figure 4D, (2) µAC = 0.002; (3) µAC = 0.0042;
(4) µAC = 0.006.

Figure 4A, the curve (3) shows the impact on A20 mCherry cells under influence of a
low dose—0.12 mg/kg of Cyt that was injected for five days. The growth inhibition at the
end of this period was only about 10%. Under influence of a high dose of Cyt—62.5 mg/kg,
growth inhibition was about 59% (Figure 4B, the curve (3)). In Figure 4C and in Figure 4D,
the curves (3) show around 44% growth inhibition with both 9 mg/kg and 18 mg/kg of Ibr.
Figure 4 also simulates the comparative growth rates of untreated versus treated A20 cells
for each treatment for the whole mouse. In contrast, Figure 3 represents the inhibition of
A20 cell growth, as measured in 200,000 cells in 50 uL of blood. Although it is estimated
that the whole-body blood volume of Balb/c mice is approximately 2.5 mL, we did not
consider this accurate enough for our purposes. Therefore, we could not compare the
simulation and experimental data for the actual number of A20 cells in the whole animal
in the one graph. Instead, to validate the model, we compared the % inhibition of growth
for each therapeutic protocol obtained experimentally and by simulation, which illustrates
excellent accordance between the two results (Figure 5).

Figure 5. Comparison of inhibition of A20 mCherry cell growth under the influence of different
doses of Ibr or Cyt between the model simulations (textured bars) and experimental data (fill bars).
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3.6. Prediction of the Effect from Combined Therapy

To test the growth inhibitory effects of Cyt combined with Ibr, we ran a simulation
using concentrations from Table 2, 62.5 mg/kg of Cyt and 9 mg/kg of Ibr for 8 days of
treatment (5 days treatment, 2 days break, 3 days treatment) and adjusted the calculated
parameters into the model (1)–(3): C(0) = 3.25 × 1015 drug molecules. Under these con-
ditions, Cyt composes about 92% of the molecules, and Ibr about 8%. Hence, µC will be:
(0.231× 0.92)+ (0.116× 0.08) = 0.221; µAC will be 0.012+ 0.0041 = 0.0161. This simulation
(Figure 6) predicted 95% of cell growth inhibition, which represents an 85% increase in
killing efficiency compared to separate treatment.

Figure 6. Numerical simulation of drug combination. The simulation of the model (1)–(3) represents
the number of A20 mCherry cells affected by the effect of Ibr with Cyt. A solid black curve is
a control, without a drug; a dashed red curve is 62.5 mg/kg of Cyt and 9 mg/kg of Ibr; Initial
concentration of A20 mCherry cells, A(0) = 5× 104.

4. Discussion and Conclusions

The clinical outcome for patients with CLL has significantly improved over the last
decade, although the disease remains incurable and new treatment approaches are clearly
needed. In this study, we present an animal-based ODE model (1)–(3) that describes the
dynamic of CLL cell growth in vivo under the influence of different cytotoxic drugs. We did
not measure immune cells in this study, but rather used parameters employed by others in
the literature to describe the interaction of immune cells with the cancer cells. We applied
a multistep approach to validate the model (1)–(3), using experimental in vivo data with
different concentrations of either Cyt or Ibr. Our numerical simulation results indicate that
the model predicts the response of leukemic cells in mice to chemotherapy (Table 2).

In a recent study, we found that Cyt—a drug not currently used in CLL therapy—was
more cytotoxic to A20 cells in vitro than Ibr [38,42], which suggested that the model could
be used to predict the repurposing of cancer drugs, a subject which is attracting much
attention [43]. Indeed, this prediction was vindicated when tested in our animal model
(Figure 3).

To demonstrate an additional application of our model, we performed a numerical
simulation (Figure 6) of the potential effect of Cyt plus Ibr on A20 leukemic cells, which
predicted that such a combination could significantly increase cytotoxicity and inhibit
cancer cell growth by up to 95%. It would now be valuable to test this combined treatment
in vivo, especially as these drugs have different modes of action.

Our model exhibits several stable states that depend on biologically related parameters.
Three equilibria were investigated (Appendix A). We found that Eqm∗

0 and Eqm∗
1 equilibria

occur when there is no treatment. Analysis of the stability of the system shows that the



Cells 2022, 11, 2325 10 of 18

free-tumor Eqm∗
0 equilibrium is not stable. This means that if there are no more cancer cells

and the treatment is stopped, the model is in equilibrium without growth, albeit unstable.
This may also represent a state of cancer cell dormancy, an adaptive strategy used by cancer
cells to overcome drug cytotoxicity [44]. This stage may persist until complete metabolism
of the drug, which would allow the cell to re-enter the cell cycle and tumor growth to
recur. The fixed point Eqm∗

1 is a stable equilibrium, and the system reaches this equilibrium
when the number of cancer cells reaches its maximum in the body. The system is not stable
at Eqm∗

2 equilibrium with periodical chemotherapy. We obtain Eqm∗
2 when treatment is

stopped and before the cancer cells are completely removed, and then the system tends to
its unstable equilibrium.

In this study, we aimed to address two important limitations in current mathematical
models describing chemotherapy effects in blood cancers such as CLL. These models are
not built on actual in vivo experiments. Therefore, we first calculated the growth rate of
the A20 cancer cells in mice, which lead to the logistic dynamic of these cancer cells. This
step is necessary to carry out for each type of cancer cell, and will be easier to perform for
blood-borne cancers such as leukemia than for solid tumors.

Current models also do not easily lend themselves to personalized chemotherapy
dosing, partially because tumor cell growth rates vary between patients. By validating our
experimental model with simulations studies (Figure 5), we were able to select an optimal
range of drug dosages to test. Furthermore, the model can be used to simulate combination
drug therapy. We found that in this way, we could predict that the combination of Cyt and
Ibr would lead to approximately 95% killing of A20 cells (Table 2). Such high rates of killing
are not expected in clinical practice, mainly due to subsequent toxicities. The response rates
and toxicity profiles induced by Cyt therapy vary across patients, mainly due to variation
in cancer types, treatment protocols, and genetic polymorphism in cytarabine-metabolizing
enzymes [45,46]. Nonetheless, Cyt is still commonly used in the chemotherapy of a number
of cancer types. The goal of our study was not to demonstrate the utility of Cyt for the
treatment of CLL. Rather, our model allowed us to predict a potentially effective new
combination of two drugs. Further calibration experiments in vivo may reveal that as
the two drugs we tested have different modes of action, in practice, it may be possible to
further reduce the dosages and still obtain acceptable efficacy. These doses will, as stated
above, also depend on the actual growth rate of a patient’s cancer cells.

It remains difficult to correlate mathematical models of drug efficacy based on in vitro
experiments’ in vivo outcomes. We have developed ODE models for drug efficacy in
leukemia derived from in vitro cytotoxicity experiments [38,42] that are able to predict
and compare the cytotoxic efficacy of traditional CLL drugs, such as Chlorambucil and
Melphalan, with that of Ibr and Cyt. However, the predicted optimal doses obtained
from these models did not correlate with those derived from the in vivo models described
here. A possible solution to this problem could be to use methods of Artificial Intelligence
to derive appropriate algorithms which can bridge between the different parameters of
in vitro and in vivo environments.

The ODE model presented in this study (1)–(3) can be adapted to various types of
cancer cells and different chemotherapeutic drug doses, so long as the growth rate of the
cells and the cytotoxic efficacy of the drugs are known. We believe that experimentally
validated mathematical models such as these will be critical for development of tools to
more accurately predict therapeutic efficacy of drug therapy for cancer.
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Appendix A

Stability Analysis

1. Steady states of the Equations (A1)–(A3) when d = 0 (without treatment.)
The proposed model (1)–(3) depends on t in the chemotherapy levels, as represented in

dC(t)/dt. Since an equilibrium cannot explicitly depend on t for each
t ∈ R [47,48], we approximate the term ∑

N−1
m=0 dδ(t − mτ) using a uniform drug injec-

tion. Formally, the injection term takes the form d/τ, following the method suggested
by Shtylla et al. [49]. Setting all equations for A∗, E∗ and C∗ to zero, the fixed points of our
model (1)–(3) are derived. We choose only the non-negative equilibria, assuming all initial
conditions to be positive.

System of Equations (A1)–(A3) in equilibria:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rA
⎛

⎝
1−

A
K

⎞

⎠
− µA AE −

µAC AC
a +C

= 0,

− µEE +
pAE
c + A

− µEA AE −
µECEC
b +C

= 0,

d
τ
− µCC −

µCACA
a + A

= 0,

(A1)

(A2)

(A3)

First of all, we consider the model (1)–(3) without treatment, i.e., d = 0: notice that
when C∗ ≠ 0, from Equation (A3) follows that A∗ = −

µCa
µCA + µC

< 0. Thus, C∗
i = 0, where i is

the index of each solution;
From Equation (A1) follows:

A
⎛

⎝
r −

rA
K

− µAE
⎞

⎠
= 0Ô⇒

Ô⇒ A∗
0 = 0, by inserting it into Equation (A2) ⇒ E∗0 = 0; r −

rA∗

K
− µAE∗ = 0 ⇒

A∗ =
rK − µAE∗K

r
.

From Equation (A2) follows:

E
⎛

⎝
− µE +

pA
c + A

− µEA A
⎞

⎠
= 0Ô⇒
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Ô⇒ E∗1 = 0, by inserting it into A∗ ⇒ A∗
1 = K; −µE +

pA∗

c + A∗
− µEA A∗ = 0,

by substituting the values from Table 1 we get E∗2;3:

⇒ E∗2 = 5, 000, 125, 000; E∗3 = 12, 504, 999, 990, 000⇒ A∗
2,3 < 0,

which has no sense of biological point of view. Thus, in the case of d = 0, we have only
two equilibria for consideration: Eqm∗

0 = {A∗ = 0; E∗ = 0; C∗ = 0} and Eqm∗
1 = {A∗ = K;

E∗ = 0; C∗ = 0}.
To analyze the asymptotic stability of each equilibrium of the nonlinear system (A1)–(A3),

we calculated the eigenvalues λ̄ = [λ1, λ2, λ3] of the Jacobian. Put Λ = max
i

{Re(λi)}.

If Λ < 0, then all real parts of eigenvalues are negative, and we can determine that the
equilibrium is asymptotically locally stable.

The system is characterized by the two following fixed points (Table A1). Using the
parameters from Table 1, we receive the eigenvalues for both equilibria.

1. Eqm∗
0 = {A∗ = 0; E∗ = 0; C∗ = 0}.

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r 0 0
0 −µE 0
0 0 −µC

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

The eigenvalues of this Jacobian are:

λ̄ = [0.01;−0.00004;−0.231].

Thus, the fixed point Eqm∗
0 is unstable (Figure A1A). Equilibrium Eqm∗

0 exists only if
A(0) = E(0) = C(0) = 0 and small perturbation will lead to cancer growth.

2. Eqm∗
1 = {A∗ = K; E∗ = 0; C∗ = 0}.

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−r −µAK
−µACK

a
0 −µE +

pK
c +K

− µEAK 0

0 0 −µC −
µCAK
a +K

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The eigenvalues of this Jacobian are:

λ̄ = [−0.01;−0.00004;−0.35].

Thus, the fixed point Eqm∗
1 is asymptotically stable (Figure A1B).

Table A1. Summary of the stability analysis of the system without treatment.

Fixed Points A∗ E∗ C∗ Stability

Eqm∗
0 0 0 0 unstable

Eqm∗
1 K 0 0 asymptotically

stable
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Figure A1. Numerical simulation of Equations (A1)–(A3) with parameters as in Table 1. The graph
shows the progression over time (up to 600 h) of cancer cells (red solid line); effector cells (black
solid line), and drug (blue dashed line). In (A), initial conditions: A(0) = 10; E(0) = 100; C(0) = 1000.
In (B), initial conditions: A(0) = 3.5× 106; E(0) = 100; C(0) = 1000.

2. Stability of periodic free-tumor solution
We note that Equation (A1) admits the following solution: A∗ = E∗ = 0, with the

chemotherapy dynamics satisfying

dC
dt

=
∞

∑
m=0

dδ(t −mτ)− µCC

The delta function formulation allows us to determine the dynamics between consecu-
tive pulses at t = nτ and t = (n + 1)τ :

1
C

dC
dt

= −µC, nτ ≤ t < (n + 1)τ,

with [C]nτ−

nτ+ = d. If, in addition, the initial conditions are such that C(0) = d, then the
solution is given by:

C(t) = C(0)e−µCt
= de−µCt, 0 ≤ t < τ,

C(t) = de−µCt
+ τde−µCτ , τ ≤ t < 2τ,

⋮

C(t) = de−µCt
+ nτde−µCτ , nτ ≤ t < (n + 1)τ, n = 0, 1, 2, . . .
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In the limit of large n, C(t) converges to a periodic cycle denoted by C̃(t), and the
associated cancer-free state may be described as:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

A∗
= E∗ = 0,

C̃(t) = de−µCt
+ nτde−µCτ , nτ ≤ t < (n + 1)τ.

(A4)

(A5)

Let Eqm = (A∗, E∗, C∗) be some equilibrium of the system (1)–(3). Putting x1(t) =

A(t) − A∗, x2(t) = E(t) − E∗, x3(t) = C(t) −C∗, and using the representation
1

x + a
=

1
a
−

x
a2 + o(x), lim

x→0

o(x)
x

= 0, we obtain the linear part of the nonlinear system (1)–(3):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

dA
dt
=

⎛

⎝

r −
2rA∗

K
− µAE∗ −

µACC∗

a +C∗
⎞

⎠

A(t)− µA A∗E(t)−
µAC A∗a
(a +C∗)2

C(t),

dE
dt
=

⎛

⎝

pE∗c
(c + A∗)2

− µEAE∗
⎞

⎠

A(t)−
⎛

⎝

µE −
pA∗

c + A∗
+ µEA A∗

+
µECC∗

b +C∗
⎞

⎠

E(t)−
µECE∗b
(b +C∗)2

C(t),

dC
dt
= −

µCAC∗a
(a + A∗)2

A(t)−
µCa + µC A∗

+ µCA A∗

a + A∗
C(t).

(A6)

(A7)

(A8)

For the tumor-free equilibrium Eqm2 = (A∗, E∗, C∗) = (0, 0, C̃(t) = de−µCt + nτde−µCτ)

the system (A6)–(A8) takes the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dA
dt

=
⎛

⎝
r −

µACC̃(t)
a + C̃(t)

⎞

⎠
A(t),

dE
dt

= −
⎛

⎝
µE +

µECC̃(t)
b + C̃(t)

⎞

⎠
E(t),

dC
dt

= −
µCAC̃(t)

a2 A(t)− µCC(t).

(A9)

(A10)

(A11)

Equations (A6)–(A8) constitute a system of linear differential equations with the
coefficients. As such, they can be analyzed using the Floquet theory [50–53]. The first step
involves constructing the fundamental matrix Y(t) [54]:

Y(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

A1(t) A2(t) A3(t)
E1(t) E2(t) E3(t)
C1(t) C2(t) C3(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where (Aj(t), Ej(t), Cj(t)) j = [1, 2, 3] are independent solutions of the linear system
(Equations (A9)–(A11)). These solutions are obtained by choosing initial conditions
(Aj(0), Ej(0), Cj(0)) j = [1, 2, 3]: so that Y(0) = I. Denote the rectangle area (τde−µCτ)
as Ra. Solving Equations (A6)–(A8) for these initial conditions gives:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

(A1(t), E1(t), C1(t)) = (exp
⎛

⎝

rt +
µACa ln(a + de−µC t

+ nRa)+ µACnRa ln(e−µC t
)

µC(nRa + a)
⎞

⎠

, 0, 0),

(A2(t), E2(t), C2(t)) = (0, exp
⎛

⎝

− µEt +
µECb ln(b + de−µC t

+ nRa)+ µECnRa ln(e−µC t
)

µC(nRa + b)
⎞

⎠

, 0),

(A3(t), E3(t), C3(t)) = (exp
⎛

⎝

µCAde−µC t
− µCµCAnRat)
a2µC

⎞

⎠

, 0, exp(−µCt)).

(A12)

(A13)

(A14)

The “Floquet multipliers” are defined as the eigenvalues λ of the matrix Y(τ); thus,
t = τ represents the period of the coefficients:
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Det(Y(τ)− λI) = Det

exp
⎛

⎝

rτ +
µACa ln(a + de−µCτ

+ nRa)+ µACnRa ln(e−µCτ
)

µC(nRa + a)
⎞

⎠

− λ 0 exp
⎛

⎝

µCAde−µCτ
− µCµCAnRaτ)

a2µC

⎞

⎠

0 exp
⎛

⎝

− µEτ +
µECb ln(b + de−µCτ

+ nRa)+ µECnRa ln(e−µC τ
)

µC(nRa + b)
⎞

⎠

− λ 0

0 0 exp(−µCτ)− λ

,

Since Y(τ) is upper triangular, the Floquet multipliers are:

λ1 = exp
⎛

⎝
rτ +

µACa ln(a + de−µCτ + nRa)+ µACnRa ln(e−µCτ)

µC(nRa + a)
⎞

⎠
> 1,

λ2 = exp
⎛

⎝
− µEτ +

µECb ln(b + de−µCτ + nRa)+ µECnRa ln(e−µCτ)

µC(nRa + b)
⎞

⎠
> 1,

∣λ3∣ = e−µCτ
< 1.

According to Floquet theory, a solution is stable when all the calculated modules
of the eigenvalues in the monodromic matrix are below the unity. Thus, the solution
Eqm2 = (A∗, E∗, C∗) = (0, 0, C̃(t) = de−µCt + nτde−µCτ) is unstable. From a biological point
of view, this means that once treatment is stopped, cancer will grow (see Figure A2).

Figure A2. Numerical simulation of Equations (A1)–(A3) with parameters as in Table 1 and initial
conditions: A(0) = 500; E(0) = 2500; C(0) = 0, represents the achievement of a tumor-free (red solid
line) state due to the action of a specific treatment protocol (blue doted line): combined chemotherapy
with 62.5 mg/kg of Cyt and 9 mg/kg of Ibr given for 30 days once a day. The treatment began after
two weeks of cancer cells being “injected”; at that point, cancer growth reached 134,987 cells. Note
that the chemotherapy curve has been divided by 1011 to be able to show both curves in one graph.

Appendix B

Delta Function Definition

Delta function was introduced in mathematical physics by P. Dirac to describe concen-
trated impacts. Based on work by Schwartz [55] and Gelfand et al. [56], we approximate
the Delta function using a sequence of weighted exponentials: gn(t) = (n/

√
π)e−n2t2

,
−∞ < t < +∞. One can see that:

lim
n→∞

gn(t) = lim
n→∞

n
√

π
e−n2t2

= 0, ∀t ∈ (−∞,+∞), t ≠ 0,

lim
n→∞

gn(0) = lim
n→∞

n
√

π
= +∞, n →∞,
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lim
n→∞

∞

∫
−∞

gn(t)dt = lim
n→∞

∞

∫
−∞

n
√

π
e−n2t2

dt = 1,

and

lim
n→∞

∞

∫
−∞

f (t)gn(t)dt = lim
n→∞

∞

∫
−∞

f (t)
n

√
π

e−n2t2
dt = f (0),

so

lim
n→∞

gn(t) = δ(t) =
⎧⎪⎪
⎨
⎪⎪⎩

∞, t = 0,
0, t ≠ 0,

,

such that

∞

∫
−∞

δ(t)dt = 1,
∞

∫
−∞

f (t)δ(t)dt = f (0).

Hence, for shifted Delta function δ(t − a),∀a ∈ R we have

∞

∫
−∞

f (t)δ(t − a)dt = f (a).
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