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Abstract: Recently, deep learning has been employed in medical image analysis for several clinical
imaging methods, such as X-ray, computed tomography, magnetic resonance imaging, and patholog-
ical tissue imaging, and excellent performance has been reported. With the development of these
methods, deep learning technologies have rapidly evolved in the healthcare industry related to hair
loss. Hair density measurement (HDM) is a process used for detecting the severity of hair loss by
counting the number of hairs present in the occipital donor region for transplantation. HDM is a
typical object detection and classification problem that could benefit from deep learning. This study
analyzed the accuracy of HDM by applying deep learning technology for object detection and reports
the feasibility of automating HDM. The dataset for training and evaluation comprised 4492 enlarged
hair scalp RGB images obtained from male hair-loss patients and the corresponding annotation data
that contained the location information of the hair follicles present in the image and follicle-type
information according to the number of hairs. EfficientDet, YOLOv4, and DetectoRS were used as
object detection algorithms for performance comparison. The experimental results indicated that
YOLOvV4 had the best performance, with a mean average precision of 58.67.

Keywords: deep learning; follicle detection; hair density measurement; hair transplant; object
detection

1. Introduction

Owing to stress and dietary changes, hair loss has recently become more prevalent
not only in the elderly but also in younger generations, and the overall number of hair-loss
patients, both men and women, is rapidly increasing. As a result, the hair transplantation
market is one of the fastest-growing healthcare specialties and the total market size for hair
restoration surgery has increased 10% since 2016 (specifically, from USD 4.1 billion USD
in 2016 to USD 4.6 billion USD in 2019) [1]. For hair transplantation, hairs in the occipital
donor area are typically removed and transplanted to the hair-loss areas, which requires the
hairs in the occipital donor area to be counted to determine the available contribution [2,3].
This hair-density measurement (HDM) process, performed manually by doctors, is time
consuming and requires a high level of expertise to make an accurate diagnosis [4,5].

Although image-processing-based approaches have dominated the literature on HDM,
they have limitations such as unreliable measurement for crossing or overlapping hairs [4,6]
and sensitivity to configuration parameters [7]. The recent development of object detection
technology using deep learning and the establishment of related large-scale datasets have
enabled the method of measuring the number of hairs by detecting only the hair follicles,
which are the roots of hair, rather than recognizing the entire hair [8]. Accordingly, this study
was conducted to evaluate the accuracy of various deep-learning-based HDM algorithms
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and determine the feasibility of automating HDM. The workflow of the deep-learning-based
HDM algorithms is as follows: First, the algorithm detects the locations of hair follicles
present in the donor area and classifies the type of follicles detected. The follicle type is
defined by the number of hairs in it. The object detection networks used for measuring the
hair density in this study were EfficientDet [9], YOLOv4 [10], and DetectoRS [11], which
exhibited state-of-the-art object detection performances on various benchmark datasets.
The remainder of this paper is organized as follows. Section 2 describes relevant
studies on existing HDM techniques. Section 3 describes the datasets and object detection
networks used in the experiments. Section 4 compares the detection and classification
performance of the three object detection networks using mAP and visualizes the results.
Section 5 presents the discussion, conclusion, and ruminations about future studies.

2. Related Work

Prior to the advent of deep learning, most automated HDMs were performed using
image processing techniques [4,6,7,12]. For instance, Shih et al. [4] preprocessed input
images using various techniques, such as contrast stretching [13], color morphology [14],
and Otsu thresholding [15]. The preprocessed image undergoes binarization and multi-
scale line detailing procedures to separate the hair and scalp, label the hairs, and count
the number of hairs. Shih [7] preprocessed images through color-to-grayscale conversion
and binarization to adjust the brightness and eliminate the noise via color morphology.
Then, using the multi-scale line detailing technique, the hair was colored and separated
from the scalp. Zhang and Eun [6] used the Otsu algorithm to separate hair and scalp, and
then processed the hair differently according to the length. For instance, short hairs were
directly counted, whereas long hairs were processed using the Hough transform [16] to
address the problem of overlapping hairs. The method proposed by Zhang and Eun [6]
measures the number of hairs by each stand of short hair and long hair separately. However,
it exhibited poor performance, particularly when a hair was long and bent or multiple
hairs crossed each other. Kim et al. [12] proposed a technique for measuring the hair
density using a portable camera on a smartphone, in which the hairs were identified
by applying various component technologies, including image preprocessing techniques
such as contrast stretching and morphology processing, skeleton conversion, and line
endpoint detection.

The abovementioned image-processing-based algorithms and techniques had limita-
tions in that the hair was not detected properly, particularly when there was an overlap
of hairs or foreign substances in the scalp. However, object detection algorithms based
on deep neural networks overcome these shortcomings. For instance, ScalpEye [8] uses
Faster R-CNN [17] and a single-shot detector [18] to effectively detect scalp diseases (e.g.,
dandruff, folliculitis, and hair loss). However, ScalpEye requires a larger image than those
in other hair-related studies and, although the hair follicles are detected, the number of
hairs present in the follicles is unknown. Jakubik et al. [5] preprocessed training and test
datasets through axis conversion and rotation. They applied convolution layers, a rectified
linear-unit activation function, and a pooling layer for dimension reduction for a detection
model. The preprocessing method resulted in detection improvements. Furthermore, it was
found that the appropriate rotation angle for the dataset affected the detection performance.
Finally, Gallucci et al. [19] investigated the feasibility of automatic skin hair counting using
early deep learning models such as LeNet [20] and VGG-Net [21]. Although their work
was for skin images, which are less complex than hair scalp images, they also reported that
the prediction error was close to that achieved by a human for skin hair counting.

This study evaluated the accuracy of hair density measurement by applying state-of-
the-art object detection algorithms, which were trained by using hair scalp RGB images from
real-world clinical practice. The experimental results are expected to serve as a cornerstone
for assessing the effectiveness of deep-learning-based automated HDM algorithms.
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3. Datasets and Methods
3.1. Datasets

In this study, we used the dataset published by the National Information Society
Agency [22]. It comprised 4492 enlarged hair scalp RGB images from 817 male hair-
loss patients and their corresponding annotation data. All images had a resolution of
1280 x 1024 pixels. The annotation data for each image included gender, the location and
class information of hair follicles where the hair was present, and the total number of hairs
in the donor area. The class of a hair follicle is determined by the number of hairs present
in the hair follicle. For instance, the hair follicles with one hair, two hairs, and three hairs
are classified as Classes 0, 1, and 2, respectively. As the hair follicles with four or more hairs
are difficult to locate, they are classified as a single group as Class 3. Figure 1 shows an
example of this; Table 1 lists the demographic information of the dataset.

"age” : 42,

"gender” : 0,

"id" : filename,

“labels” : [{"label_id" : 0,
“class” : "1",
"height” : 120,
"width” : 120,
“x": 563,
"y" 216

1o,
“resolution : [1280, 1024]

(b)

Figure 1. Examples of (a) images and (b) annotation information in the dataset.

Table 1. Demographic information of the dataset.

Classification Information
The number of data samples Male (4492)/Female (0)
Mean Age 42 years

The data were randomly split into three subsets without any overlap—training (60%),
validation (20%), and testing (20%). During training of the object detection models, we
artificially increased the size of the training and validation datasets through simple data
augmentation to reduce overfitting and achieve a high classification accuracy. Specifically,
a given image was vertically flipped; subsequently, both the original and flipped images
were rotated by +15 and —15°, respectively. A total of 21,561 images were used for training
and validation.

3.2. Methods

In this study, three state-of-the-art object detection models, EfficientDet, YOLOv4, and
DetectoRS, were used for detecting the hair follicles in the input image and classifying
their corresponding types. Subsequently, for each class, the number of follicles identified
for each class was multiplied by the number of hairs per corresponding hair follicle class;
finally, the obtained values were added to compute the total number of hairs in the occipital
donor area. Object detection is a computer vision technique that involves identifying and
locating objects within an image or video. An object detection method can be classified as a
two-stage detector if region proposal and object classification are performed as separate
processes. If an object detection method skips the region proposal stage and runs object
detection directly over a dense sampling of possible locations, it is called a one-stage
detector. All of the detection models used in this study were one-stage detectors.
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EfficientDet uses a pretrained EfficientNet [23] with ImageNet [24] as a backbone
network. For accurate feature extraction, EfficientDet utilizes the bi-directional feature pyra-
mid network (BiFPN). BiFPN enhances the existing feature pyramid network (FPN) [25]
by effectively aggregating the multi-scale features in a top-down manner. Furthermore,
EfficientDet applies the compound scaling technique to the backbone network, feature ex-
traction network, and prediction network, thereby successfully improving the performance.
The compound scaling technique is utilized in EfficientNet; it provides a means of increas-
ing the model capacity by simultaneously accounting for width, depth, and resolution,
which are major factors that determine the model capacity and amount of computations.
For HDM,, the EfficientDet-D0 configuration was used.

YOLOV4 is an improved object detection network that overcomes the small object
detection vulnerability of YOLO [26] by applying large input resolutions. The backbone of
YOLOV4 is based on the cross-stage partial network (CSPNet) [27], which speeds up the
training process with a reduced amount of computation, allowing the network to be used
in any environment without performance degradation. CSPNet partitions the feature map
of the base layer into two parts and merges them through a cross-stage hierarchy [27]. The
use of a split and merge strategy allows for more gradient flow through the network.

Two important components of DetectoRS enabling performance boost are recursive
FPN and switchable atrous convolution. The former extends the existing FPN by incor-
porating extra feedback connections from FPN into the bottom-up backbone layers. The
latter convolves the features with different atrous rates and gathers the results using switch
functions [11]. On the COCO dataset [28], DetectoRS achieved 55.7% box average precision
(AP) for object detection and outperformed the state-of-the-art object detection models
such as YOLOv3 [29], SpineNet [30], and Cascade R-CNN [31].

In this study, all deep learning models were built using the PyTorch framework
with a CUDA back-end. For training and testing, two NVIDIA GeForce RTX 2080 super
graphic cards were used in the Ubuntu 18.04.5 LTS environment. Further, to explore the
generalization capability of individual deep learning models, we produced the results
without any fine-tuning or modification of their official source codes except for some of
the hyperparameter settings for training. In addition, as the sizes of the input images
required by individual deep learning models differ (e.g., EfficientDet: 512 x 512, YOLOv4:
640 x 640, and DetectoRS: 1333 x 800), the hair scalp images were first scaled down
accordingly before being fed into the deep learning models, and the final output images
were scaled up to the original image size. The details of the hyperparameters used in each
network are listed in Table 2.

Table 2. Hyperparameter settings.

Iterations Batch Learning . Learning
Models (Epochs)  Size Rate Optimizer Time (h)
Stochastic Gradient
.. —4
EfficientDet 100 16 1x10 Decent (SGD) 20
YOLOv4 100 32 1x 1073 Adam 24
DetectoRS 100 16 1x10~% SGD 30

As a performance metric, the mean average precision (mAP) was used, as it is more use-
ful for the quantitative performance evaluation of different algorithms than precision-recall
graphs. In particular, AP can be calculated over a range of Intersection over Union (IoU)
thresholds. For instance, for mAP(50) the AP of a given class is calculated with IoU > 0.5,
denoted AP(50). In this paper, where no distinction is made, mAP and mAP(50:95) are used
interchangeably, as in other object detection studies [23,32]. In addition, recall, precision,
and accuracy were measured based on the results of follicle detection. The corresponding
equation is Equation (1), where N denotes the number of classes to classify and AP} denotes
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the average precision for class k. Furthermore, TP, FP, TN and FN denote the number of
true positive, false positive, true negative, and false negative follicles, respectively.

1 k=N
AP = — AP
m Nkzzl k

TP

TP + FP )
1

TP +FN
TP + TN

TP+ TN+ FP + FN

precision =

recall =

Accuracy =

4. Experimental Results

Figure 2 shows the training loss during the training of the object detection models. In
all cases, the curves converged properly with the hyperparameter settings, suggesting that
the models had learned as much about the data as possible.

EfficientDet Train loss| 300 YOLOV4 Train loss. 40 DetectoRS Train loss
250 | 3.5
] g 200 g 30
S 150 S 25
£ =
9 100 @ 2.0
(= =
i 59 15
N g o
0 20 40 60 80 100 0 20 40 60 80 100 ©70 20 40 60 80 100
Epoch Epoch Epoch

Figure 2. Loss curves of the training process.

As for the hair follicles located at the edge of the image, the appearance of the hair
follicles was often blurred or parts of the hair follicles were cut off, which made it difficult to
classify these hair follicles with the naked eye. To increase the objectivity of the evaluation,
an ellipse was drawn based on the center of the input hair RGB image, and hair follicles
existing outside the circle were excluded from the evaluation.

Experimental results showed that YOLOv4 exhibited the highest detection perfor-
mance among the three detection models, with a mAP of 58.67, while EfficientDet and
DetectoRS showed mAPs of 31.97 and 37.22, respectively (see Table 3). While all three mod-
els detected similar areas, inaccurate classification results led to differences in performance.
In addition, YOLOv4 had a lower rate of redundant detection.

Table 3. Comparative performance of the deep learning models.

Models Map mAP(50) mAP(75) Precision Recall Accuracy
EfficientDet 31.97 53.45 35.38 71.24 64.09 64.71
YOLOv4 58.67 73.11 60.85 80.75 80.22 75.73
DetectoRS 37.22 58.13 40.64 71.26 71.60 66.36

Figure 3 shows the comparative performance of individual deep learning models
by follicle classes. For each of the hair follicle classes, YOLOv4 outperformed the other
detection models. However, for hair follicles of Class 3, although YOLOv4 performed
the best among them, all of the detection models showed relatively poor performance
compared to the detection of other hair follicle classes. This result is attributable to the fact
that it is more difficult to classify Class 3, as the hair follicles of Class 3 have the features
of hair follicles of both Classes 1 and 2. In addition, class imbalance may have also been a
contributing factor.
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Figure 3. Performance comparison by class.

Figures 4-7 visualize the detection results according to the shape of the hair. In the
visualization image, the color (Class 0: red; Class 1: blue; Class 2: green; Class 3: yellow)
is expressed according to the number of hair follicles (Class 0: one; Class 1: two; Class 2:
three; Class 3: four or more). In this experiment, to minimize false detection of the blurred
boundary area, an ellipse was drawn based on the center of the input image to compare the
detection performance only for the hair follicles inside. However, as shown in the figures,
because the number of hair follicles existing outside the ellipse was relatively small, it did
not appear to have a significant effect on the evaluation of the overall performance.

(c) YOLOV4

P,

(a} Ground Truth (bj EfficientDet

b Sl 2

Figure 4. Visualization of detection results in a short hair image.

(b) EfficientDet (c) YOLOv4

Figure 5. Visualization of detection results in a long hair image.
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Figure 7. Visualization of detection results in an image with a large number of short and long hairs.

Figure 4 shows the results of hair follicle detection in a hair scalp RGB image with many
short strands of hair. All three models showed accurate follicle detection and classification
for Classes 1 and 2. Moreover, YOLOv4 showed the performance closest to the ground
truth among the models. Although all three models failed to detect some hair follicles,
it should be noted that the hair follicles were located at the elliptical boundary and had
a relatively blurred image. However, in normal hair scalp images without hair follicles
obscured by foreign substances or other hair, the detection accuracy was relatively high,
suggesting the feasibility of automating HDM.

Figure 5 shows the results of hair follicle detection in a hair scalp RGB image containing
many long strands of hair. Compared with Figure 3, the length of the hair is relatively long,
with a greater number of hair strands. Despite some of the hair follicles being obscured
by other long hairs, all three models demonstrated accurate detection and classification
performance. Furthermore, both EfficientDet and DetectoRS were able to detect relatively
blurry hair follicles that were located at the inner boundary of the ellipse. The detection
performance of the three networks in Figure 4 was quite encouraging, considering that
the long strands of hair in the image hindered the feature extraction by obscuring the
hair follicles.

As shown in Figure 6, in cases with many strands of white hair or few strands of hair,
the detection performance of all three models was degraded compared to other cases. As
for the low detection performance for white hair, the white hair strands may have been
considered a foreign substance present in the scalp, resulting in a failure in the classification
of hair follicles. YOLOv4 detected empty follicles accurately, whereas both EfficientDet and
DetectoRS classified empty follicles as Class 1. Furthermore, when both white and black
hair strands were present in the same follicle, neither EfficientDet nor DetectoRS detected
such a follicle successfully.

The detection and classification results are shown in Figure 7 for the hair scalp RGB
image, from which both short and long hair strands exit. In some cases, YOLOv4 duplicated
the detection of one hair follicle with different classes. However, all three models showed
detection performance accurate enough to find hair follicles that did not exist in the ground
truth, and it was expected that performance would be improved by using large-scale
datasets containing accurate annotation information in the future.

Finally, Table 4 shows the performance of the three detection models with and without
data augmentation in terms of mAP(50:95).
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Table 4. Effects of data augmentation.
Without Data Augmentation With Data Augmentation

Model
odels Class 0 Class 1 Class 2 Class 3 mAP Class 0 Class 1 Class 2 Class 3 mAP
EfficientDet ~ 25.39 30.61 26.62 16.74 24.39 30.49 40.11 36.62 20.65 31.97
YOLOv4 63.27 70.94 60.75 34.29 57.31 64.21 72.95 61.68 35.82 58.67
DetectoRS 20.41 31.59 23.20 17.65 23.21 34.66 50.92 38.41 24.87 37.22

The performance boosts by the data augmentation were clearly visible in the case
of EfficientDet and DetectoRS, whereas in YOLOV4, there was no significant difference
in performance as a result of applying data augmentation. This result appears to have
been caused by the Mosaic data augmentation employed by YOLOv4. The Mosaic data
augmentation combines four training images into a synthetic image, allowing the model
to learn how to detect small objects. According to the visualization results, EfficientDet
showed an improvement in the classification of Class 1 and Class 2 with data augmentation,
whereas the redundant detection of the same hair follicles was reduced for DetectoRS (see
Figure 8).

(a) EfficientDet (no DA)  (b) EfficientDet (with DA)  (¢)

Figure 8. Visualization of detection results with and without data augmentation (DA: data augmentation).

5. Discussion

In this study, the feasibility of automated HDM was evaluated using state-of-the-art
deep-learning-based object detection technology (specifically, EfficientDet, YOLOv4, and
DetectoRS). For training and validation of the deep learning models, 4492 enlarged hair
scalp RGB images from 817 patients obtained from real-world clinical practice were used.
Based on the experimental results, YOLOv4 achieved the highest mAP of 58.67. Compared
with EfficientDet and DetectoRS, YOLOv4 had a lower rate of redundant detection while
demonstrating better classification of all four classes. However, for hair follicles of Class
3, all three detection models showed poor performance. In particular, there were many
false detections where a hair follicle with four strands of hair was detected as two hair
follicles, each with two strands of hair, or two hair follicles, one with a single strand of hair
and the other with three strands of hair. One potential reason for this is that the images of
Class 3 contain features similar to those in the images of Class 1 or Class 2. In addition, the
class imbalance between Class 3 and the other classes may have led to poor performance.
To address these problems, it is necessary to develop sophisticated feature representation
algorithms and/or train the models using a large number of sample images containing hair
follicles with four or more hairs.

Future work will be conducted in several areas. In general, deep learning models are
able to recognize more patterns with the availability of more training data. Therefore, we
plan to utilize additional data from multiple institutions for model training and testing. In
addition, future work should validate whether similar results can be obtained using other
state-of-the-art deep learning models.

In conclusion, the experimental results suggest that a deep-learning-based algorithm
could provide an acceptable level of accuracy for automated HDM with a sufficient number
of training datasets available.
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