

Received 5 March 2016 Accepted 22 March 2016

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; monodentate monoanionic thyminate; intramolecular hydrogen-bonding interaction; intermolecular double hydrogen bonds.

CCDC references: 1469935; 1469934; 1469933

Supporting information: this article has supporting information at journals.iucr.org/e

Acta Cryst. (2016). E**72**, 543–547

Crystal structures of bis[2-(pyridin-2-yl)phenyl- $\kappa^2 N, C^1$]rhodium(III) complexes containing an acetonitrile or monodentate thyminate(1–) ligand

Mika Sakate, Haruka Hosoda and Takayoshi Suzuki*

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan. *Correspondence e-mail: suzuki@okayama-u.ac.jp

The crystal structures of bis[2-(pyridin-2-yl)phenyl]rhodium(III) complexes with the metal in an octahedral coordination containing chloride and acetonitrile ligands, namely (OC-6-42)-acetonitrilechloridobis[2-(pyridin-2yl)phenyl- $\kappa^2 N$, C^1]rhodium(III), [RhCl(C₁₁H₈N)₂(CH₃CN)] (1), thyminate(1-) and methanol, namely (OC-6-42)-methanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido- κN^1)bis[2-(pyridin-2-yl)phenyl- $\kappa^2 N, C^1$]rhodium(III), $[Rh(C_{11}H_8N)_2(C_5H_5N_2O_2)(CH_3OH)] \cdot CH_3OH \cdot 0.5H_2O$ (2), and thyminate(1-) and ethanol, namely (OC-6-42)-ethanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido- κN^1)bis[2-(pyridin-2-yl)phenyl- $\kappa^2 N, C^1$]rhodium(III), $[Rh(C_{11}H_8N)_2(C_5H_5N_2O_2)(C_2H_5OH)]\cdot C_2H_5OH$ (3), are reported. The acetonitrile complex, **1**, is isostructural with the Ir^{III} analog. In complexes **2** and 3, the monodeprotonated thyminate (Hthym⁻) ligand coordinates to the Rh^{III} atom through the N atom, and the resulting Rh-N(Hthym) bond lengths are relatively long [2.261 (2) and 2.252 (2) Å for 2 and 3, respectively] as compared to the Rh-N bonds in the related thyminate complexes. In each of the crystals of 2 and 3, the complexes are linked *via* a pair of intermolecular N- $H \cdots O$ hydrogen bonds between neighbouring Hthym⁻ ligands, forming an inversion dimer. A strong intramolecular $O-H\cdots O$ hydrogen bond between the thyminate(1-) and alcohol ligands in mutually *cis* positions to each other is also observed.

1. Chemical context

Thymine (= H_2 thym) is one of the nucleobases, which are biologically important and fundamental organic molecules, and can release one or two protons, giving a thyminate(1-) (= Hthym⁻) or thyminate(2–) (= thym^{2–}) anion. These anions can act as suitable bridging ligands for the construction of functional polymetallic coordination compounds because they provide multiple donor atoms to metal atoms in a configurationally fixed fashion. For example, some tetra- and pentanuclear Pt^{II} complexes bridged by thym²⁻ have been described (Khutia et al., 2011; Rauterkus & Krebs, 2004). We have also reported some cyclic tetranuclear Cp*Rh^{III} (Cp* = pentamethylcyclopentadienyl) complexes bridged by thym²⁻ and incorporating an another metal cation in the central hydrophilic cavity of their metallacalix[4]arene motifs (Kashima et al., 2015; Sakate et al., 2016). In contrast, monoanionic thyminate (Hthym⁻) often acts as an N¹-coordinating monodentate ligand, for example, in [{Cp*Rh(Hthym)}₂- $(\mu$ -OH)₂] (Sakate *et al.*, 2016), [Cp*IrCl(Hthym)(dmso)] (dmso = dimethylsulfoxide; Krämer *et al.*, 1991). $[Pt(NH_3)_2(Hthym)(Mecyto)]ClO_4$ (Mecyto = 1-methylcytosine; Faggiani et al., 1981) and [(Tp^{Cum,Me})Zn(Hthym)] EtAde

 ${Tp^{Cum,Me}}$ = hydridotris[2-methyl-4-(cumen-4-yl)-1-pyrazoryl]borate, EtAde = 9-ethyladenine; Badura & Vahrenkamp, 2002}. The Zn^{II} complex is an interesting example, because the coordinating thyminato ligand forms multiple hydrogen bonds with the co-crystallized 9-ethyladenine molecule.

Our next targets are cyclic polymetallic compounds built up with intermolecular double hydrogen bonds between the coordinating thyminato(1–) and adeninato ligands. One of the complexes in this strategy is $[Rh(ppy)_2(Hthym)(ade)]^ [ppy^- = 2-(pyridin-2-yl)phenyl, ade^- = adeninato]$. For this purpose, we have prepared stepwise from $[Rh(ppy)_2Cl-(CH_3CN)]$ (1), $[Rh(ppy)_2(Hthym)(CH_3OH)]\cdot CH_3OH\cdot 0.5H_2O$ (2) to $[Rh(ppy)_2(Hthym)(C_2H_5OH)]\cdot C_2H_5OH$ (3), and have characterized their crystal structures. Attempts to react 2 or 3 with adenine or other monodentate ligands were also examined.

Complexes **1–3** all have an octahedral coordination geometry with a trans(N,N)cis(C,C) configuration of the Rh^{III}(ppy)₂

Figure 1

An *ORTEP* drawing of the molecular structure of $[Rh(ppy)_2Cl(CH_3CN)]$ (1), showing the atom-numbering scheme, with ellipsoids drawn at the 50% probability level.

fragment. The acetonitrile complex **1** (Fig. 1) is isostructural with the Ir^{III} analog, [Ir(ppy)₂Cl(CH₃CN)] (Blasberg *et al.*, 2011). The mutually *trans* Rh–N(ppy) bonds are 2.030 (1) and 2.051 (1) Å, and the *cis* Rh–C(ppy) bonds are almost the same as each other [1.990 (2) and 1.993 (2) Å]. The Rh–Cl and Rh–N(CH₃CN) bonds in **1** are 2.4862 (4) and 2.162 (1) Å, respectively, which are almost at the longest end in the ranges of these bond lengths for the related Rh^{III} chlorido and acetonitrile complexes. These elongations are caused by the strong *trans* influence of the phenyl donor group. The acetonitrile molecule is almost linearly coordinated, as evidenced by the bond angles Rh1–N3–C23 = 175.44 (14)° and N3–C23–C24 = 178.48 (19)°.

Crystals of **2** and **3** are solvatomorphs crystallizing in the space group *Pbca*, although the lengths of their *a* axes differ by more than 0.4 Å. In these complexes, the Hthym⁻ anion coordinates to the Rh^{III} atom as a monodentate ligand through the N¹ atom (Figs. 2 and 3). There is a coordinating solvent (methanol or ethanol) molecule in the *cis* position to the Hthym⁻ anion. The mutually *trans* Rh–N(ppy) bond lengths in **2** and **3** are in the range 2.023 (2)–2.038 (2) Å. On the other hand, the mutually *cis* Rh–C(ppy) bonds show explicit deviation; the Rh–C bonds *trans* to Hthym⁻ are 1.994 (2) and 1.989 (2) Å for **2** and **3** are slightly shorter at 1.972 (2) and 1.976 (2) Å, respectively. The Rh–N(Hhtym) bonds in **2** and **3** are 2.261 (2) and 2.252 (2) Å, respectively,

Figure 2 An *ORTEP* drawing of the molecular structure of [Rh(ppy)(Hthym)-(MeOH)]·MeOH·0.5H₂O (**2**), showing the atom-numbering scheme, with ellipsoids drawn at the 30% probability level.

which are remarkably long as compared to those in the other Rh^{III}–Hthym⁻ complexes. For example, the Rh–N(Hthym) bond in [{Cp*Rh(Hthym)}₂(μ -OH)₂] is 2.126 (3) Å (Sakate *et al.*, 2016). In the cyclic tetranuclear complexes bridged by thym²⁻, the Rh–N(thym²⁻) bonds are even shorter at 2.07 (1)–2.13 (1) Å. The Rh–O bonds in **2** and **3** are 2.233 (2) and 2.207 (1) Å, respectively, considerably longer than that [2.103 (3) Å] in [RhCl₃(bpy)(CH₃OH)] (Bieda *et al.*, 2009). However, much longer Rh–O(MeOH or EtOH) bonds (2.240

Figure 3

An *ORTEP* drawing of the molecular structure of [Rh(ppy)(Hthym)-(EtOH)]·EtOH (**3**), showing the atom-numbering scheme, with ellipsoids drawn at the 30% probability level.

Table 1				
Hydrogen-bond geometry	(Å,	°)	for	1.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C1-H1\cdots Cl1^{i}$	0.95	2.79	3.613 (2)	145
$C14-H14\cdots Cl1^{ii}$	0.95	2.78	3.452 (2)	128

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

 Table 2

 Hydrogen-bond geometry (Å °) for 2

injulogen condigeometry (in,) for 2.					
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
O51−H1···O2	0.84 (2)	1.69 (2)	2.527 (3)	170 (3)	
$N3-H3\cdots O2^{i}$ $O61-H2\cdots O4^{ii}$	0.88 0.84	1.97 2.01	2.844 (3) 2.802 (5)	173 157	

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, z$.

Table 3Hydrogen-bond geometry (Å, $^{\circ}$) for 3.

, , , , ,	2 ()	/		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O51 - H1 \cdots O2$ N3 - H3 · · · O2 ⁱ	0.83(1) 0.88	1.72 (2) 1.99	2.527 (2) 2.854 (2)	164 (2) 165
$061 - H2 \cdots O4^{ii}$	0.84 (1)	2.01 (4)	2.792 (3)	156 (4)

Symmetry codes: (i) -x, -y, -z + 1; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, z$.

and 2.264 Å) are observed in trans(C,O)-[(PCP)RhCl₂(MeOH or EtOH)] [PCP = 2,6-bis(dicyclohexylphosphinomethyl)-phenyl; Cross *et al.*, 1995]. These examples also indicate the strong *trans* influence of the phenyl-C donor in the *trans* position.

In both 2 and 3, there is an intramolecular hydrogen bond between atom O2 of the Hthym⁻ and O51-H1 of MeOH or EtOH in the mutually *cis*-position (Tables 2 and 3). These hydrogen bonds may stabilize the coordination of solvent MeOH and EtOH molecules in 2 and 3, even though the Rh-O bonds for these ligands are relatively long. In fact, a reaction of complex 2 or 3 with an equivalent amount of PPh₃, P(OMe)₃, imidazole or a mixture of adenine and triethylamine (L) gave a complicated mixture of products, from which no desirable ligand-substituted complexes of the formula, [Rh(ppy)₂(Hthym)(L)] could be isolated.

3. Supramolecular features

In the crystal of the acetonitrile complex **1**, there are no remarkable intermolecular hydrogen bonds. As similar to the Ir^{III} analog (Blasberg *et al.*, 2011), there are weak C-H···Cl hydrogen bonds (Table 1), which link the complexes into a layer parallel to the *bc* plane. In addition, C-H··· π (ppy) [C8-H8···C16ⁱⁱⁱ: H8···C16ⁱⁱⁱ = 2.81, C8···C16ⁱⁱⁱ = 3.620 (3) Å, C8-H8···C16ⁱⁱⁱ = 144°; symmetry code: (iii) $x + \frac{1}{2}$, $y, -z + \frac{1}{2}$] and C-H··· π (nitrile) [C14-H14···C23^{iv}: H14···C23^{iv} = 2.69, C14···C23^{iv} = 3.427 (2) Å, C14-H14···C23^{iv} = 135°; symmetry code: (iv) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$] interactions are observed.

research communications

Table 4Experimental details.

	1	2	3
Crystal data			
Chemical formula	$[RhCl(C_{11}H_8N)_2(C_2H_3N)]$	$[Rh(C_{11}H_8N)_2(C_5H_5N_2O_2)-(CH_4O)]\cdot CH_4O\cdot 0.5H_2O$	$[Rh(C_{11}H_8N)_2(C_5H_5N_2O_2)-(C_2H_6O)]\cdot C_2H_6O$
M _r	487.78	609.48	628.52
Crystal system, space group	Orthorhombic, Pbca	Orthorhombic, Pbca	Orthorhombic, Pbca
Temperature (K)	193	192	192
<i>a</i> , <i>b</i> , <i>c</i> (Å)	16.5415 (9), 14.6600 (11), 17.0026 (12)	10.6964 (7), 15.5329 (9), 32.6325 (15)	11.1082 (5), 15.5556 (6), 32.6747 (15)
$V(Å^3)$	4123.1 (5)	5421.8 (5)	5646.0 (4)
Z	8	8	8
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	0.97	0.67	0.65
Crystal size (mm)	$0.40 \times 0.30 \times 0.20$	$0.30 \times 0.20 \times 0.10$	$0.30 \times 0.20 \times 0.20$
Data collection			
Diffractometer	Rigaku R-AXIS RAPID	Rigaku R-AXIS RAPID	Rigaku R-AXIS RAPID
Absorption correction	Numerical (<i>NUMABS</i> ; Rigaku, 1999)	Numerical (<i>NUMABS</i> ; Rigaku, 1999)	Numerical (<i>NUMABS</i> ; Rigaku, 1999)
T_{\min}, T_{\max}	0.697, 0.829	0.824, 0.936	0.829, 0.881
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	38163, 4709, 4327	47794, 6196, 5307	52659, 6470, 5886
R _{int}	0.042	0.046	0.030
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.649	0.649	0.649
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.024, 0.060, 1.07	0.034, 0.096, 1.04	0.029, 0.076, 1.07
No. of reflections	4709	6196	6470
No. of parameters	263	356	370
No. of restraints	0	1	2
H-atom treatment	H-atom parameters constrained	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.67, -0.35	1.29, -0.61	1.08, -0.40
Finaxy Fina (-)			

Computer programs: RAPID AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2010), Il Milione (Burla et al., 2007), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015) and ORTEP-3 for Windows (Farrugia, 2012).

In each crystal of the thyminato(1–) complexes of **2** and **3**, together with an intramolecular hydrogen bond mentioned above, there is a pair of intermolecular $N-H\cdots O$ hydrogen bonds (Tables 2 and 3) with an $R_2^2(8)$ ring motif between the neighboring Hthym⁻ ligands, forming an inversion dimer (Figs. 4 and 5). The methanol and ethanol molecules of crys-

tallization in **2** and **3** are each linked to the Hthym⁻ ligand *via* an intermolecular $O-H\cdots O$ hydrogen bond.

4. Synthesis and crystallization

The starting rhodium(III) complex, $[Rh(ppy)_2Cl]_2$, was prepared by a literature method (Sprouse *et al.*, 1984). $[Rh(ppy)_2Cl]_2$ (0.050 g, 0.060 mmol) was dissolved in di-

Figure 4

A perspective view of **2**, showing the intra- and intermolecular $O-H\cdots O$ hydrogen bonds (dotted lines) between the Hthym⁻ and MeOH ligands.

Figure 5

A perspective view of **3**, showing the intra- and intermolecular $O-H\cdots O$ hydrogen-bonds (dotted lines) between the Hthym⁻ and EtOH ligands.

chloromethane (5 mL) and acetonitrile (5 mL) was added to the solution. The mixture was allowed to stand in an open air to evaporate the solvent slowly, giving yellow crystals of **1**. Yield: 0.047 g (80%). Analysis found: C 58.64, H 3.65, N 8.49%. Calculated for $C_{24}H_{19}ClN_3Rh$: C 59.09, H 3.93, N 8.61%.

To a methanol suspension (10 mL) of $[Rh(ppy)_2Cl]_2$ (0.090 g, 0.10 mmol) was added Ag(CF₃SO₃) (0.051 g, 0.20 mmol). The mixture was stirred at room temperature in the dark overnight, and the resulting white precipitate of AgCl was filtered off. A methanol solution (10 mL) containing thymine (0.025 g, 0.20 mmol) and triethylamine (28 µL, 0.20 mmol) was carefully layered on the filtrate, and the mixture was allowed to stand overnight to give yellow crystals of **2**. Yield: 0.082 g (68%). Analysis found: C 58.05, H 4.62, N 9.30%. Calculated for C₂₉H₃₀N₄O_{4.5}Rh {= [Rh(ppy)₂(Hthym)(CH₃OH)]·CH₃OH·0.5H₂O}: C 57.15, H 4.96, N 9.19%. Complex **3** was prepared by a similar method to the above using ethanol as a solvent, instead of methanol. Yield: 64%. Analysis found: C 59.03, H 4.82, N 8.82%. Calculated for C₃₁H₃₃N₄O₄Rh: C 59.24, H 5.29, N 8.91%.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms bonded to C and N atoms in **1–3** were refined using a riding model, with C-H =0.95 or 0.98 Å and N-H = 0.88 Å, and with $U_{iso}(H) =$ $1.2U_{eq}(C, N)$. The positions of the O-bound H atoms of the coordinating methanol molecule in **2** and the coordinating and solvated ethanol molecules in **3** were refined with the restraints O-H = 0.84 (1) Å, and with $U_{iso}(H) = 1.2U_{eq}(O)$, while the H atom of the solvated methanol in **2** was refined using a riding model with O-H = 0.84 Å and $U_{iso}(H) =$ $1.2U_{eq}(O)$. In the crystal of **2**, other than the complex and methanol molecules, there is a small electron density remaining in the void, and this was assumed to be a water molecule of crystallization. The H atoms of this water molecule were not introduced in the calculation because of the highly disordered state of the water molecule, which resulted in large thermal displacement parameters for the O atom.

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research No. 25410070 from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

- Badura, D. & Vahrenkamp, H. (2002). Inorg. Chem. 41, 6020-6027.
- Bieda, R., Ott, I., Dobroschke, M., Prokop, A., Gust, R. & Sheldrick, W. S. (2009). J. Inorg. Biochem. 103, 698–708.
- Blasberg, F., Bats, J. W., Wagner, M. & Lerner, H.-W. (2011). Acta Cryst. E67, m1837-m1838.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- Cross, R. J., Kennedy, A. R., Manojlović-Muir, L. & Muir, K. W. (1995). J. Organomet. Chem. 493, 243–249.
- Faggiani, R., Lippert, B., Lock, C. J. L. & Pfab, R. (1981). *Inorg. Chem.* **20**, 2381–2386.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kashima, A., Sakate, M., Ota, H., Fuyuhiro, A., Sunatsuki, Y. & Suzuki, T. (2015). *Chem. Commun.* 51, 1889–1892.
- Khutia, A., Sanz Miguel, P. J. & Lippert, B. (2011). Chem. Eur. J. 17, 4195–4204.
- Krämer, R., Polborn, K. & Beck, W. (1991). J. Organomet. Chem. 410, 110–116.
- Rauterkus, M. J. & Krebs, B. (2004). Angew. Chem. Int. Ed. 43, 1300–1303.
- Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sakate, M., Kashima, A., Hosoda, H., Ota, H., Sunatsuki, Y., Fuyuhiro, A. & Suzuki, T. (2016). *Inorg. Chim. Acta*. In the press. doi: 10.1016/j.ica.2016.01.023.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sprouse, S., King, K. A., Spellane, P. J. & Watts, R. J. (1984). J. Am. Chem. Soc. 106, 6647–6653.

Acta Cryst. (2016). E72, 543-547 [doi:10.1107/S2056989016004837]

Crystal structures of bis[2-(pyridin-2-yl)phenyl- $\kappa^2 N$, C^1]rhodium(III) complexes containing an acetonitrile or monodentate thyminate(1–) ligand

Mika Sakate, Haruka Hosoda and Takayoshi Suzuki

Computing details

For all compounds, data collection: *RAPID AUTO* (Rigaku, 2006); cell refinement: *RAPID AUTO* (Rigaku, 2006); data reduction: *CrystalStructure* (Rigaku, 2010). Program(s) used to solve structure: *Il Milione* (Burla *et al.*, 2007) for (1); *SHELXS2013* (Sheldrick, 2008) for (2), (3). Program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2015) for (1), (3); *SHELXL2013* (Sheldrick, 2008) for (2). For all compounds, molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012). Software used to prepare material for publication: *SHELXL2013* (Sheldrick, 2015) for (1), (3); *SHELXS2013* (Sheldrick, 2008) for (2).

(1) (OC-6-42)-Acetonitrilechloridobis[2-(pyridin-2-yl)phenyl-κ²N,C¹]rhodium(III)

Crystal data

 $[RhCl(C_{11}H_8N)_2(C_2H_3N)]$ $M_r = 487.78$ Orthorhombic, *Pbca* a = 16.5415 (9) Å b = 14.6600 (11) Å c = 17.0026 (12) Å V = 4123.1 (5) Å³ Z = 8F(000) = 1968

Data collection

Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.000 pixels mm⁻¹ ω scans Absorption correction: numerical (*NUMABS*; Rigaku, 1999) $T_{\min} = 0.697, T_{\max} = 0.829$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.060$ S = 1.074709 reflections 263 parameters $D_x = 1.572 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 31949 reflections $\theta = 3.0-27.6^{\circ}$ $\mu = 0.97 \text{ mm}^{-1}$ T = 193 KBlock, yellow $0.40 \times 0.30 \times 0.20 \text{ mm}$

38163 measured reflections 4709 independent reflections 4327 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -20 \rightarrow 21$ $k = -18 \rightarrow 18$ $l = -22 \rightarrow 22$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.0309P)^2 + 1.6125P]$	$\Delta \rho_{\rm max} = 0.67 \text{ e} \text{ Å}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The ¹H NMR spectrum of **1** in CD₂Cl₂ at 22 °C: δ 1.97 (s, 3H, MeCN), 5.90 (d, J = 7.8 Hz, 2H, ppy), 6.70 (td, J = 7.6 and 1.4 Hz, 2H, ppy), 6.77–6.96 (m, 4H, ppy), 7.62 (dd, J = 7.7 and 1.4 Hz, 2H, ppy), 7.81–7.98 (m, 4H, ppy) and 9.22 (d, J = 5.7 Hz, 2H, ppy).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or	r equivalent isotropic displacement parameters (2	$Å^2$
--	---	-------

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Rh1	0.12078 (2)	0.55701 (2)	0.36161 (2)	0.01986 (5)	
Cl1	0.10904 (2)	0.64708 (3)	0.48498 (2)	0.02906 (9)	
N1	0.15175 (8)	0.44472 (8)	0.42460 (8)	0.0238 (3)	
N2	0.09842 (8)	0.66466 (9)	0.28773 (8)	0.0235 (3)	
N3	-0.00853 (9)	0.53554 (10)	0.36314 (8)	0.0265 (3)	
C1	0.09933 (10)	0.38632 (11)	0.45823 (9)	0.0272 (3)	
H1	0.0433	0.4006	0.4579	0.033*	
C2	0.12459 (10)	0.30643 (13)	0.49304 (11)	0.0339 (4)	
H2	0.0865	0.2662	0.5165	0.041*	
C3	0.20657 (11)	0.28542 (12)	0.49338 (11)	0.0358 (4)	
Н3	0.2251	0.2298	0.5157	0.043*	
C4	0.26051 (10)	0.34604 (12)	0.46102 (10)	0.0309 (3)	
H4	0.3167	0.3329	0.4617	0.037*	
C5	0.23289 (9)	0.42661 (11)	0.42724 (9)	0.0247 (3)	
C6	0.28290 (9)	0.49821 (11)	0.39221 (9)	0.0252 (3)	
C7	0.36733 (10)	0.49704 (13)	0.39354 (10)	0.0326 (4)	
H7	0.3954	0.4472	0.4166	0.039*	
C8	0.40989 (12)	0.56954 (14)	0.36084 (11)	0.0381 (4)	
H8	0.4673	0.5693	0.3614	0.046*	
C9	0.36859 (10)	0.64198 (13)	0.32751 (12)	0.0370 (4)	
Н9	0.3979	0.6915	0.3054	0.044*	
C10	0.28439 (10)	0.64280 (12)	0.32621 (10)	0.0305 (3)	
H10	0.2568	0.6929	0.3031	0.037*	
C11	0.24040 (10)	0.57124 (11)	0.35831 (8)	0.0234 (3)	
C12	0.07628 (10)	0.74823 (11)	0.31092 (10)	0.0302 (3)	
H12	0.0715	0.7604	0.3656	0.036*	
C13	0.06014 (12)	0.81726 (12)	0.25807 (11)	0.0373 (4)	
H13	0.0435	0.8758	0.2758	0.045*	
C14	0.06879 (12)	0.79919 (12)	0.17872 (11)	0.0381 (4)	
H14	0.0591	0.8459	0.1411	0.046*	
C15	0.09143 (11)	0.71342 (12)	0.15440 (10)	0.0322 (4)	
H15	0.0978	0.7007	0.1000	0.039*	
C16	0.10502 (9)	0.64548 (11)	0.20997 (9)	0.0243 (3)	

C17	0.12356 (8)	0.54991 (11)	0.19292 (10)	0.0238 (3)	
C18	0.12867 (10)	0.51469 (13)	0.11672 (10)	0.0301 (4)	
H18	0.1222	0.5540	0.0728	0.036*	
C19	0.14314 (12)	0.42299 (13)	0.10501 (11)	0.0363 (4)	
H19	0.1462	0.3990	0.0532	0.044*	
C20	0.15317 (12)	0.36630 (13)	0.16931 (11)	0.0383 (4)	
H20	0.1636	0.3033	0.1614	0.046*	
C21	0.14813 (11)	0.40060 (12)	0.24553 (10)	0.0315 (3)	
H21	0.1555	0.3607	0.2890	0.038*	
C22	0.13243 (8)	0.49280 (11)	0.25894 (9)	0.0233 (3)	
C23	-0.07658 (11)	0.52843 (12)	0.36004 (9)	0.0285 (3)	
C24	-0.16431 (11)	0.51736 (16)	0.35764 (12)	0.0425 (5)	
H24A	-0.1903	0.5768	0.3653	0.051*	
H24B	-0.1813	0.4756	0.3995	0.051*	
H24C	-0.1802	0.4923	0.3065	0.051*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Rh1	0.01770 (8)	0.02111 (8)	0.02077 (8)	-0.00061 (4)	0.00062 (4)	0.00068 (4)
Cl1	0.03143 (19)	0.0321 (2)	0.02369 (18)	-0.00410 (15)	0.00318 (15)	-0.00310 (15)
N1	0.0238 (7)	0.0248 (7)	0.0228 (6)	-0.0004 (5)	0.0003 (5)	0.0010 (5)
N2	0.0213 (6)	0.0243 (7)	0.0249 (6)	-0.0005 (5)	-0.0002 (5)	0.0017 (5)
N3	0.0238 (7)	0.0272 (7)	0.0286 (7)	-0.0010 (5)	0.0007 (5)	0.0000 (5)
C1	0.0245 (7)	0.0302 (8)	0.0268 (8)	-0.0028 (6)	0.0017 (6)	0.0020 (6)
C2	0.0350 (9)	0.0313 (9)	0.0355 (9)	-0.0043 (7)	0.0047 (7)	0.0069 (7)
C3	0.0401 (10)	0.0285 (9)	0.0386 (9)	0.0051 (7)	0.0012 (8)	0.0085 (7)
C4	0.0276 (8)	0.0321 (9)	0.0329 (8)	0.0057 (6)	0.0000 (7)	0.0029 (7)
C5	0.0231 (8)	0.0277 (8)	0.0233 (7)	0.0014 (6)	0.0011 (6)	-0.0003 (6)
C6	0.0220 (7)	0.0296 (8)	0.0241 (7)	0.0004 (6)	0.0009 (6)	-0.0008 (6)
C7	0.0225 (8)	0.0409 (10)	0.0345 (9)	0.0027 (7)	0.0017 (7)	0.0017 (8)
C8	0.0189 (9)	0.0473 (12)	0.0480 (12)	-0.0035 (7)	0.0055 (7)	0.0016 (8)
C9	0.0274 (8)	0.0365 (10)	0.0470 (11)	-0.0098 (7)	0.0076 (8)	0.0027 (8)
C10	0.0266 (8)	0.0292 (8)	0.0356 (9)	-0.0032 (6)	0.0024 (7)	0.0010 (7)
C11	0.0195 (7)	0.0275 (8)	0.0232 (7)	-0.0026 (6)	0.0028 (6)	-0.0028 (6)
C12	0.0353 (8)	0.0276 (8)	0.0275 (8)	0.0017 (7)	-0.0012 (7)	-0.0011 (6)
C13	0.0496 (11)	0.0245 (8)	0.0377 (9)	0.0061 (7)	-0.0038 (8)	0.0000 (7)
C14	0.0524 (11)	0.0283 (9)	0.0336 (9)	0.0017 (8)	-0.0068 (8)	0.0070 (7)
C15	0.0389 (10)	0.0328 (9)	0.0248 (8)	-0.0019 (7)	-0.0012 (7)	0.0041 (7)
C16	0.0200 (7)	0.0274 (8)	0.0254 (7)	-0.0016 (6)	-0.0008 (6)	0.0011 (6)
C17	0.0184 (7)	0.0268 (8)	0.0261 (8)	-0.0007 (5)	-0.0003 (6)	-0.0006 (6)
C18	0.0299 (8)	0.0361 (10)	0.0243 (8)	0.0018 (7)	0.0008 (6)	-0.0006 (7)
C19	0.0409 (10)	0.0388 (10)	0.0291 (9)	0.0022 (8)	0.0017 (8)	-0.0089 (7)
C20	0.0463 (11)	0.0282 (9)	0.0403 (10)	0.0030 (8)	0.0018 (9)	-0.0077 (7)
C21	0.0360 (9)	0.0275 (9)	0.0308 (8)	0.0009 (7)	0.0012 (7)	-0.0005 (7)
C22	0.0194 (7)	0.0260 (8)	0.0244 (7)	-0.0020 (5)	0.0010 (6)	-0.0015 (6)
C23	0.0276 (9)	0.0283 (9)	0.0296 (8)	-0.0005 (7)	0.0000 (6)	0.0006 (6)
C24	0.0220 (9)	0.0547 (13)	0.0507 (12)	-0.0032 (8)	-0.0031 (8)	0.0034 (9)

Geometric parameters (Å, °)

Rh1—C11	1.9904 (16)	С9—Н9	0.9500
Rh1—C22	1.9926 (15)	C10—C11	1.388 (2)
Rh1—N1	2.0296 (13)	C10—H10	0.9500
Rh1—N2	2.0507 (13)	C12—C13	1.379 (2)
Rh1—N3	2.1621 (14)	C12—H12	0.9500
Rh1—Cl1	2.4862 (4)	C13—C14	1.382 (3)
N1—C1	1.346 (2)	С13—Н13	0.9500
N1—C5	1.369 (2)	C14—C15	1.376 (3)
N2—C12	1.338 (2)	C14—H14	0.9500
N2—C16	1.356 (2)	C15—C16	1.391 (2)
N3—C23	1.132 (2)	C15—H15	0.9500
C1—C2	1.377 (2)	C16—C17	1.463 (2)
C1—H1	0.9500	C17—C18	1.397 (2)
C2—C3	1.391 (2)	C17—C22	1.408 (2)
С2—Н2	0.9500	C18—C19	1.380 (3)
C3—C4	1.374 (2)	C18—H18	0.9500
С3—Н3	0.9500	C19—C20	1.383 (3)
C4—C5	1.391 (2)	С19—Н19	0.9500
C4—H4	0.9500	C20—C21	1.393 (2)
C5—C6	1.463 (2)	C20—H20	0.9500
C6—C7	1.397 (2)	C21—C22	1.395 (2)
C6—C11	1.405 (2)	C21—H21	0.9500
C7—C8	1.391 (3)	C23—C24	1.461 (3)
С7—Н7	0.9500	C24—H24A	0.9800
C8—C9	1.384 (3)	C24—H24B	0.9800
С8—Н8	0.9500	C24—H24C	0.9800
C9—C10	1.393 (2)		
C11—Rh1—C22	85.91 (6)	С10—С9—Н9	119.8
C11—Rh1—N1	81.31 (6)	C11—C10—C9	120.75 (17)
C22—Rh1—N1	93.13 (6)	C11-C10-H10	119.6
C11—Rh1—N2	94.67 (6)	C9—C10—H10	119.6
C22—Rh1—N2	81.05 (6)	C10-C11-C6	118.35 (15)
N1—Rh1—N2	173.19 (5)	C10-C11-Rh1	127.68 (13)
C11—Rh1—N3	177.47 (6)	C6—C11—Rh1	113.96 (11)
C22—Rh1—N3	92.15 (5)	N2-C12-C13	122.19 (16)
N1—Rh1—N3	97.20 (5)	N2-C12-H12	118.9
N2—Rh1—N3	86.62 (5)	C13—C12—H12	118.9
C11—Rh1—Cl1	92.62 (4)	C12-C13-C14	118.37 (16)
C22—Rh1—Cl1	176.01 (5)	C12—C13—H13	120.8
N1—Rh1—Cl1	90.30 (4)	C14—C13—H13	120.8
N2—Rh1—Cl1	95.40 (4)	C15—C14—C13	119.78 (16)
N3—Rh1—Cl1	89.42 (4)	C15—C14—H14	120.1
C1—N1—C5	119.62 (14)	C13—C14—H14	120.1
C1—N1—Rh1	125.26 (11)	C14—C15—C16	119.62 (16)
C5—N1—Rh1	114.97 (10)	C14—C15—H15	120.2

C12 - N2 - C16	119 94 (14)	C16_C15_H15	120.2
$C_{12} = N_2 = C_{10}$	124 99 (11)	$N_2 - C_{16} - C_{15}$	120.2 120.05(15)
$C_{12} = N_2 = R_{h1}$	115 03 (11)	$N_2 - C_{16} - C_{17}$	1120.03(13) 114.12(14)
$C_{10} = N_2 = R_{11}$	175.05(11)	$C_{12} = C_{10} = C_{17}$	114.12(14) 125 79(15)
$N_1 = C_1 = C_2$	173.44(14) 121.87(15)	$C_{13} = C_{10} = C_{17}$	123.79(15) 120.88(15)
N1 = C1 = U1	121.07 (13)	$C_{10} = C_{17} = C_{22}$	120.88(15)
N = C = H	119.1	$C_{10} = C_{17} = C_{10}$	123.39(13)
$C_2 = C_1 = H_1$	119.1	$C_{22} = C_{17} = C_{10}$	113.07(13) 120.20(17)
C1 = C2 = C3	119.09 (10)	C19 - C18 - C17	120.29 (17)
C1 - C2 - H2	120.5	C17_C18_H18	119.9
$C_3 = C_2 = H_2$	120.5	C1/C18H18	119.9
C4 - C3 - C2	119.22 (16)	C18 - C19 - C20	119.47 (17)
C4—C3—H3	120.4	C18—C19—H19	120.3
С2—С3—Н3	120.4	С20—С19—Н19	120.3
C3—C4—C5	120.08 (15)	C19—C20—C21	120.76 (17)
С3—С4—Н4	120.0	С19—С20—Н20	119.6
С5—С4—Н4	120.0	С21—С20—Н20	119.6
N1—C5—C4	120.04 (15)	C20—C21—C22	120.86 (16)
N1—C5—C6	113.69 (14)	C20—C21—H21	119.6
C4—C5—C6	126.28 (15)	C22—C21—H21	119.6
C7—C6—C11	121.09 (15)	C21—C22—C17	117.72 (14)
C7—C6—C5	123.36 (15)	C21—C22—Rh1	128.23 (12)
C11—C6—C5	115.52 (14)	C17—C22—Rh1	114.05 (12)
C8—C7—C6	119.36 (17)	N3—C23—C24	178.48 (19)
С8—С7—Н7	120.3	C23—C24—H24A	109.5
С6—С7—Н7	120.3	C23—C24—H24B	109.5
C9—C8—C7	120.01 (17)	H24A—C24—H24B	109.5
С9—С8—Н8	120.0	C23—C24—H24C	109.5
С7—С8—Н8	120.0	H24A—C24—H24C	109.5
C8—C9—C10	120.43 (17)	H24B—C24—H24C	109.5
С8—С9—Н9	119.8		
C5—N1—C1—C2	-2.5 (2)	C16—N2—C12—C13	-0.5 (2)
Rh1—N1—C1—C2	173.05 (13)	Rh1—N2—C12—C13	-178.34 (13)
N1—C1—C2—C3	-0.1 (3)	N2-C12-C13-C14	-1.2 (3)
C1—C2—C3—C4	1.9 (3)	C12—C13—C14—C15	1.3 (3)
C2—C3—C4—C5	-1.1 (3)	C13—C14—C15—C16	0.3 (3)
C1 - N1 - C5 - C4	3.2 (2)	C12 - N2 - C16 - C15	2.2 (2)
Rh1—N1—C5—C4	-172.74(12)	Rh1—N2—C16—C15	-179.80(12)
C1 - N1 - C5 - C6	-176.83(14)	C12 = N2 = C16 = C17	-17552(14)
Rh1 - N1 - C5 - C6	7 22 (17)	Rh1 - N2 - C16 - C17	2 54 (16)
C_{3} C_{4} C_{5} N_{1}	-1.5(2)	C14 - C15 - C16 - N2	-21(3)
C_{3} C_{4} C_{5} C_{6}	178 60 (16)	C14 - C15 - C16 - C17	175 30 (16)
N1 C5 C6 C7	175.00(10) 175.24(15)	$N_2 = C_{16} = C_{17} = C_{18}$	175.30(10) 176.48(14)
C_{4} C5 C6 C7	-48(3)	12 - 010 - 017 - 018	-10(2)
$C_4 = C_5 = C_6 = C_7$	+.0(3)	$N_2 = C_{16} = C_{17} = C_{18}$	-0.54(10)
$C_{4} C_{5} C_{6} C_{11}$	3.0(2)	112 - 010 - 017 - 022	0.34(19) -178.06(15)
$C_{+} = C_{-} = C_{-$	1/0.90(10)	$C_{13} - C_{10} - C_{17} - C_{22}$	-0.5(2)
$C_{11} - C_{0} - C_{1} - C_{0}$	0.1 (3)	$C_{22} - C_{17} - C_{18} - C_{19}$	-0.5(2)
C3-C6-C/-C8	-1/8.03(16)	C16—C17—C18—C19	-177.33(15)

C7-C6-C11-Rh1 179.01 (13) C16-C17-C22-C21 178.43 (14) -178.86 (11)	C6—C7—C8—C9	0.1 (3)	C17—C18—C19—C20	-0.5 (3)
	C7—C8—C9—C10	-0.2 (3)	C18—C19—C20—C21	0.6 (3)
	C8—C9—C10—C11	0.1 (3)	C19—C20—C21—C22	0.3 (3)
	C9—C10—C11—C6	0.1 (2)	C20—C21—C22—C17	-1.3 (2)
	C9—C10—C11—Rh1	-178.98 (14)	C20—C21—C22—Rh1	178.95 (14)
	C7—C6—C11—C10	-0.2 (2)	C18—C17—C22—C21	1.3 (2)
	C5—C6—C11—C10	178.05 (14)	C16—C17—C22—C21	178.43 (14)
	C7—C6—C11—Rh1	179.01 (13)	C18—C17—C22—C21	-178.86 (11)
C5-C6-C11-Rh1 = -2.72 (17) = C18-C17-C22-Rh1 = -1.75 (16)	C5—C6—C11—Rh1	-2.72 (17)	C16—C17—C22—Rh1	-1.75 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
C1—H1···Cl1 ⁱ	0.95	2.79	3.613 (2)	145
C14—H14····Cl1 ⁱⁱ	0.95	2.78	3.452 (2)	128

Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, -y+3/2, z-1/2.

 $(2) (OC-6-42)-Methanol (5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-\kappa N^{1}) bis [2-(pyridin-2-yl)phenyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-\kappa N^{1}) bis [2-(pyridin-2-yl)phenyl-2,4-dioxo-1,2,4-tetrahydropyrimidin-1-ido-\kappa N^{1}) bis [2-(pyridin-2-yl)phenyl-2,4-tetrahydropyrimidin-1-ido-\kappa N^{1}) bis [2-(pyridin-2-yl)phenyl-2,4-tetrahydropyrimidin-1-ido-\kappa N^{1}) bis [2-(pyridin-2-yl)phenyl-2,4-tetrahydropyrimidin-1-ido-\kappa N^{1}) bis [2-(pyridin-2-yl)phenyl-2,4-tetrahydropyrimidin-1-ido-$

 $\kappa^2 N, C^1$]rhodium(III)

Crystal data

$[Rh(C_{11}H_8N)_2(C_5H_5N_2O_2)(CH_4O)] \cdot CH_4O \cdot 0.5H_2O$ $M_r = 609.48$ Orthorhombic, <i>Pbca</i>	$D_x = 1.493 \text{ Mg m}^{-3}$ Mo <i>Ka</i> radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 34894 reflections
a = 10.6964 (7) A b = 15.5329 (9) Å c = 32.6325 (15) Å $V = 5421.8 (5) \text{ Å}^{3}$ Z = 8 F(000) = 2504	$\theta = 5.1-27.5^{\circ}$ $\mu = 0.67 \text{ mm}^{-1}$ T = 192 K Block, yellow $0.30 \times 0.20 \times 0.10 \text{ mm}$
Data collection	
Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10.000 pixels mm ⁻¹ ω scans Absorption correction: numerical (<i>NUMABS</i> ; Rigaku, 1999) $T_{min} = 0.824, T_{max} = 0.936$	47794 measured reflections 6196 independent reflections 5307 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -13 \rightarrow 13$ $k = -20 \rightarrow 20$ $l = -42 \rightarrow 40$
Refinement	

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.096$ S = 1.046196 reflections 356 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from

neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^2(F_o^2) + (0.0469P)^2 + 5.8148P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$

 $\begin{array}{l} \Delta \rho_{\rm max} = 1.29 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.61 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

Special details

Experimental. The ¹H NMR spectrum of **2** in CDCl₃ at 22 °C: δ 1.50 (s, 3H, Hthym CH₃), 6.17 (d, J = 7.7 Hz, 2H, ppy), 6.40 (s, 1H, Hthym C⁶-*H*), 6.81 (t, J = 7.3 Hz, 2H ppy), 6.94 (t, J = 7.6 Hz, 2H, ppy), 7.28–7.31 (m, 2H, ppy), 7.58–7.60 (m, 2H, ppy), 7.87–7.91 (m, 4H, ppy), 8.35 (s, 1H, Hthym N³-*H*), 8.59 (d, J = 5.3 Hz, 1H ppy) and 8.99 (d, J = 5.3 Hz, 1H, ppy).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates an	d isotropic or	equivalent isotrop	pic displacement	parameters	$(Å^2)$)
----------------------------------	----------------	--------------------	------------------	------------	---------	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Rh1	0.21119 (2)	0.49429 (2)	0.36187 (2)	0.02250 (7)	
O2	0.0485 (2)	0.47720 (13)	0.45127 (6)	0.0465 (5)	
O4	0.18704 (18)	0.69252 (12)	0.53187 (5)	0.0375 (4)	
O61	0.2102 (6)	0.3378 (3)	0.57003 (13)	0.1420 (19)	
H2	0.2587	0.2984	0.5624	0.170*	
O71	0.5000	0.5000	0.5000	0.523 (18)	
O51	0.07868 (16)	0.39468 (11)	0.38528 (5)	0.0320 (4)	
H1	0.067 (3)	0.4167 (17)	0.4086 (5)	0.038*	
N1	0.19674 (18)	0.56450 (13)	0.42240 (6)	0.0267 (4)	
N3	0.12027 (19)	0.58796 (14)	0.48895 (6)	0.0321 (4)	
H3	0.0659	0.5725	0.5078	0.039*	
N11	0.36388 (18)	0.43094 (12)	0.38330 (6)	0.0272 (4)	
N22	0.06810 (18)	0.55596 (13)	0.33315 (6)	0.0275 (4)	
C1	0.3749 (3)	0.74950 (19)	0.47238 (8)	0.0464 (7)	
H1A	0.4254	0.7569	0.4476	0.056*	
H1B	0.4295	0.7349	0.4955	0.056*	
H1C	0.3303	0.8032	0.4784	0.056*	
C2	0.1210 (2)	0.54094 (16)	0.45317 (7)	0.0301 (5)	
C4	0.1962 (2)	0.65651 (15)	0.49803 (7)	0.0286 (5)	
C5	0.2822 (2)	0.67846 (16)	0.46584 (7)	0.0301 (5)	
C6	0.2756 (2)	0.63197 (16)	0.43056 (7)	0.0306 (5)	
H6	0.3316	0.6480	0.4093	0.037*	
C12	0.3605 (3)	0.35579 (16)	0.40370 (8)	0.0339 (5)	
H12	0.2819	0.3308	0.4102	0.041*	
C13	0.4688 (3)	0.31390 (18)	0.41551 (9)	0.0432 (6)	
H13	0.4647	0.2609	0.4300	0.052*	
C14	0.5827 (3)	0.3501 (2)	0.40600 (10)	0.0485 (7)	
H14	0.6581	0.3224	0.4139	0.058*	
C15	0.5860 (3)	0.42733 (18)	0.38490 (9)	0.0417 (6)	
H15	0.6640	0.4526	0.3779	0.050*	
C16	0.4754 (2)	0.46771 (16)	0.37397 (7)	0.0292 (5)	
C17	0.4635 (2)	0.54941 (15)	0.35162 (7)	0.0275 (5)	

C18	0.5653 (2)	0.60157 (17)	0.34154 (8)	0.0367 (6)
H18	0.6478	0.5839	0.3483	0.044*
C19	0.5459 (3)	0.67878 (18)	0.32166 (9)	0.0410 (6)
H19	0.6150	0.7144	0.3148	0.049*
C20	0.4252 (2)	0.70452 (17)	0.31173 (8)	0.0368 (6)
H20	0.4119	0.7578	0.2981	0.044*
C21	0.3236 (2)	0.65245 (16)	0.32164 (7)	0.0299 (5)
H21	0.2416	0.6705	0.3145	0.036*
C22	0.3404 (2)	0.57451 (15)	0.34184 (6)	0.0254 (4)
C23	-0.0065 (2)	0.61523 (17)	0.35045 (8)	0.0354 (5)
H23	0.0084	0.6314	0.3781	0.042*
C24	-0.1031 (3)	0.65325 (19)	0.32980 (9)	0.0440 (7)
H24	-0.1535	0.6956	0.3428	0.053*
C25	-0.1262 (3)	0.6288 (2)	0.28947 (9)	0.0465 (7)
H25	-0.1927	0.6542	0.2745	0.056*
C26	-0.0512 (2)	0.56704 (18)	0.27151 (8)	0.0383 (6)
H26	-0.0667	0.5491	0.2442	0.046*
C27	0.0469 (2)	0.53132 (16)	0.29358 (7)	0.0288 (5)
C28	0.1342 (2)	0.46567 (16)	0.27854 (7)	0.0282 (5)
C29	0.1326 (3)	0.43303 (17)	0.23851 (7)	0.0359 (5)
H29	0.0719	0.4527	0.2195	0.043*
C30	0.2196 (3)	0.37214 (19)	0.22686 (8)	0.0401 (6)
H30	0.2188	0.3498	0.1998	0.048*
C31	0.3081 (3)	0.34358 (17)	0.25468 (8)	0.0381 (6)
H31	0.3680	0.3018	0.2465	0.046*
C32	0.3101 (2)	0.37542 (16)	0.29443 (8)	0.0321 (5)
H32	0.3710	0.3548	0.3132	0.039*
C33	0.2237 (2)	0.43744 (15)	0.30723 (7)	0.0263 (5)
C51	-0.0423 (3)	0.3826 (2)	0.36788 (9)	0.0435 (7)
H51A	-0.0836	0.3338	0.3813	0.052*
H51B	-0.0341	0.3709	0.3385	0.052*
H51C	-0.0923	0.4348	0.3719	0.052*
C61	0.2442 (8)	0.4080 (4)	0.55466 (19)	0.136 (3)
H61A	0.3340	0.4059	0.5488	0.164*
H61B	0.2271	0.4548	0.5740	0.164*
H61C	0.1981	0.4181	0.5292	0.164*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rh1	0.02134 (11)	0.02767 (11)	0.01849 (11)	0.00008 (6)	0.00094 (6)	-0.00116 (6)
O2	0.0542 (13)	0.0539 (11)	0.0314 (10)	-0.0286 (10)	0.0183 (9)	-0.0145 (9)
O4	0.0430 (10)	0.0444 (10)	0.0252 (8)	-0.0030 (8)	0.0005 (7)	-0.0095 (7)
O61	0.255 (6)	0.082 (2)	0.089 (3)	0.020 (3)	0.047 (3)	-0.015 (2)
O71	0.76 (5)	0.48 (3)	0.33 (2)	0.23 (3)	0.14 (3)	0.003 (18)
O51	0.0315 (9)	0.0361 (9)	0.0283 (8)	-0.0060(7)	0.0054 (7)	-0.0050(7)
N1	0.0281 (10)	0.0318 (10)	0.0200 (9)	-0.0024 (8)	0.0025 (7)	-0.0021 (8)
N3	0.0340 (11)	0.0420 (11)	0.0203 (9)	-0.0089 (9)	0.0083 (8)	-0.0063 (8)

N11	0.0283 (10)	0.0317 (10)	0.0215 (9)	0.0022 (8)	-0.0007 (7)	-0.0006 (8)
N22	0.0238 (10)	0.0340 (10)	0.0247 (9)	0.0013 (8)	-0.0003 (7)	-0.0008(8)
C1	0.0575 (18)	0.0505 (16)	0.0314 (13)	-0.0242 (15)	0.0039 (12)	-0.0054 (12)
C2	0.0311 (12)	0.0364 (12)	0.0227 (11)	-0.0044 (10)	0.0033 (9)	-0.0043 (9)
C4	0.0305 (12)	0.0333 (12)	0.0219 (11)	0.0024 (9)	-0.0027 (9)	-0.0008 (9)
C5	0.0341 (13)	0.0331 (12)	0.0231 (11)	-0.0045 (10)	-0.0006 (9)	-0.0001 (9)
C6	0.0343 (13)	0.0352 (12)	0.0222 (11)	-0.0048 (10)	0.0027 (9)	-0.0004 (9)
C12	0.0377 (14)	0.0323 (12)	0.0318 (12)	-0.0002 (10)	-0.0025 (10)	0.0038 (10)
C13	0.0503 (17)	0.0382 (14)	0.0412 (15)	0.0050 (12)	-0.0116 (12)	0.0081 (12)
C14	0.0406 (16)	0.0465 (16)	0.0583 (18)	0.0106 (13)	-0.0144 (13)	0.0058 (14)
C15	0.0286 (13)	0.0460 (15)	0.0503 (16)	0.0023 (11)	-0.0068 (11)	0.0039 (13)
C16	0.0275 (12)	0.0352 (12)	0.0250 (11)	0.0010 (10)	-0.0013 (9)	-0.0008 (10)
C17	0.0256 (11)	0.0324 (12)	0.0244 (11)	0.0005 (9)	0.0014 (9)	-0.0004 (9)
C18	0.0255 (12)	0.0438 (14)	0.0408 (14)	-0.0017 (10)	0.0021 (10)	0.0027 (11)
C19	0.0325 (14)	0.0440 (15)	0.0464 (15)	-0.0086 (11)	0.0056 (11)	0.0062 (12)
C20	0.0405 (15)	0.0347 (13)	0.0354 (13)	-0.0019 (11)	0.0028 (11)	0.0070 (10)
C21	0.0286 (12)	0.0344 (12)	0.0265 (11)	0.0027 (9)	0.0013 (9)	0.0002 (9)
C22	0.0248 (11)	0.0315 (11)	0.0200 (10)	-0.0009 (9)	0.0034 (8)	-0.0039 (9)
C23	0.0319 (13)	0.0420 (14)	0.0323 (12)	0.0057 (11)	0.0005 (10)	-0.0068 (11)
C24	0.0374 (15)	0.0517 (16)	0.0429 (15)	0.0159 (12)	-0.0012 (12)	-0.0071 (13)
C25	0.0372 (15)	0.0627 (18)	0.0395 (15)	0.0171 (13)	-0.0062 (12)	0.0025 (13)
C26	0.0359 (14)	0.0506 (15)	0.0284 (12)	0.0075 (12)	-0.0061 (10)	-0.0017 (11)
C27	0.0263 (12)	0.0368 (12)	0.0233 (11)	-0.0005 (10)	-0.0002 (9)	0.0014 (9)
C28	0.0280 (12)	0.0346 (12)	0.0219 (10)	-0.0010 (9)	0.0002 (9)	-0.0015 (9)
C29	0.0371 (14)	0.0451 (14)	0.0255 (12)	-0.0014 (11)	-0.0029 (10)	-0.0048 (10)
C30	0.0437 (16)	0.0508 (16)	0.0257 (12)	-0.0038 (12)	0.0023 (10)	-0.0116 (11)
C31	0.0372 (14)	0.0406 (13)	0.0366 (14)	0.0035 (11)	0.0067 (11)	-0.0123 (11)
C32	0.0289 (12)	0.0368 (13)	0.0306 (12)	0.0020 (10)	0.0005 (9)	-0.0048 (10)
C33	0.0258 (12)	0.0307 (11)	0.0223 (10)	-0.0036 (9)	0.0019 (8)	-0.0020 (9)
C51	0.0346 (15)	0.0534 (17)	0.0424 (15)	-0.0136 (13)	0.0015 (11)	-0.0088 (13)
C61	0.243 (8)	0.070 (3)	0.095 (4)	-0.039 (4)	-0.041 (5)	-0.015 (3)

Geometric parameters (Å, °)

Rh1—C22	1.972 (2)	C16—C17	1.469 (3)
Rh1—C33	1.994 (2)	C17—C18	1.397 (3)
Rh1—N11	2.0309 (19)	C17—C22	1.410 (3)
Rh1—N22	2.0344 (19)	C18—C19	1.379 (4)
Rh1051	2.2331 (17)	C18—H18	0.9500
Rh1—N1	2.2614 (19)	C19—C20	1.390 (4)
O2—C2	1.259 (3)	C19—H19	0.9500
O4—C4	1.242 (3)	C20—C21	1.393 (3)
O61—C61	1.255 (6)	C20—H20	0.9500
O61—H2	0.8400	C21—C22	1.390 (3)
O51—C51	1.425 (3)	C21—H21	0.9500
O51—H1	0.844 (10)	C23—C24	1.368 (4)
N1—C2	1.341 (3)	С23—Н23	0.9500
N1—C6	1.371 (3)	C24—C25	1.392 (4)

N3—C4	1.372 (3)	C24—H24	0.9500
N3—C2	1.377 (3)	C25—C26	1.380 (4)
N3—H3	0.8800	C25—H25	0.9500
N11—C12	1.344 (3)	C26—C27	1.388 (3)
N11—C16	1.357 (3)	C26—H26	0.9500
N22—C23	1.343 (3)	C27—C28	1.467 (3)
N22—C27	1.366 (3)	C28—C29	1.401 (3)
C1—C5	1.499 (3)	C28—C33	1.409 (3)
C1—H1A	0.9800	C29—C30	1.380 (4)
C1—H1B	0.9800	С29—Н29	0.9500
C1—H1C	0.9800	C30—C31	1.384 (4)
C4-C5	1437(3)	C30—H30	0.9500
C_{5}	1.157(3) 1.361(3)	$C_{31} - C_{32}$	1 389 (4)
С6—Н6	0.9500	C31—H31	0.9500
C_{12} C_{13}	1.383(4)	C_{32} C_{33}	1 308 (3)
C12 H12	0.0500	C32 H32	0.0500
C_{12} C_{14}	1,277(4)	C51_H51A	0.9500
C12 U12	1.577 (4)	C51_H51D	0.9800
C13—H13	0.9500	C51—H51G	0.9800
	1.383 (4)	CSI-HSIC	0.9800
C14—H14	0.9500	C61—H61A	0.9800
C15—C16	1.386 (4)	C61—H61B	0.9800
С15—Н15	0.9500	С61—Н61С	0.9800
C22Rh1C33	86 35 (9)	C18 - C17 - C22	1210(2)
$C_{22} = Rh1 = 0.05$	81.77 (9)	C18 C17 C16	121.0(2) 123.4(2)
C_{22} Rh1 N11	01.77(9) 02.25(8)	$C_{10} = C_{17} = C_{10}$	125.4(2)
C_{22} Pb1 N22	92.23(0)	$C_{22} = C_{17} = C_{10}$	110.8(2)
$C_{22} = R_{H1} = N_{22}$	94.40 (9) 81.20 (0)	C19 - C18 - C17	119.8 (2)
N11 Db1 N22	81.20(9)	$C_{17} = C_{18} = 118$	120.1
$\frac{N11}{N11} = \frac{N11}{N22}$	1/2.03(7) 174.92(8)	C1/-C10-H10	120.1
C22—RIII—O51	1/4.82(8)	C18 - C19 - C20	120.0 (2)
C35—Kn1—O51	92.39 (8)	C18—C19—H19	120.0
NII—RhI—O51	93.27(7)	C20—C19—H19	120.0
N22—Rh1—051	90.36 (7)	C19—C20—C21	120.2 (2)
C22—Rh1—N1	91.88 (8)	C19—C20—H20	119.9
C33—Rh1—N1	177.45 (8)	C21—C20—H20	119.9
N11—Rh1—N1	89.31 (7)	C22—C21—C20	121.0 (2)
N22—Rh1—N1	97.12 (7)	C22—C21—H21	119.5
O51—Rh1—N1	89.54 (6)	C20—C21—H21	119.5
C61—O61—H2	109.5	C21—C22—C17	117.9 (2)
C51—O51—Rh1	122.08 (16)	C21—C22—Rh1	128.13 (18)
C51—O51—H1	106 (2)	C17—C22—Rh1	113.87 (17)
Rh1—O51—H1	97 (2)	N22—C23—C24	122.5 (2)
C2—N1—C6	115.77 (19)	N22—C23—H23	118.7
C2—N1—Rh1	124.30 (15)	C24—C23—H23	118.7
C6—N1—Rh1	119.75 (15)	C23—C24—C25	118.8 (3)
C4—N3—C2	126.3 (2)	C23—C24—H24	120.6
C4—N3—H3	116.9	C25—C24—H24	120.6
C2—N3—H3	116.9	C26—C25—C24	119.2 (2)

C12—N11—C16	120.0 (2)	C26—C25—H25	120.4
C12—N11—Rh1	124.73 (17)	С24—С25—Н25	120.4
C16—N11—Rh1	115.20 (15)	C25—C26—C27	119.8 (2)
C23—N22—C27	119.4 (2)	C25—C26—H26	120.1
C23—N22—Rh1	125.19 (16)	C27—C26—H26	120.1
$C_{27} N_{22} R_{h1}$	115 39 (15)	N22 - C27 - C26	120.3(2)
C_{2} C_{1} H_{1}	109.5	N22 - C27 - C28	120.9(2)
$C_5 = C_1 = H_1 R$	109.5	$C_{26} = C_{27} = C_{28}$	113.9(2) 125.8(2)
	109.5	$C_{20} = C_{27} = C_{28}$	123.8(2)
	109.5	$C_{29} = C_{20} = C_{33}$	121.0(2)
C3—CI—HIC	109.5	C29—C28—C27	123.8 (2)
HIA—CI—HIC	109.5	C33—C28—C27	115.3 (2)
H1B—C1—H1C	109.5	C30—C29—C28	119.8 (2)
O2—C2—N1	123.4 (2)	С30—С29—Н29	120.1
O2—C2—N3	117.1 (2)	С28—С29—Н29	120.1
N1—C2—N3	119.6 (2)	C29—C30—C31	120.0 (2)
O4—C4—N3	119.6 (2)	С29—С30—Н30	120.0
O4—C4—C5	126.4 (2)	С31—С30—Н30	120.0
N3—C4—C5	113.9 (2)	C30—C31—C32	120.6 (2)
C6—C5—C4	117.4 (2)	С30—С31—Н31	119.7
C6-C5-C1	1230(2)	C32—C31—H31	1197
C4-C5-C1	1196(2)	$C_{31} - C_{32} - C_{33}$	120.9(2)
C5-C6-N1	117.0(2)	$C_{31} = C_{32} = H_{32}$	119.5
C5 C6 H6	116.5	$C_{33} C_{32} H_{32}$	119.5
N1 C6 U6	116.5	$C_{33} = C_{32} = C_{32}$	117.3
	110.5	$C_{32} = C_{33} = C_{28}$	117.7(2)
N11—C12—C13	121.6 (2)	C32—C33—Rh1	128.05 (18)
N11—C12—H12	119.2	C28—C33—Rh1	114.24 (16)
C13—C12—H12	119.2	O51—C51—H51A	109.5
C14—C13—C12	119.0 (3)	O51—C51—H51B	109.5
C14—C13—H13	120.5	H51A—C51—H51B	109.5
C12—C13—H13	120.5	O51—C51—H51C	109.5
C13—C14—C15	119.3 (3)	H51A—C51—H51C	109.5
C13—C14—H14	120.4	H51B-C51-H51C	109.5
C15—C14—H14	120.4	O61—C61—H61A	109.5
C14—C15—C16	119.9 (3)	O61—C61—H61B	109.5
C14—C15—H15	120.0	H61A—C61—H61B	109.5
C16—C15—H15	120.0	O61—C61—H61C	109.5
N11-C16-C15	120.0 120.1(2)	$H_{61}A - C_{61} - H_{61}C$	109.5
N11_C16_C17	1135(2)	H61B-C61-H61C	109.5
$C_{15} = C_{16} = C_{17}$	115.5(2) 126.4(2)	nond-con-none	109.5
015-010-017	120.4 (2)		
C()11 C2 O2	175.0 (2)	C18 C10 C20 C21	0.2 (4)
C_{0} NI C_{2} C_{2}	-1/5.8(3)	C18 - C19 - C20 - C21	-0.2(4)
Kn1 - N1 - C2 - O2	-0.7(4)	C19 - C20 - C21 - C22	0.5 (4)
C6—N1—C2—N3	4.4 (3)	C20—C21—C22—C17	-0.6 (3)
Kh1—N1—C2—N3	179.45 (17)	C20—C21—C22—Rh1	175.86 (18)
C4—N3—C2—O2	176.3 (2)	C18—C17—C22—C21	0.4 (3)
C4—N3—C2—N1	-3.8 (4)	C16—C17—C22—C21	178.3 (2)
C2—N3—C4—O4	-178.9 (2)	C18—C17—C22—Rh1	-176.57 (19)
C2—N3—C4—C5	0.3 (4)	C16-C17-C22-Rh1	1.4 (3)

O4—C4—C5—C6	-178.7 (2)	C27—N22—C23—C24	-0.8 (4)
N3—C4—C5—C6	2.1 (3)	Rh1—N22—C23—C24	-178.6 (2)
O4—C4—C5—C1	2.1 (4)	N22—C23—C24—C25	0.9 (5)
N3—C4—C5—C1	-177.2 (2)	C23—C24—C25—C26	0.0 (5)
C4—C5—C6—N1	-1.4 (4)	C24—C25—C26—C27	-1.0(5)
C1-C5-C6-N1	177.9 (3)	C23—N22—C27—C26	-0.2 (4)
C2—N1—C6—C5	-2.0 (4)	Rh1—N22—C27—C26	177.76 (19)
Rh1—N1—C6—C5	-177.3 (2)	C23—N22—C27—C28	-179.4 (2)
C16—N11—C12—C13	-0.3 (4)	Rh1—N22—C27—C28	-1.5 (3)
Rh1—N11—C12—C13	176.5 (2)	C25—C26—C27—N22	1.1 (4)
N11—C12—C13—C14	-0.2 (4)	C25—C26—C27—C28	-179.8 (3)
C12—C13—C14—C15	0.0 (4)	N22—C27—C28—C29	-177.8 (2)
C13—C14—C15—C16	0.7 (5)	C26—C27—C28—C29	3.0 (4)
C12—N11—C16—C15	1.0 (3)	N22—C27—C28—C33	1.2 (3)
Rh1-N11-C16-C15	-176.1 (2)	C26—C27—C28—C33	-178.0 (2)
C12—N11—C16—C17	179.9 (2)	C33—C28—C29—C30	0.2 (4)
Rh1-N11-C16-C17	2.8 (3)	C27—C28—C29—C30	179.1 (2)
C14—C15—C16—N11	-1.2 (4)	C28—C29—C30—C31	-0.1 (4)
C14—C15—C16—C17	-180.0 (3)	C29—C30—C31—C32	0.2 (4)
N11—C16—C17—C18	175.1 (2)	C30—C31—C32—C33	-0.5 (4)
C15—C16—C17—C18	-6.0 (4)	C31—C32—C33—C28	0.6 (4)
N11—C16—C17—C22	-2.8 (3)	C31—C32—C33—Rh1	-178.35 (19)
C15—C16—C17—C22	176.1 (2)	C29—C28—C33—C32	-0.5 (3)
C22-C17-C18-C19	-0.1 (4)	C27—C28—C33—C32	-179.4 (2)
C16—C17—C18—C19	-177.9 (2)	C29—C28—C33—Rh1	178.66 (19)
C17—C18—C19—C20	0.0 (4)	C27—C28—C33—Rh1	-0.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D···· A	D—H···A	
051—H1···O2	0.84 (2)	1.69 (2)	2.527 (3)	170 (3)	
N3—H3····O2 ⁱ	0.88	1.97	2.844 (3)	173	
O61—H2…O4 ⁱⁱ	0.84	2.01	2.802 (5)	157	

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*+1/2, *y*-1/2, *z*.

(3) (OC-6–42)-Ethanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-*ido-* κN^1)bis[2-(pyridin-2-yl)phenyl- $\kappa^2 N, C^1$]rhodium(III)

Crystal data

$[Rh(C_{11}H_8N)_2(C_5H_5N_2O_2)(C_2H_6O)] \cdot C_2H_6O$	$D_{\rm x} = 1.479 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 628.52$	Mo $K\alpha$ radiation, $\lambda = 0.71075$ Å
Orthorhombic, Pbca	Cell parameters from 41739 reflections
a = 11.1082 (5) Å	$\theta = 3.1 - 27.6^{\circ}$
b = 15.5556 (6) Å	$\mu = 0.65 \text{ mm}^{-1}$
c = 32.6747 (15) Å	T = 192 K
$V = 5646.0 (4) Å^3$	Block, yellow
Z = 8	$0.30 \times 0.20 \times 0.20$ mm
F(000) = 2592	

Data collection

Rigaku R-AXIS RAPID	52659 measured reflections
diffractometer	6470 independent reflections
Radiation source: fine-focus sealed tube	5886 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.030$
Detector resolution: 10.000 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 3.1^{\circ}$
ω scans	$h = -14 \rightarrow 14$
Absorption correction: numerical	$k = -20 \rightarrow 20$
(NUMABS; Rigaku, 1999)	$l = -42 \rightarrow 40$
$T_{\min} = 0.829, \ T_{\max} = 0.881$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.029$	Hydrogen site location: inferred from
$wR(F^2) = 0.076$	neighbouring sites
S = 1.07	H atoms treated by a mixture of independent
6470 reflections	and constrained refinement
370 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0365P)^2 + 4.0646P]$
2 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.002$
direct methods	$\Delta \rho_{\rm max} = 1.08 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. The ¹H NMR spectrum of **3** in CDCl₃ at 22 °C: δ 1.53 (s, 3H, Hthym C*H*₃), 6.17 (d, *J* = 7.7 Hz, 2H, ppy), 6.42 (s, 1H, Hthym C⁶-*H*), 6.81 (t, *J* = 7.4 Hz, 2H, ppy), 6.95 (t, *J* = 7.40 Hz, 2H, ppy), 7.28–7.30 (m, 2H, ppy), 7.58–7.61 (m, 2H, ppy), 7.88–7.92 (m, 4H, ppy), 8.10 (s, 1H, Hthym N³-*H*), 8.59 (d, *J* = 5.5 Hz, 1H, ppy) and 9.01 (d, *J* = 5.8 Hz, 1H, ppy).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Rh1	0.21339 (2)	0.02045 (2)	0.63615 (2)	0.02373 (6)	
O2	0.04210 (14)	0.02427 (10)	0.54944 (5)	0.0446 (4)	
O4	0.18318 (15)	-0.19254 (10)	0.47134 (4)	0.0420 (3)	
O51	0.09395 (13)	0.11923 (9)	0.60966 (4)	0.0350 (3)	
H1	0.065 (2)	0.0932 (14)	0.5896 (5)	0.042*	
O61	0.2437 (4)	0.16196 (16)	0.42791 (10)	0.1286 (13)	
H2	0.286 (4)	0.200 (3)	0.4388 (16)	0.154*	
N1	0.20026 (14)	-0.05157 (11)	0.57654 (5)	0.0281 (3)	
N3	0.11666 (15)	-0.08594 (11)	0.51266 (5)	0.0332 (4)	
H3	0.0599	-0.0752	0.4946	0.040*	
N11	0.36121 (14)	0.08209 (10)	0.61499 (5)	0.0284 (3)	
N22	0.06964 (15)	-0.03762 (10)	0.66331 (5)	0.0303 (3)	
C1	0.3788 (2)	-0.23404 (14)	0.52698 (7)	0.0427 (5)	
H1A	0.4369	-0.2336	0.5496	0.051*	
H1B	0.4207	-0.2223	0.5012	0.051*	

H1C	0.3400	-0.2905	0.5255	0.051*
C2	0.11859 (17)	-0.03524 (13)	0.54715 (6)	0.0308 (4)
C4	0.19492 (17)	-0.15193 (13)	0.50373 (6)	0.0313 (4)
C5	0.28503 (17)	-0.16615 (12)	0.53424 (6)	0.0305 (4)
C6	0.28117 (16)	-0.11607 (13)	0.56826 (6)	0.0300 (4)
Н6	0.3407	-0.1268	0.5885	0.036*
C12	0.35950 (19)	0.15538 (13)	0.59301 (6)	0.0368 (4)
H12	0.2841	0.1797	0.5856	0.044*
C13	0.4633 (2)	0.19605 (15)	0.58094 (7)	0.0445 (5)
H13	0.4598	0.2478	0.5655	0.053*
C14	0.5724 (2)	0.16073 (16)	0.59152 (8)	0.0490 (6)
H14	0.6454	0.1877	0.5834	0.059*
C15	0.57473 (19)	0.08549 (15)	0.61410(7)	0.0430 (5)
H15	0.6496	0.0605	0.6216	0.052*
C16	0.46783 (17)	0.04653 (13)	0.62583 (6)	0.0310 (4)
C17	0.45550 (17)	-0.03176 (12)	0.65058 (6)	0.0298 (4)
C18	0.55323 (19)	-0.07910(14)	0.66478 (7)	0.0390 (5)
H18	0.6329	-0.0618	0.6582	0.047*
C19	0.5340(2)	-0.15135(14)	0.68842(7)	0.0421 (5)
H19	0.6006	-0.1835	0.6984	0.050*
C20	0.4182 (2)	-0.17709(13)	0.69765 (6)	0.0376 (4)
H20	0.4055	-0.2267	0.7140	0.045*
C21	0.32003 (18)	-0.13088(12)	0.68316 (6)	0.0317(4)
H21	0.2408	-0.1495	0.6895	0.038*
C22	0.33663 (16)	-0.05717(12)	0.65930(5)	0.0263(3)
C23	-0.00383(19)	-0.09457(14)	0.64515 (6)	0.0203(3) 0.0373(4)
H23	0.0148	-0.1136	0.6183	0.045*
C24	-0.1053(2)	-0.12629(16)	0.66412(7)	0.0475(5)
H24	-0.1558	-0.1666	0.6507	0.057*
C25	-0.1317(2)	-0.09808(18)	0.70328 (7)	0.0500 (6)
025 Н25	-0.2011	-0.1190	0.70320(7)	0.060*
C26	-0.0573(2)	-0.03967(16)	0.7171 0.72216 (7)	0.000 0.0428(5)
H26	-0.0752	-0.0199	0.72210 (7)	0.051*
C27	0.04446 (18)	-0.00956(13)	0.7490	0.031 0.0319(4)
C28	0.04440(18) 0.13082(18)	0.05356 (13)	0.70105(0) 0.71778(6)	0.0315(4)
C29	0.1252(2)	0.05550(15) 0.08784(14)	0.71770 (0)	0.0315(4)
H29	0.0629	0.0706	0.73750 (0)	0.0410(3)
C30	0.0029	0.14662 (17)	0.7795	0.0471(6)
H30	0.2067	0.1698	0.7967	0.057*
C31	0.2007 0.3000(2)	0.17192 (15)	0.7907 0.74343(7)	0.037 0.0455 (5)
H31	0.3587	0.2123	0.74345 (7)	0.0455 (5)
C32	0.30553 (18)	0.2125 0.13867 (13)	0.7525	0.035
U32	0.3674	0.1573	0.70380 (0)	0.0337 (4)
C33	0.2014	0.1373	0.0009	0.0+3
C51	0.22137(10) 0.0044(2)	0.07000(12) 0.16708(18)	0.62070 (9)	0.0204(4)
US1 H51A	0.0044 (2)	0.10730(10)	0.02979(0)	0.0551(0) 0.064*
	0.0057	0.2207	0.6501	0.004
1131D C52	0.0201	0.1750 0.1222 (2)	0.0391	0.004
032	-0.1139 (2)	0.1322(2)	0.02078(9)	0.0000(8)

H52A	-0.1196	0.0782	0.6422	0.079*	
H52B	-0.1351	0.1212	0.5980	0.079*	
H52C	-0.1741	0.1731	0.6381	0.079*	
C61	0.2473 (4)	0.0866 (2)	0.44860 (13)	0.0826 (10)	
H61A	0.2355	0.0396	0.4286	0.099*	
H61B	0.1776	0.0854	0.4675	0.099*	
C62	0.3536 (3)	0.0669 (2)	0.47211 (13)	0.0849 (10)	
H62A	0.3677	0.1127	0.4922	0.102*	
H62B	0.4231	0.0626	0.4537	0.102*	
H62C	0.3423	0.0121	0.4864	0.102*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
Rh1	0.02103 (8)	0.02848 (9)	0.02167 (8)	-0.00084 (5)	-0.00246 (5)	-0.00128 (5)
O2	0.0414 (8)	0.0577 (10)	0.0347 (8)	0.0210(7)	-0.0152 (7)	-0.0141 (7)
O4	0.0502 (9)	0.0446 (8)	0.0313 (7)	0.0013 (7)	-0.0040 (6)	-0.0118 (6)
O51	0.0326 (7)	0.0364 (7)	0.0359 (7)	0.0067 (6)	-0.0090 (6)	-0.0056 (6)
O61	0.227 (4)	0.0573 (14)	0.101 (2)	0.0135 (19)	-0.095 (2)	-0.0207 (14)
N1	0.0277 (8)	0.0331 (8)	0.0236 (7)	0.0015 (6)	-0.0042 (6)	-0.0021 (6)
N3	0.0317 (8)	0.0428 (9)	0.0251 (7)	0.0027 (7)	-0.0081 (6)	-0.0056 (7)
N11	0.0260 (7)	0.0333 (8)	0.0260 (7)	-0.0025 (6)	-0.0026 (6)	0.0011 (6)
N22	0.0264 (8)	0.0360 (8)	0.0285 (8)	-0.0027 (7)	-0.0026 (6)	0.0006 (6)
C1	0.0490 (13)	0.0445 (12)	0.0346 (10)	0.0128 (10)	0.0014 (9)	-0.0023 (9)
C2	0.0287 (9)	0.0379 (10)	0.0258 (9)	0.0011 (8)	-0.0031 (7)	-0.0039 (7)
C4	0.0338 (10)	0.0332 (9)	0.0269 (9)	-0.0039 (8)	0.0016 (7)	-0.0011 (7)
C5	0.0338 (10)	0.0308 (9)	0.0269 (9)	0.0012 (8)	0.0018 (7)	0.0015 (7)
C6	0.0302 (10)	0.0352 (9)	0.0247 (8)	0.0015 (8)	-0.0028 (7)	0.0006 (7)
C12	0.0361 (10)	0.0391 (10)	0.0351 (10)	-0.0013 (9)	-0.0034 (8)	0.0078 (8)
C13	0.0453 (13)	0.0424 (11)	0.0458 (12)	-0.0057 (10)	0.0020 (10)	0.0147 (10)
C14	0.0367 (12)	0.0525 (13)	0.0579 (14)	-0.0114 (10)	0.0062 (10)	0.0125 (11)
C15	0.0275 (10)	0.0492 (12)	0.0521 (13)	-0.0019 (9)	0.0012 (9)	0.0080 (10)
C16	0.0269 (9)	0.0353 (9)	0.0308 (9)	-0.0014 (8)	-0.0013 (7)	-0.0008 (8)
C17	0.0266 (9)	0.0325 (9)	0.0304 (9)	-0.0005 (7)	-0.0041 (7)	-0.0015 (7)
C18	0.0274 (10)	0.0408 (11)	0.0487 (12)	0.0020 (9)	-0.0060 (9)	0.0024 (9)
C19	0.0381 (11)	0.0394 (11)	0.0487 (12)	0.0062 (9)	-0.0111 (9)	0.0050 (9)
C20	0.0487 (12)	0.0306 (9)	0.0335 (10)	0.0024 (9)	-0.0035 (9)	0.0030 (8)
C21	0.0348 (10)	0.0331 (9)	0.0271 (9)	-0.0017 (8)	-0.0004 (8)	-0.0006 (7)
C22	0.0275 (9)	0.0298 (8)	0.0217 (8)	0.0003 (7)	-0.0044 (7)	-0.0033 (7)
C23	0.0329 (10)	0.0448 (11)	0.0343 (10)	-0.0078 (9)	-0.0016 (8)	-0.0031 (9)
C24	0.0382 (12)	0.0567 (14)	0.0475 (12)	-0.0181 (11)	-0.0037 (10)	0.0005 (11)
C25	0.0351 (11)	0.0698 (16)	0.0450 (12)	-0.0142 (11)	0.0028 (10)	0.0105 (11)
C26	0.0367 (11)	0.0573 (13)	0.0344 (10)	-0.0038 (10)	0.0049 (9)	0.0038 (9)
C27	0.0290 (9)	0.0395 (10)	0.0272 (9)	0.0011 (8)	-0.0001 (7)	0.0024 (8)
C28	0.0319 (10)	0.0365 (9)	0.0262 (9)	0.0039 (8)	-0.0026 (7)	-0.0002 (8)
C29	0.0464 (12)	0.0499 (12)	0.0266 (9)	0.0052 (10)	0.0011 (9)	-0.0032 (8)
C30	0.0555 (14)	0.0558 (14)	0.0300 (10)	0.0076 (11)	-0.0072 (9)	-0.0123 (10)
C31	0.0458 (13)	0.0454 (12)	0.0455 (13)	-0.0004 (10)	-0.0135 (10)	-0.0160 (10)

C32	0.0325 (10)	0.0374 (10)	0.0373 (11)	-0.0006 (8)	-0.0039 (8)	-0.0061 (8)
C33	0.0271 (9)	0.0311 (9)	0.0269 (8)	0.0035 (7)	-0.0050 (7)	-0.0034 (7)
C51	0.0538 (15)	0.0620 (15)	0.0435 (12)	0.0242 (13)	-0.0116 (11)	-0.0180 (11)
C52	0.0464 (15)	0.099 (2)	0.0528 (15)	0.0173 (15)	0.0058 (12)	0.0035 (15)
C61	0.086 (2)	0.0521 (17)	0.110 (3)	-0.0008 (17)	-0.019 (2)	-0.0211 (18)
C62	0.090 (3)	0.0581 (18)	0.106 (3)	-0.0073 (18)	-0.012 (2)	0.0058 (18)

Geometric parameters (Å, °)

Rh1—C22	1.9760 (18)	C18—C19	1.380 (3)
Rh1—C33	1.9890 (18)	C18—H18	0.9500
Rh1—N11	2.0232 (15)	C19—C20	1.381 (3)
Rh1—N22	2.0381 (16)	C19—H19	0.9500
Rh1—O51	2.2068 (14)	C20—C21	1.389 (3)
Rh1—N1	2.2516 (15)	C20—H20	0.9500
O2—C2	1.259 (2)	C21—C22	1.399 (3)
O4—C4	1.240 (2)	C21—H21	0.9500
O51—C51	1.414 (3)	C23—C24	1.377 (3)
O51—H1	0.833 (10)	С23—Н23	0.9500
O61—C61	1.354 (4)	C24—C25	1.384 (3)
O61—H2	0.836 (10)	C24—H24	0.9500
N1—C2	1.345 (2)	C25—C26	1.375 (3)
N1—C6	1.374 (2)	С25—Н25	0.9500
N3—C2	1.376 (2)	C26—C27	1.392 (3)
N3—C4	1.376 (3)	С26—Н26	0.9500
N3—H3	0.8800	C27—C28	1.468 (3)
N11—C12	1.347 (2)	C28—C29	1.399 (3)
N11—C16	1.354 (2)	C28—C33	1.404 (3)
N22—C23	1.343 (3)	C29—C30	1.376 (3)
N22—C27	1.362 (3)	С29—Н29	0.9500
C1—C5	1.502 (3)	C30—C31	1.377 (4)
C1—H1A	0.9800	С30—Н30	0.9500
C1—H1B	0.9800	C31—C32	1.394 (3)
C1—H1C	0.9800	C31—H31	0.9500
C4—C5	1.430 (3)	C32—C33	1.393 (3)
C5—C6	1.358 (3)	С32—Н32	0.9500
С6—Н6	0.9500	C51—C52	1.450 (4)
C12—C13	1.373 (3)	C51—H51A	0.9900
C12—H12	0.9500	C51—H51B	0.9900
C13—C14	1.375 (3)	С52—Н52А	0.9800
С13—Н13	0.9500	С52—Н52В	0.9800
C14—C15	1.384 (3)	С52—Н52С	0.9800
C14—H14	0.9500	C61—C62	1.442 (5)
C15—C16	1.387 (3)	C61—H61A	0.9900
C15—H15	0.9500	C61—H61B	0.9900
C16—C17	1.468 (3)	С62—Н62А	0.9800
C17—C18	1.391 (3)	С62—Н62В	0.9800
C17—C22	1.407 (3)	C62—H62C	0.9800

C22—Rh1—C33	84.55 (7)	C18—C19—C20	120.18 (19)
C22—Rh1—N11	81.84 (7)	С18—С19—Н19	119.9
C33—Rh1—N11	92.97 (7)	С20—С19—Н19	119.9
C22—Rh1—N22	96.04 (7)	C19—C20—C21	120.44 (19)
C33—Rh1—N22	81.34 (7)	C19—C20—H20	119.8
N11—Rh1—N22	174.11 (6)	C21—C20—H20	119.8
C22—Rh1—O51	172.81 (7)	C20—C21—C22	120.71 (19)
C33—Rh1—O51	93.46 (6)	C20—C21—H21	119.6
N11—Rh1—O51	91.38 (6)	C22—C21—H21	119.6
N22—Rh1—O51	90.48 (6)	C21—C22—C17	117.82 (17)
C22—Rh1—N1	94.13 (6)	C21—C22—Rh1	128.53 (14)
C33—Rh1—N1	176.92 (7)	C17—C22—Rh1	113.63 (13)
N11—Rh1—N1	89.59 (6)	N22—C23—C24	122.3 (2)
N22—Rh1—N1	96.06 (6)	N22—C23—H23	118.8
O51—Rh1—N1	88.18 (5)	С24—С23—Н23	118.8
C51—O51—Rh1	127.90 (14)	C23—C24—C25	118.4 (2)
С51—О51—Н1	110.9 (17)	C23—C24—H24	120.8
Rh1—O51—H1	101.5 (17)	С25—С24—Н24	120.8
С61—О61—Н2	113 (4)	C26—C25—C24	119.8 (2)
C2—N1—C6	116.01 (16)	С26—С25—Н25	120.1
C2—N1—Rh1	124.55 (13)	C24—C25—H25	120.1
C6—N1—Rh1	119.42 (12)	C25—C26—C27	119.8 (2)
C2—N3—C4	126.26 (16)	С25—С26—Н26	120.1
C2—N3—H3	116.9	C27—C26—H26	120.1
C4—N3—H3	116.9	N22—C27—C26	119.99 (19)
C12 - N11 - C16	119.82 (17)	N22—C27—C28	114.08 (17)
C12—N11—Rh1	124.86 (13)	C26—C27—C28	125.92 (19)
C16—N11—Rh1	115.27 (12)	C29—C28—C33	121.12 (19)
C23—N22—C27	119.70 (17)	C29—C28—C27	123.58 (19)
C23—N22—Rh1	125.17 (14)	C33—C28—C27	115.30 (16)
C27—N22—Rh1	114.94 (13)	C30—C29—C28	119.8 (2)
C5—C1—H1A	109.5	С30—С29—Н29	120.1
C5—C1—H1B	109.5	C28—C29—H29	120.1
H1A—C1—H1B	109.5	C29—C30—C31	120.1 (2)
C5—C1—H1C	109.5	С29—С30—Н30	119.9
H1A—C1—H1C	109.5	С31—С30—Н30	119.9
H1B—C1—H1C	109.5	C30—C31—C32	120.4 (2)
O2—C2—N1	123.48 (17)	С30—С31—Н31	119.8
O2—C2—N3	117.38 (17)	С32—С31—Н31	119.8
N1—C2—N3	119.14 (17)	C33—C32—C31	121.0 (2)
O4—C4—N3	119.64 (18)	С33—С32—Н32	119.5
O4—C4—C5	126.16 (19)	С31—С32—Н32	119.5
N3—C4—C5	114.19 (17)	C32—C33—C28	117.59 (18)
C6—C5—C4	117.37 (17)	C32—C33—Rh1	128.18 (15)
C6—C5—C1	123.66 (18)	C28—C33—Rh1	114.23 (13)
C4—C5—C1	118.96 (18)	O51—C51—C52	114.3 (2)
C5—C6—N1	126.91 (17)	O51—C51—H51A	108.7
	\[

С5—С6—Н6	116.5	C52—C51—H51A	108.7
N1—C6—H6	116.5	O51—C51—H51B	108.7
N11—C12—C13	122.1 (2)	C52—C51—H51B	108.7
N11—C12—H12	119.0	H51A—C51—H51B	107.6
C13—C12—H12	119.0	С51—С52—Н52А	109.5
C12—C13—C14	118.9 (2)	C51—C52—H52B	109.5
C12—C13—H13	120.5	H52A—C52—H52B	109.5
C14—C13—H13	120.5	С51—С52—Н52С	109.5
C13—C14—C15	119.3 (2)	H52A—C52—H52C	109.5
C13—C14—H14	120.4	H52B—C52—H52C	109.5
C15—C14—H14	120.4	O61—C61—C62	118.3 (3)
C14—C15—C16	120.0 (2)	O61—C61—H61A	107.7
C14—C15—H15	120.0	С62—С61—Н61А	107.7
C16—C15—H15	120.0	O61—C61—H61B	107.7
N11—C16—C15	119.87 (18)	C62—C61—H61B	107.7
N11—C16—C17	113.66 (16)	H61A—C61—H61B	107.1
C15—C16—C17	126.47 (18)	С61—С62—Н62А	109.5
C18—C17—C22	121.06 (18)	С61—С62—Н62В	109.5
C18—C17—C16	123.36 (18)	H62A—C62—H62B	109.5
C22—C17—C16	115.59 (16)	С61—С62—Н62С	109.5
C19—C18—C17	119.8 (2)	H62A—C62—H62C	109.5
C19—C18—H18	120.1	H62B—C62—H62C	109.5
C17—C18—H18	120.1		
C6—N1—C2—O2	-176.78 (19)	C19—C20—C21—C22	-0.6 (3)
Rh1—N1—C2—O2	2.0 (3)	C20—C21—C22—C17	0.0 (3)
C6—N1—C2—N3	3.7 (3)	C20-C21-C22-Rh1	-178.63 (14)
Rh1—N1—C2—N3	-177.51 (13)	C18—C17—C22—C21	0.9 (3)
C4—N3—C2—O2	177.57 (19)	C16—C17—C22—C21	-179.34 (16)
C4—N3—C2—N1	-2.9 (3)	C18—C17—C22—Rh1	179.69 (16)
C2—N3—C4—O4	-179.81 (19)	C16—C17—C22—Rh1	-0.5 (2)
C2—N3—C4—C5	-0.1 (3)	C27—N22—C23—C24	0.0 (3)
O4—C4—C5—C6	-178.4 (2)	Rh1—N22—C23—C24	-174.60 (17)
N3—C4—C5—C6	1.9 (3)	N22—C23—C24—C25	0.1 (4)
O4—C4—C5—C1	2.3 (3)	C23—C24—C25—C26	0.1 (4)
N3—C4—C5—C1	-177.40 (18)	C24—C25—C26—C27	-0.2 (4)
C4—C5—C6—N1	-1.0 (3)	C23—N22—C27—C26	-0.2 (3)
C1C5C6N1	178.31 (19)	Rh1—N22—C27—C26	174.94 (16)
C2—N1—C6—C5	-1.9 (3)	C23—N22—C27—C28	-179.02 (18)
Rh1—N1—C6—C5	179.19 (16)	Rh1—N22—C27—C28	-3.9 (2)
C16—N11—C12—C13	0.1 (3)	C25—C26—C27—N22	0.3 (3)
Rh1—N11—C12—C13	177.28 (17)	C25—C26—C27—C28	179.0 (2)
N11—C12—C13—C14	0.2 (4)	N22—C27—C28—C29	-177.02 (19)
C12—C13—C14—C15	-0.2 (4)	C26—C27—C28—C29	4.3 (3)
C13—C14—C15—C16	0.0 (4)	N22—C27—C28—C33	3.2 (3)
C12—N11—C16—C15	-0.3 (3)	C26—C27—C28—C33	-175.5 (2)
Rh1—N11—C16—C15	-177.76 (16)	C33—C28—C29—C30	-0.4 (3)
C12—N11—C16—C17	178.46 (17)	C27—C28—C29—C30	179.8 (2)
	× /		\ /

Rh1—N11—C16—C17	1.0 (2)	C28—C29—C30—C31	0.3 (3)	
C14—C15—C16—N11	0.3 (3)	C29—C30—C31—C32	0.3 (4)	
C14—C15—C16—C17	-178.3 (2)	C30—C31—C32—C33	-0.9 (3)	
N11—C16—C17—C18	179.47 (18)	C31—C32—C33—C28	0.7 (3)	
C15—C16—C17—C18	-1.9 (3)	C31—C32—C33—Rh1	-178.48 (16)	
N11—C16—C17—C22	-0.3 (3)	C29—C28—C33—C32	-0.1 (3)	
C15—C16—C17—C22	178.3 (2)	C27—C28—C33—C32	179.67 (18)	
C22—C17—C18—C19	-1.2 (3)	C29—C28—C33—Rh1	179.23 (16)	
C16—C17—C18—C19	179.0 (2)	C27-C28-C33-Rh1	-1.0(2)	
C17—C18—C19—C20	0.6 (3)	Rh1-051-C51-C52	-94.8 (2)	
C18—C19—C20—C21	0.3 (3)			

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O51—H1…O2	0.83 (1)	1.72 (2)	2.527 (2)	164 (2)
N3—H3···O2 ⁱ	0.88	1.99	2.854 (2)	165
O61—H2…O4 ⁱⁱ	0.84 (1)	2.01 (4)	2.792 (3)	156 (4)

Symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) -*x*+1/2, *y*+1/2, *z*.