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Given recent advances in the generation of high-throughput data such as whole-genome
genetic variation and transcriptome expression, it is critical to come up with novel meth-
ods to integrate these heterogeneous datasets and to assess the significance of identified
phenotype-genotype relationships. Recent studies show that genome-wide association
findings are likely to fall in loci with gene regulatory effects such as expression quanti-
tative trait loci (eQTLs), demonstrating the utility of such integrative approaches. When
genotype and gene expression data are available on the same individuals, we and others
developed methods wherein top phenotype-associated genetic variants are prioritized if
they are associated, as eQTLs, with gene expression traits that are themselves associated
with the phenotype. Yet there has been no method to determine an overall p-value for the
findings that arise specifically from the integrative nature of the approach. We propose
a computationally feasible permutation method that accounts for the assimilative nature
of the method and the correlation structure among gene expression traits and among
genotypes. We apply the method to data from a study of cellular sensitivity to etoposide,
one of the most widely used chemotherapeutic drugs. To our knowledge, this study is the
first statistically sound quantification of the overall significance of the genotype-phenotype
relationships resulting from applying an integrative approach. This method can be easily
extended to cases in which gene expression data are replaced by other molecular pheno-
types of interest, e.g., microRNA or proteomic data. This study has important implications
for studies seeking to expand on genetic association studies by the use of omics data.
Finally, we provide an R code to compute the empirical false discovery rate when p-values
for the observed and simulated phenotypes are available.
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INTRODUCTION
The availability of genome-wide datasets is facilitating unprece-
dented insights into various aspects of cellular processes. Tech-
nological advances (Metzker, 2010) in high-throughput methods
are contributing to new approaches in genomics, transcriptomics
(Wang et al., 2009), proteomics (Farnham, 2009), and epigenomics
(Laird, 2010; Zhou et al., 2011), allowing in-depth interrogation of
diverse biological processes. A primary challenge from the tremen-
dously heterogeneous and increasingly massive datasets is data
integration – a challenge that is inevitably bound to intensify with
the deluge of these high-throughput datasets. Nevertheless, among
the many exciting promises, integrative approaches are likely to
yield a comprehensive map of genome function (Degner et al.,
2012) as well as a high-resolution view into the complex logic of
biological systems (Hawkins et al., 2010).

Indeed, while genome-wide association studies (GWAS) have
identified thousands of common genetic variants associated with
diseases and other complex human traits (Hindorff et al., 2009),
functional understanding of many of the variants remains elusive.

Integrating other omics datasets into genome-wide analyses offers
the potential to provide systematic insight into the mechanisms
underlying the observed genotype-phenotype relationships. One
common approach to the integration of functional data into
GWAS is the use of expression quantitative trait loci (eQTL;
Stranger et al., 2007a; Duan et al., 2008; Schadt et al., 2008)
information to expand on the nature of the genetic component
to complex phenotypes (Gamazon et al., 2010a; Nicolae et al.,
2010). Such an integrative approach is clearly extensible to the use
of protein (Garge et al., 2010) or microRNA quantitative trait loci
(Gamazon et al., 2012), indeed other functionally relevant features
of the genome, to improve identification of functional variants.

Our group (Huang et al., 2007a; Welsh et al., 2009; Nicolae et al.,
2010) and others (Cheung et al., 2003; Correa and Cheung, 2004;
Stranger et al., 2007b; Nica et al., 2010) have used the HapMap
lymphoblastoid cell lines (LCLs) as a model for human genotype-
phenotype relationships. The cell lines have been the subject of
several whole-genome gene expression profiling studies (Mont-
gomery et al., 2010; Pickrell et al., 2010; Stranger et al., 2012) to
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FIGURE 1 |The use of omics data to perform SNP filtering. A series of
functional filters is applied to the original SNP set to perform data
dimensional reduction. The reduced multiple testing burden may improve
power to detect genotype associations with phenotype.

identify functional loci (e.g., eQTLs) with potentially important
links to SNP associations emerging from genome-wide studies.
Furthermore, the cell lines have been utilized to identify the mole-
cular consequences associated with various exposures (Dermitza-
kis, 2012), such as drugs (Huang et al., 2007b), small molecules,
or pathogens (Ko et al., 2009). For example, a three-way “trian-
gle” model, correlating genotype, gene expression, and phenotype
data, has been devised to identify genetic variants that contribute
to chemotherapeutic-induced cytotoxicity through their effects on
gene expression (Huang et al., 2007b). Nevertheless, quantifying
the significance of a finding from such an integrative approach
remains to be fully addressed.

MATERIALS AND METHODS
FUNCTIONAL INTEGRATION
A simple approach to integrate high-throughput functional
datasets (e.g., from studies of the transcriptome, proteome, or
microRNAome) with genome-wide genotype data obtained from
microarray- or sequencing-based studies is to select SNPs that
meet certain functional criteria as illustrated in the example in
Figure 1. In the first step of this example, SNPs are filtered by
requiring that they be associated with genes whose expression lev-
els are associated with the phenotype (Zhong et al., 2010). In the
next step, we further reduce the number of SNPs by requiring that
they be associated with protein levels that are themselves associ-
ated with the phenotype. This process can continue using other
omics datasets.

To simplify the description, we focus on the case in which only
the gene (mRNA) expression data are integrated, which is depicted
with the diagram in Figure 2. This triangle approach and varia-
tions thereof were proposed by Huang et al. (2007b) and others
(Zhong et al., 2010) and applied to an array of cellular pheno-
types. The first step of this method aims to identify a set of gene
expression traits associated with the given phenotype at an arbi-
trarily set p-value threshold, p < pgene-phenotype. It is important
to emphasize that this threshold, as in the subsequent thresholds
to be defined below, is generally set arbitrarily. In practice, these

FIGURE 2 |The “triangle” method for integration of genotype, gene
expression, and phenotype data. Through a series of steps,
heterogeneous datasets, involving SNPs, gene expression and trait are
integrated. At each step, a p-value threshold is applied. In general, the
p-value threshold used is arbitrary; in practice, the choice allows for
prioritization of genes or SNPs. The result of the triangle method is a set of
SNP association p-values (represented by the “obs p” in the figure).

thresholds are used to prioritize genes or SNPs for downstream
analyses. Indeed, one aim of our study is to quantify the signifi-
cance of an association from a triangle method regardless of the
choice of thresholds used during the integrative process. The sec-
ond step of the method is to identify SNPs that are associated
with the selected gene expression traits again at an arbitrarily set
threshold, p < pSNP-gene. At a stringent threshold, this step maps
the gene expression traits to genomic loci; this step thus identifies
the eQTLs for the corresponding genes. Finally, in the last step
of the triangle, the resulting SNPs are interrogated for association
with the phenotype. Our primary aim is to describe a method to
quantify the significance of the SNPs resulting from this multi-step
“triangle” approach.

NAÏVE FDR OF SELECTED SNPs
Since the triangle method is a multi-step approach that derives
a final SNP set from a series of (potentially) increasingly strin-
gent thresholds, it is reasonable to expect that such an approach
should yield a final set with substantially reduced false discov-
ery rates (FDRs) for association with the phenotype. A simple
approach to assess the significance of the findings for this sub-
set of SNPs would be to compute the FDR for them (Storey and
Tibshirani, 2003). We illustrate the problem of this approach in
Figure 3 in which we show the QQ plot of the associations after
applying the triangle method to a simulated phenotype, which
has no association with genotype. In this particular example, the
first threshold pgene-phenotype was set at 0.05 while pSNP-gene was

set at 5× 10−6. Circles above the red line represent SNPs with
FDR < 0.05. (Strictly speaking, circles with p-values less than the
one with the largest p-value that goes above the red line has
FDR < 0.05.) As the figure indicates, the triangle method may yield
several spurious associations, if we rely on a“naïve”FDR approach.
This example shows the need to develop a more sophisticated
approach to estimate the significance of results in this integrative
context.
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FIGURE 3 |Traditional FDR applied to the triangle method for
simulated data. The triangle method may yield numerous highly significant
SNP associations, based on the traditional FDR approach, from a simulated
phenotype. In this case, several significant SNPs are obtained from
simulated data although none should be observed.

SIMULATING THE NULL DISTRIBUTION
We describe here our approach to generating an empirical null
distribution of p-values (Figure 4). First, let Y 1, Y 2, Y 3, . . ., Yn

be simulated phenotypes obtained from permuting the pheno-
type data. (Typically, n= 1000.) In case covariates are used, they
should be relabeled in sync with the phenotype. For each simu-
lated phenotype, we apply the same triangle method. For each Yi,
we derive the set of gene expression traits gij that meet the thresh-
old, p-value < pgene-phenotype, where the associations between the
phenotype Yi and gene expression traits are calculated while pre-
serving the correlation structure of all gene expression phenotypes.
For each gij, we retrieve the set of eQTLs, Sijk, associated with the
gene at the pre-defined threshold, p-value < pSNP-gene. The subset
of these eQTL SNPs that satisfy p-value < pSNP-phenotype provides
a set of p-values {Pijk ′}, for each simulated phenotype Yi. Note
that each such set {Pijk ′} of p-values may differ in count between
simulated phenotypes. Note that i indexes simulations, j indexes
genes, and k indexes eQTLs.

We utilize these sets of p-values derived from simulated pheno-
types to estimate the null distribution of p-values. Having shown
the limitation of the use of the traditional FDR for the integrative
triangle method, we derive a simple formula to estimate the FDR
using this empirical null distribution.

EMPIRICAL FDR
We closely follow Storey’s approach (Storey and Tibshirani, 2003)
to estimate the FDR. The difference in our approach is that we
do not assume that the null distribution of p-values is uniform.

FIGURE 4 | Simulating the null distribution. Simulated phenotypes were
obtained by permuting phenotype values. Associations between gene
expression traits and phenotype were done conditional on preserved
correlation structure between the gene expression traits. The eQTLs for
selected genes were retrieved from our eQTL database SCAN. Finally, the
eQTLs were tested for association with phenotype. For each of n= 1000
replicates, a set of SNP association p-values is generated.

Instead, we use the empirical distribution generated by simulating
the phenotype and performing the integrative analysis. We define
the significance level t and reject the null hypothesis of no asso-
ciation for all p-values smaller than t. We use the actual values in
the observed vector of p-values as cutoff. Thus, for each p-value,
t, in the observed vector of p-values, we compute the FDR of the
strategy of rejecting all p-values less than or equal to t. Let the num-
ber of falsely significant SNPs be denoted as F(t )= #{null pi≤ t,
i= 1, . . ., m} and the number of significant SNPs be denoted as
S(t )= #{pi≤ t, i= 1, . . ., m} with m the total number of SNPs
after applying the integrative approach. We estimate the FDR as
follows:

FDR(t ) = E

[
F(t )

S(t )

]
≈

E [F(t )]

E [S(t )]
(1)

=
mP(p ≤ t and null)

mP(p ≤ t )

=
P(p ≤ t and null)

P(p ≤ t )
(2)

where E[.] is the expectation operator. The approximate equality
in Eq. 1 is proven by Storey (2003).

The denominator is estimated using the observed number of
significant SNPs p≤ t,

#
{

pobs,i ≤ t , i = 1, . . . , m
}/

m

The numerator can be factored as P(p≤ t and null)= P(p≤ t |
null)·P(null). The first factor P(p≤ t | null) is estimated using the
empirical distribution: #{psim,i ≤ t, i= 1, . . ., M 0}/M 0 where the
psim’s are the p-values generated with the simulated phenotypes
and M 0 is the sum (across all simulations, M 0=Σmo,s, where mo,s
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FIGURE 5 | Distribution of p-values for all SNPs and triangle
method-derived SNPs from actual phenotype as well as simulated
phenotypes. QQ plots are shown for all SNPs as well as the SNPs that
come of the triangle method. Gray dots represent the QQ plots for the
triangle method-derived SNPs from 1000 simulated phenotypes. Note that
the triangle method may yield spurious associations if we rely on the
traditional FDR.

corresponds to the number of eQTLs selected after applying the
triangle method to the simulated phenotype Ys) of the total num-
ber of SNPs selected using the simulated phenotypes. Note that for
uniformly distributed p-values, we would have P(p≤ t | null)= t.
We know, however, that when the set of SNPs are derived from
the integrative approach, the null p-values may not be distributed
uniformly, as illustrated in Figure 5. The second factor P(null) is
the proportion of SNPs that are unrelated to the phenotype and
may be estimated as the ratio

π̂0 =
#
{

pobs,i > t , i = 1, . . . , m
}/

m

#
{

psim,i > t , i = 1, . . . , M0
}/

M0

or may be set to 1 to yield a more conservative estimate of FDR.
In summary, we estimate the FDR based on the empirical

distribution as follows:

eF̂DR(t ) =
#
{

psim ≤ t
}/

M0

#
{

pobs ≤ t
}/

m
.

#
{

pobs > λ
}/

m

#
{

psim > λ
}/

M0
(3)

=
#
{

psim ≤ t
}

#
{

pobs ≤ t
} .

#
{

pobs > λ
}

#
{

psim > λ
} (4)

with λ= 0.5. We can also use the more conservative estimate

eF̂DR(t ) ≤
#
{

psim ≤ t
}/

M0

#
{

pobs ≤ t
}/

m

In order to ensure increasing FDR for increasing p-values, we
define q-values as

q̂(t ) = minp≥t eF̂DR(p) (5)

ETOPOSIDE PHARMACOGENOMICS
A triangle method, similar to the one described here, had been
originally applied to cellular sensitivity data for etoposide (Huang
et al., 2007b), one of the most widely used anti-cancer agents.
Using our empirical FDR approach, we re-analyzed the same phe-
notype data from the original experiments, which had sought to
quantify the cytotoxic effect of the drug on the cell lines using
a colorimetric-based assay, as previously described (Huang et al.,
2007b). We conducted our study on the 90 HapMap cell lines
of European descent (CEU). The quantitative trait used here was
IC50, defined as the concentration required for 50% cell growth
inhibition.

RESULTS
R FUNCTION FOR CALCULATING EMPIRICAL FDR
We provide an R function for estimating the empirical FDR that
can be used once the observed and the simulated p-values are gen-
erated (http://www.scandb.org/newinterface/empiricalFDR.R). The
way these p-values are generated will depend on the specific
integration method used, the eQTL mapping database, and the
number of components in the “genetic machinery.”

Computation time
For step 1 (see Figure 4) we need to compute about 10,000 (the
number of transcripts) linear regressions. This can be achieved
in a few seconds using R and the fast linear regression compu-
tation in R such as implemented by us and made available in
http://www.scandb.org/newinterface/fastlm.R. For step 2, we only
need to query the eQTLs for the new set of genes from step 1,
which takes a fraction of a second. For step 3: after applying steps
1 and 2 only a few SNPs are left (typically around 1000 or less).
This can also be done in a fraction of a second. Adding up all three
steps, the method with 1000 permutations would take a couple of
hours of computing time on a typical desktop available in 2012.

TRADITIONAL GWAS AND SNP SELECTION VIA eQTLs
The GWAS of etoposide IC50 did not yield any significant signals,
as perhaps expected from the small sample size. Figure 5 shows a
QQ plot of the distribution of p-values (as circles). However, we
found a highly significant enrichment for gene regulatory signals
among the etoposide-associated variants relative to frequency-
matched SNPs (Gamazon et al., 2010a). This finding raises the
possibility of the use of eQTL annotation to increase the power
to detect true associations. We therefore proceeded to incorpo-
rate eQTL functional annotation through the integrative triangle
method.

GENETIC VARIATION ASSOCIATED WITH ETOPOSIDE CYTOTOXICITY
IDENTIFIED THROUGH THE TRIANGLE METHOD
Expression levels had been generated by our group on these cell
lines for more than 10,000 genes, allowing us to perform associ-
ations between etoposide IC50 and gene expression traits; those
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genes meeting p < 0.05 (see Table S1 in Supplementary Mate-
rial) were carried forward in the triangular analysis. We then
utilized SCAN (Gamazon et al., 2010b), a public repository for
the results of our eQTL studies on the HapMap cell lines, to
annotate the selected genes showing association with etoposide
IC50 with expression-associated SNPs (p < 10−4; see Table S2 in
Supplementary Material). Finally, the selected eQTLs were tested
for association with etoposide IC50. Figure 5 shows the QQ plot
of association p-values for all SNPs, the QQ plot for the final
SNP set derived from the triangle method, and the QQ plot for
the triangle method-prioritized SNPs from each of 1000 simu-
lated phenotypes. The figure illustrates that certain eQTL SNPs
from this triangle method-derived SNP set attained a (traditional)
FDR < 0.05, but also that the triangle method may yield spurious
associations using the traditional FDR.

EMPIRICAL FDR IDENTIFIES SIGNIFICANT ASSOCIATIONS WITH
CELLULAR SENSITIVITY TO ETOPOSIDE
We applied our proposed empirical FDR method to the observed
set of p-values from the triangle analysis-derived set of SNPs. To
generate an empirical null distribution of p-values, we conducted
simulations (see Materials and Methods). Table S3 in Supple-
mentary Material lists the most significant etoposide-associated
SNPs based on our empirical FDR method. Note the comparison
between traditional FDR and eFDR for the most highly ranked
SNPs prioritized by the triangle method (based on unadjusted p-
value), showing that traditional FDR inflates the significance of
selected SNPs.

DISCUSSION
Integrative approaches to diverse genomics datasets promise to
resolve some important biological problems and, perhaps as
importantly, generate novel hypotheses. Here we developed a
computationally feasible permutation method to quantify the sig-
nificance of findings arising from an integrative approach. The
triangle method, a highly plausible approach to SNP prioritization
and an example of how diverse high-throughput datasets may be
integrated, requires an assessment of the resulting findings. This
integrative method incorporates genotypic and expression data
to identify trait-correlated genes that are under the regulation of
eQTLs, yielding a set of candidate SNPs potentially important for
the genetic etiology of the trait. Our proposed empirical FDR
approach not only takes into account the integrative nature of the
triangle method, but the approach also accounts for the correla-
tion structure among gene expression traits and among genotypes.
Our empirical FDR approach aims to provide a sound quantifica-
tion of the significance of the prioritized SNPs from the integrative
method.

It should be noted that our approach separates the pheno-
type from what we are calling the “genetic machinery” (e.g.,
genotype, gene expression, protein expression, methylation). Only
the phenotype is permuted and the relationships within the
genetic machinery are preserved. Consequently, we avoid hav-
ing to perform multiple eQTL mappings (the most compu-
tationally costly permutation) because p-values in each arm
are used for prioritization and not for determining the sig-
nificance of the associations. Importantly, our approach differs

from other approaches wherein the permutation is conducted
on each arm of the triangle. In the latter approach, the thresh-
old for significance can be arbitrary or unnecessarily conserv-
ative. A well-chosen set of thresholds will determine the per-
formance of the integrative approach. In our method, we pro-
vide a measure of significance that is well-calibrated regard-
less of the set of thresholds used. Furthermore, in contrast to
approaches that apply a threshold (e.g., Bonferroni) at each
step of the integrative process, our method provides an over-
all measure of significance for the results of the integrative
analysis.

Our quantification approach can easily accommodate hub
eQTL analysis (SNPs associated with multiple genes, also referred
to as master regulators). In the filtering procedure we require that
the SNPs be eQTLs for a number of phenotype-associated gene
expression traits. As long as the permutation steps follow the same
filtering algorithm as the one used for the observed data, our
method will yield the right FDR. Likewise, our method can be
applied to both quantitative and binary outcomes.

In this study, we also explored the limitations of the traditional
FDR when applied to an integrative approach such as the triangle
method. In particular, we found that traditional FDR may yield
spurious associations from simulated phenotypes. Furthermore,
while the use of eQTL information may improve power to detect
true associations, traditional FDR may still inflate the significance
of the selected SNPs.

We applied our empirical FDR approach to a study of cellular
sensitivity to etoposide. Etoposide is a topoisomerase II inhibitor
(Sinha et al., 1988) widely used against lung cancer, non-Hodgkin’s
lymphoma, myelogenous leukemia, and Kaposi’s sarcoma. As in
the case of other chemotherapeutic agents, the drug is associ-
ated with serious toxicities, including bone marrow suppression,
diarrhea, and fatigue as well as treatment-induced acute myeloid
leukemia (Mistry et al., 2005). Thus, the identification of pre-
dictors of response or potentially debilitating toxicities associated
with etoposide, including genetic variations, is key to the imple-
mentation of an effective treatment regimen and, longer-term, to
the realization of an individualized approach to therapy. Based on
cell lines derived from large pedigrees, it has been reported that a
significant genetic component contributes to cellular sensitivity to
etoposide (Peters et al., 2011).

Here, using our empirical FDR method, we identified 12 SNPs
showing significant association (eFDR < 0.15) with cellular sen-
sitivity to etoposide through their effect on gene expression. The
12 SNPs represent four independent genomic loci (on chromo-
some 8q12, 2p24, 10q23, and 16q24), of which the 10q23 SNPs
are located in the glutamate receptor ionotropic delta-1 subunit
(GRID1) gene. The expression target genes of rs9808546 (on chro-
mosome 2) show a highly significant enrichment for acetylation
[n= 27, Benjamini–Hochberg (BH) FDR= 0.0018] and phos-
phoprotein (n= 51, BH FDR= 0.0027; Huang da et al., 2009),
consistent with studies that have shown that histone deacety-
lase inhibitors sensitize cells to the cytotoxic effects (particularly)
of topoisomerase II agents such as etoposide (Kurz et al., 2001;
Marchion et al., 2004; Hajji et al., 2008, 2010). Importantly, hav-
ing provided a sound quantification of the significance of the
genotype-phenotype associations, the gene expression targets of
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the identified eQTLs provide a set of candidate genes for functional
validation and a plausible mechanism for how the genetic variation
may mediate their phenotypic effect.

The R code we provide can be used to compute the empirical
FDR for any case in which empirical null p-values are available
regardless of the method used to generate them. Thus, it should
prove useful for other integrative approaches.

In case there are confounding factors that yield more gene
expression traits associated with the phenotype, our method yields
a conservative estimate of FDR. The effect of the confounders is
to increase the number of noisy genes in the first step and conse-
quently to generate more null eQTLs than there should be in the
final set. This fact decreases the overall significance of real associ-
ations and our method still provides an unbiased estimate of the
significance.

In summary, we have developed a computationally feasible
approach to assess the significance of genotype-phenotype asso-
ciations prioritized by an integrative genomic method. As omics
datasets become routinely integrated to address important bio-
logical problems, the issue our study sought to address becomes
increasingly more relevant.
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