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Abstract: For special instruments or equipments including particle accelerators, space microwave
devices and spacecrafts, the suppression for electron-induced secondary electron emission (SEE)
occurring on the component surfaces is of great significance due to a negative influence caused
by SEE on their normal operations. In this paper, amorphous carbon (a-C) films were prepared
on stainless-steel substrates by radio frequency magnetron sputtering, and the effects of substrate
temperature (Ts) and continuous electron bombardment on the microstructure and secondary electron
emission yield (SEY) of a-C film were investigated in order to achieve a better inhibition for SEE. The
experimental results show that a rise of Ts during the a-C film preparation is conducive to a SEY
reduction and an increase of multipactor threshold due to the increases of surface roughness and sp2

bond content. In addition, although the SEY of a-C film has a slight increase with the rise of electron
bombardment time, the a-C film sample with a lower SEY keeps its lower SEY all the time during
continuous electron bombardment. The a-C film prepared at Ts of 500 ◦C has the lowest SEY peak
value of 1.09 with a reduction of 30.6% in comparison with the stainless-steel substrate.

Keywords: amorphous carbon films; secondary electron emission; substrate temperature; surface
roughness; sp2 bonds

1. Introduction

Secondary electron emission (SEE) from solid materials has attracted a lot of attention due to
its widespread applications in many technology fields such as night vision, microscopic analysis,
satellite navigation, mass spectrum, and space exploration [1–5], and SEE usually plays a role of
signal amplification in these applications. But in some cases, SEE may produce a negative effect on
the normal operations of some special instruments or equipments. For instance, SEE generated by
interaction between energetic charged particles and vacuum-chamber wall in particle accelerators
leads to the formation of electron cloud, which considerably affects the stabilities of high-intensity
particle beams [6–8]. For space microwave devices, multipactor closely related to SEE during the
transportation of high-power radio-frequency signals weakens their performances and even results in
a permanent damage on these devices [9–11]. In addition, for spacecrafts in space environment, surface
charging mainly induced by SEE influences the electrostatic equilibrium, which probably causes the
performance degradation and even failure of surface materials [12–14].

In order to mitigate these negative effects caused by SEE, it is necessary to lower the secondary
electron emission yield (SEY) of material surfaces. Thus, various surface treatment techniques including
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coating component surfaces with low-SEY materials [15–17], forming grooved or porous microstructures
on the component surfaces [18–20] and increasing surface roughnesses of special components have been
extensively studied [21–23]. Among these techniques, coating low-SEY materials such as graphene,
titanium nitride, chromium nitride, and amorphous carbon (a-C) on the component surfaces is the
most attractive one due to its effective suppression for SEE phenomenon, wide applicability and
great research value [24–27]. In recent decades, large amounts of related research about a-C film
have been carried out because of its relatively low SEY and simple deposition process. For example,
M. Alberti et al. produced an a-C film by pulsed laser deposition, and its maximum SEY is as low as
1.4 [28]. Vallgren et al. prepared an a-C film by direct current magnetron sputtering and found that the
SEY rose by 10–20% after this film exposed to air for one month [29]. Larciprete et al. showed an a-C
film deposited at room temperature by radio frequency magnetron sputtering could decrease the SEY
of a clean copper surface, and found this beneficial effect was enhanced with the conversion of sp3

hybrids to six-fold aromatic domains [30].
However, the relationship between microstructures and SEE properties of a-C films in previous

reports has not be studied in detail. Thus, in this paper, the effect of substrate temperature on the
microstructure and electron-induced SEE properties of the a-C film prepared by radio frequency
magnetron sputtering was investigated on the purpose of exploring the mechanism of microstructure
influencing SEE properties and achieving a more effective suppression for SEE and better application
of a-C films in various electronic components.

2. Materials and Methods

The a-C film samples were prepared by radio frequency magnetron sputtering with a high-purity
(99.99%) graphite target on stainless steel substrates under the conditions of sputtering power of 150 W,
Ar gas flow rate of 30 sccm, working gas pressure of 0.11 Pa, and sputtering time of 7200 s. During the
deposition process of a-C film samples, the distance and angle between the target and substrate were
150 mm and 45 ◦, respectively. Four a-C film samples were prepared at the substrate temperatures
(Ts) of 200 ◦C, 300 ◦C, 400 ◦C, and 500 ◦C to investigate the influence of Ts on their microstructures
and electron-induced SEE properties. For these a-C film samples, their surface morphologies were
characterized with scanning electron microscope (SEM, JSM-7000F, JEOL, Ltd., Tokyo, Japan) and
atomic force microscope (AFM, Dimension Icon, Bruker, Billerica, MA, USA), and their microstructural
behaviors were measured with Raman spectroscopy (LabRAM HR Evolution, Horiba Scientific, Paris,
France). During the Raman measurement, the excitation wavelength of the radiation was selected to
be 532 nm. In addition, their electron-induced SEE properties were estimated with a self-designed SEY
measurement system shown in Figure 1.

During the SEY measurement, every sample was mounted in the vacuum chamber (≤5 × 10–5 Pa),
and a bias voltage of 90 V was applied to the collector with respect to the sample chassis. Primary
electron current (Ip) was obtained by calculation of the difference of secondary-electron current (Is) and
sample chassis current (It), and SEY was defined as the ratio of Is to Ip. For every a-C film sample, its
variations of SEY with primary electron energy (Ep) ranging from 50 eV to 2000 eV and bombardment
time (t) of electron beam with Ep of 200 eV were measured. It should be pointed out the electrical
current and the beam spot of electron beam utilized in the SEY measurement were 5 nA and an
approximate circular area with a diameter of 1 mm, respectively.
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Figure 1. Schematic diagram of the self-designed secondary electron emission yield (SEY)
measurement system.

3. Results and Discussion

3.1. Surface Morphologies of a-C Films Prepared at Different Substrate Temperatures

Since for a thin film material, surface morphology has an important impact on its SEY under
electron bombardment, the surface morphologies of four a-C film samples prepared at different Ts

were characterized by SEM. Through the SEM characterizations of cross sections, the film thicknesses
of these a-C film samples were approximately in the range from 50 nm to 60 nm. Figure 2 showed the
top-viewed SEM images of these a-C film samples and their particle-diameter probability histograms.
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samples prepared at Ts of (a) 200 ◦C, (b) 300 ◦C, (c) 400 ◦C, and (d) 500 ◦C.
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As shown in Figure 2a, the a-C film sample prepared at 200 ◦C consists of large numbers of tightly
arranged carbon nanoparticles with a mean size of 20.8 nm. It can be seen from Figure 2b,c that the
mean nanoparticle sizes of a-C film samples prepared at 300 ◦C and 400 ◦C reach 27.2 nm and 33.5 nm,
respectively. With Ts increasing to 500 ◦C, the nanoparticles of the a-C film sample shown in Figure 2d
exhibit more granular and have just a slight size enlargement with the mean size reaching 34.2 nm.
Based on these SEM images, it can be found the carbon nanoparticle size enlarges with the increase of
Ts, which reveals that a higher Ts is conducive to the growth of carbon nanoparticles in the a-C film.
It is perhaps because that carbon atoms adsorbed on the substrate at a higher Ts have higher kinetic
energies and are easier to migrate to form carbon nanoparticles.

For a thin film material, surface roughness also greatly affects its SEY under electron bombardment.
The thin film with a rougher surface generally has a lower SEY. Thus, the surface roughnesses of a-C
film samples prepared at different Ts were measured by AFM, and the results were shown in Figure 3.
Based on the experimental results, the average roughnesses (Ra) of a-C film samples prepared at Ts of
200 ◦C, 300 ◦C, 400 ◦C, and 500 ◦C are 3.5 nm, 4.7 nm, 8.1 nm, and 10.3 nm, respectively, and their
root mean square roughnesses (Rq) are 4.5 nm, 6.3 nm, 10.2 nm, and 13.2 nm, respectively. These
characterization results show that both Ra and Rq values of the a-C film exhibit a tendency of increasing
with the rise of Ts, which has a close relationship with the size enlargement of carbon nanoparticles
shown in Figure 3.
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characterized by AFM.

3.2. Microstructural Behaviors of a-C Films Prepared at Different Substrate Temperatures

For an a-C film, microstructural behavior including sp2 bond content plays an important role
in its SEY under electron bombardment. Generally, sp2 bonds in a-C films can achieve an effective
suppression for SEE due to their strong scattering effects of electrons [31]. Thus, the microstructural
behaviors of four a-C film samples prepared at different Ts were characterized by Raman spectroscopy,
and the results were shown in Figure 4. Every original Raman spectrum takes on so-called D peak
and G peak approximately located at Raman shifts of 1350 cm−1 and 1580 cm−1, respectively. The
production of D peak is closely related to the breathing vibration of sp2 bonds, while the formation of
G peak results from the stretch vibration of sp2 bonds [32]. It can be obviously seen from Figure 4
that with the increase of Ts, the intensity of D peak strengthens and the full width at half maximum
(FWHM) of G peak decreases, indicating a rise of graphite phase and a reduction of sp3 bond content
in the a-C film, respectively [33,34]. Furthermore, as Ts increases, the G peak position of a-C film
samples prepared at Ts of 200 ◦C, 300 ◦C, 400 ◦C, and 500 ◦C are approximately 1553 cm−1, 1567 cm−1,
1587 cm−1, and 1602 cm−1, respectively, which shows the G peak shifts toward a higher position, also
reflecting a reduction of sp3 bond content [34]. As the intensity ratios of D peak and G peak are widely
used to evaluate the quality of carbon films [35], it can be obtained through calculation from Figure 4
that the intensity ratios of D peak and G peak of a-C film samples prepared at Ts of 200 ◦C, 300 ◦C,
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400 ◦C, and 500 ◦C are 0.8, 0.9, 1.0, and 1.1, respectively, indicating the increase of sp2 bond content
with the rise of Ts. In addition, the origin Raman spectra were decomposed into D peak curve and
G peak curve based on Gaussian fitting, and the integral area ratios of D peak and G peak (ID/IG)
were obtained, as shown in Figure 5. It can be seen that ID/IG values of a-C film samples prepared
at Ts of 200 ◦C, 300 ◦C, 400 ◦C, and 500 ◦C are 2.3, 2.5, 2.4, and 2.3, respectively, which exhibits the
little relationship between Ts and ID/IG value. Based on Raman characterizations, the enhancement
of D-peak intensity, the increase of the intensity ratios of D peak and G peak, the shift of G peak
toward a higher position and the FWHM decrease of G peak indicate that the rise of Ts promotes the
graphitization of the a-C film and the simultaneous increase of sp2 bond content.
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3.3. SEE Properties of a-C Films Prepared at Different Substrate Temperatures

Figure 6 showed the dependences of the SEY on the primary electron energy for four a-C film
samples prepared at different Ts and the stainless-steel substrate as a reference. Every SEY-Ep curve
in Figure 6 exhibits the same variation tendency of firstly increasing rapidly and then decreasing
gradually with the rise of Ep, agreeing with the general SEE law of solid materials. It is noteworthy
that every a-C film sample has a lower SEY at any certain fixed Ep than the stainless-steel substrate,
which illustrates that an a-C film deposited on stainless steel can effectively reduce the SEY of this
substrate. Additionally, the SEY of a-C film decreases with the increase of Ts. The SEY peak values of
the stainless-steel substrate and a-C film samples prepared at 200 ◦C, 300 ◦C, 400 ◦C, and 500 ◦C are
1.57, 1.22, 1.19, 1.16, and 1.09, respectively. Thus, the film sample prepared at 500 ◦C has the lowest
SEY peak value with a reduction of 30.6% in comparison with the stainless-steel substrate. Apart from
SEY, first crossover point in the SEY-Ep curve is also a major concern in the suppression for SEE. The
first crossover point refers to the point where the SEY reaches 1 for the first time with the rise of Ep

from 0 V in the SEY-Ep curve, and the corresponding primary electron energy of this first crossover
point is called first crossover energy. It can be seen from Figure 6 that the first crossover energies in the
SEY-Ep curves of a-C film samples prepared at 200 ◦C, 300 ◦C, 400 ◦C, and 500 ◦C are 81.9 eV, 104.5 eV,
107.4 eV, and 171.3 eV, respectively, which reflects that the threshold of the onset of multipactor become
higher, and the suppression effect on the SEE is enhanced with the increase of Ts. On basis of the
microstructure characterizations, it is considered that the rougher surface and more sp2 bonds are two
main reasons for the SEY reduction of a-C film with the increase of Ts.
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Figure 6. SEY-Ep curves of stainless-steel substrate and a-C film samples prepared at Ts of 200 ◦C,
300 ◦C, 400 ◦C, and 500 ◦C.

Based on above SEY-Ep curves, a-C films were proved to be effective in suppressing SEE, and
this suppression effect becomes more obvious with the increase of Ts. Then, it is of great significance
to investigate the SEY variations of four a-C film samples prepared at different Ts with electron
bombardment time. Therefore, SEY-t curves of these a-C film samples were obtained and expressed in
Figure 7. Every SEY-t curve exhibits the same variation tendency of increasing with the rise of electron
bombardment time. Through calculation, it can be obtained that all the SEYs of four a-C film samples
increases by close to 17% after 120-min electron bombardment, which shows this increasing rate of
SEY has little relationship with the change of substrate temperature. Among these four samples, the
SEY peak value of the a-C film sample prepared at 500 ◦C rose from 1.05 to 1.23, just increasing by
0.18. Additionally, it should be noted that the a-C film sample with a lower SEY keeps its lower SEY
all the time during continuous electron bombardment. The slight increase of SEY during continuous
electron bombardment is perhaps connected with the modification of surface state of a-C film, and
some relevant investigations need to be carried on further.
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