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Bone destruction is an important pathological feature of rheumatoid arthritis (RA), which
finally leads to the serious decline of life quality in RA patients. Bone metabolism imbalance
is the principal factor of bone destruction in RA, which is manifested by excessive
osteoclast-mediated bone resorption and inadequate osteoblast-mediated bone
formation. Although current drugs alleviate the process of bone destruction to a certain
extent, there are still many deficiencies. Recent studies have shown that traditional
Chinese medicine (TCM) could effectively suppress bone destruction of RA. Some
bioactive compounds from TCM have shown good effect on inhibiting osteoclast
differentiation and promoting osteoblast proliferation. This article reviews the research
progress of bioactive compounds exacted from TCM in inhibiting bone destruction of RA,
so as to provide references for further clinical and scientific research.

Keywords: bone destruction, rheumatoid arthritis, traditional Chinese medicine, bioactive compounds,
bone metabolism
INTRODUCTION

Rheumatoid arthritis (RA) is a erosive autoimmune condition with lingering course (Smolen et al.,
2016). Bone destruction is one of the most typical pathological features in the early RA patients,
more than 10% of patients will occur pathological manifestation 8 weeks after onset (Panagopoulos
and Lambrou, 2018). Current drugs for the treatment of RA are mainly non-steroidal anti-
inflammatory drugs (NSAIDs), disease modifying anti-rheumatic drugs (DMARDs), hormones,
biological agents and so on. Although these drugs alleviate the process of bone destruction to a
certain extent, the long-term use is easy to produce side effects. Therefore, further scientific research
on the treatment of bone destruction is still urgently needed. As is known to all, traditional Chinese
medicine (TCM) has been used to treat RA for centuries and shown good efficacy (Guo Q. et al.,
in.org October 2020 | Volume 11 | Article 5619621
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2017; Zhang Q. et al., 2019; Zhao H. et al., 2018). Recently,
accumulating evidence have indicated that bioactive compounds
extracted from TCM can effectively inhibit osteoclast
differentiation as well as promote osteoblast proliferation, and
may be used as potential therapeutically drugs. Therefore, this
paper aims to review the potential therapeutic effect and targets
of some representative bioactive compounds extracted from
TCM, in order to provide reference for future research
and development.
BONE METABOLISM IMBALANCE IS THE
KEY TO BONE DESTRUCTION IN RA

Bone is a metabolically active organ that keeps alive through
continuous renewal in the process of bone remodeling. Bone
remodeling depends on the balance between bone formation and
bone resorption that maintains the homeostasis of bone
reconstruction (Lian, 2015). Bone destruction in RA mainly
lies in excessive bone absorption and insufficient bone
reconstruction. Osteoclasts play an important role in bone
resorption; they are derived from monocyte/macrophage-
lineage hematopoietic precursor cells which are stimulated
by macrophage colony stimulating factor (M-CSF) and
receptor activator of nuclear factor-kB ligand (RANKL)
(Fujiwara et al., 2016). Mature osteoclasts can express proteins
including integrin, artrat resistant acid phosphatase (TRAP),
calcitonin receptor (CTR), cathepsin K (CTSK), and matrix
metalloproteinase (MMP) at the bone surfaces that are
infiltrated by synovial cells (Zhu et al., 2020a). Osteoclast
differentiation is a complex multistep process, and its
molecular mechanism mainly involves the regulation of
inflammation mediators, transcription factors, and signal
pathways. Inflammatory mediators including tumor necrosis
factor-alpha (TNF-a), interleukin-1 beta (IL-1b), interleukin-6
(IL-6), interleukin-8 (IL-8), and interleukin-17 (IL-17),
prostaglandin E2 (PGE2), inducible nitric oxide synthase
(iNOS), etc., can promote the augment of RANKL and M-CSF
after binding to the receptors on osteoclasts, so as to aggravate
bone resorption in RA. Simultaneously, the initiation of
osteoclast differentiation in the process of bone destruction in
RA also needs the regulation of transcription factors including
nuclear factor of activated T cells (NFATc1), cellular oncogene
fos (c-fos), cellular oncogene jun (c-Jun) (Zhu et al., 2020a).
These cytokines mediate the regulation of osteoclasts on bone
destruction in RA through multiple signal pathways. For
instance, TNF-a and other pro-inflammatory cytokines
secreted by synoviocytes and T cells in RA promote osteoclast
differentiation by activating nuclear factor kappa-B (NF-kB),
mitogen-activated protein kinase (MAPK), Janus kinase/signal
transducer and activator (JAK/STAT), hypoxia inducible factor-
1a (HIF-1a), phosphatidylinositol-3 kinase/protein-serine-
threonine kinase (PI3K/AKT), Toll-like receptor (TLR), etc.
In-depth understanding of the pathological process of
osteoclasts in RA, monitoring and interfering with the
cytokines and signal pathways that promote osteoclast
Frontiers in Pharmacology | www.frontiersin.org 2
activation can provide a new target for the treatment of bone
destruction in RA.

The occurrence of bone destruction in RA is not only the
reason of the enhancement of bone resorption mediated by
osteoclasts, but also due to the limited bone formation (bone
repair) mediated by osteoblasts (Gravallese, 2017). Osteoblasts
participate in osteoclasts regulation by expressing RANKL and
OPG (Corrado et al., 2017). Bone marrow mesenchymal stem
cells (BMSCs) are the main source of osteoblasts, BMSCs is a
kind of stem cells with the potential of self-proliferation and
multi-directional differentiation, which can differentiate into
bone, cartilage, muscle, and other tissues under the action of
different environments and stimulating factors(Komori, 2010).
Because of the stimulation of cytokines such as insulin-like
growth factor 1 (IGF-1) and transforming growth factor-b
(TGF-b), BMSCs differentiate into osteoblast progenitor cells
under the regulation of transcription factors such as Runt-related
transcription factor 2 (Runx2) and bone morphogenetic protein-
2 (BMP-2) (Blair et al., 2017; Komori, 2019). Subsequently,
osteoblasts form osteoid, and mature osteoblasts highly express
calcification-related proteins, which are mainly osteocalcin
(OCN), bone morphogenetic protein-2 (BMP-2), and
osteopontin (OPN) (Blair et al., 2017; Halling Linder et al.,
2017; Komori, 2019). At the same time, Wnt/b-catenin, BMP/
Smad, and Notch signaling pathways will act on osteoblast
differentiation and maturation. Sclerostin and dickkopf-related
protein 1 (Dkk-1) are the Wnt/b-catenin signaling pathway
inhibitors which prevent low-density lipoprotein receptorrelated
protein 5/6 (LRP 5/6) from binding to downstream signal
receptor. Studies have found the expression of Wnt/b-catenin
signal pathway inhibitors in osteoblasts of patients with RA was
increased, which inhibited the activity of osteoblasts and
promoted osteoblast apoptosis, and TNF-a and IL-1 played a
promoting role (Miao et al., 2013). BMP/Smad signaling pathway
can promote the formulation of osteoblasts by regulating all
aspects of osteoblast cycle and has a synergistic effect with Wnt/
b-catenin signaling pathway (Dejaeger et al., 2017). Miyazono
et al. found that both osteoblast development and osteoblast
function in BMP2/4 knockout mice were defective, and the
number of osteoblasts decreased, all of which might be caused
by the down-regulation of Runx2 and Osx (Miyazono et al., 2010).
Verschueren et al. have proved that the total amount of
phosphorylated Smad1 and Smad5 in synovium of patients with
RA increased significantly compared with the control group
(Verschueren et al., 2009). Many kinds of cytokines and signal
pathways are interlaced with each other, and the correlation is
complicated in bone metabolism. Therefore, it is the key to treat
bone destruction in RA by regulating the balance between
osteoclasts and osteoblasts.

EXISTING CHEMICAL AND BIOLOGICAL
DRUGS FOR TREATING BONE
DESTRUCTION IN RA

Once bone destruction occurs, it means that its pathological
changes enter an irreversible phase, so delaying or even blocking
October 2020 | Volume 11 | Article 561962
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bone destruction has become one of the main strategies for the
treatment of RA. The treatment guidelines recommend the use of
methotrexate (MTX) or biological disease modifying anti-
rheumatic drugs (bDMARDs) first when bone destruction is
found (Singh et al., 2016; Smolen et al., 2017). Conventional
synthetic disease modifying anti-rheumatic drugs (csDMARDs)
is regarded as the cornerstone in the treatment of RA, and it is
also a first-line drug recognized by domestic and foreign
guidelines (Singh et al., 2016; Smolen et al., 2017). This type of
drug can effectively control the development of the disease,
improve the clinical symptoms of RA and prevent the
continued destruction of joint structure, but the therapeutic
effect is relatively slow and it is not effective in all patients with
RA (Schett et al., 2016). Glucocorticoids have strong anti-
inflammatory and immuno-suppressive effects, short-acting
hormones are used in the treatment of acute stage of RA
(Güler-Yüksel et al., 2018). low-dose glucocorticoid can quickly
relieve joint swelling and prevent joint bone destruction (Tada
et al., 2016). However, unreasonable long-term use of
glucocorticoids can lead to a decrease in bone mineral density
and an increase in the risk of fractures (Zerbini et al., 2017;
Güler-Yüksel et al., 2018). The emergence of bDMARDs can be
said to be a breakthrough in the treatment of bone destruction in
RA and bDMARDs have clear targeting in the treatment of bone
destruction (Aletaha and Smolen, 2018). The main function of it
is to antagonize the activities of T cells, B cells, osteoclasts,
cytokines, and some small molecules, which delay bone
destruction (Ho et al., 2019). Although the bDMARDs can
correct the abnormal bone metabolism of patients to a certain
extent, and improve their imaging examination and serum bone
metabolism indexes, high costs reduce the dose, or frequency of
bDMARDs (Burmester and Pope, 2017). In addition, they are
not suitable for the complex conditions of all patients because of
the single target (Zampeli et al., 2015). In summary, the current
clinical application of drugs cannot adequately prevent the bone
destruction in all RA patients. Due to the complexity of the bone
destruction mechanism in RA, we need to explore multi-target
drugs with reliable efficacy and little side effects.
EFFECT OF BIOACTIVE COMPOUNDS ON
BONE DESTRUCTION IN RA

TCM in the treatment of rheumatism has a history of thousands
of years, especially the single TCM and its bioactive compounds,
which is more popular in recent years, the therapeutic effect of
TCM on bone destruction has gradually become a new research
hotspot (Shen et al., 2019). A large number of experimental
studies have been carried out, which directly or indirectly verified
the role of TCM in inhibiting bone destruction in RA from
different perspectives. These studies have shown that
bioactive compounds extracted from TCM could down-
regulate bone destruction promoting factors and up-regulate
bone protective factors (Cai X. et al., 2018). Due to its
diversified action ways and targets, TCM may have potential
advantage in restraining RA bone destruction. Therefore, in this
Frontiers in Pharmacology | www.frontiersin.org 3
review, we elaborated the potential mechanisms of
bioactive compounds extracted from TCM in the treatment of
bone destruction in RA and divide them into alkaloids, saponins,
flavonoids, and so on.

Alkaloids
Alkaloids generally represent a highly diverse group of
compounds containing cyclic structures with at least one basic
nitrogen atom, which exist widely in medicinal plants, such as
Coptis chinensis Franch., Sinomenium acutum (Thunb.) Rehder
& E.H. Wilson, Conioselinum anthriscoides ‘Chuanxiong’,
Ephedra sinica Stapf, etc (Bednarz et al., 2019). In recent years,
it has been found that alkaloids have many pharmacological
activities, such as anti-inflammatory, analgesic and
immunoregulation (Bach and Lee, 2019). The bone-protective
alkaloids include sinomenine (SIN), tetrandrine (TET),
norisoboldine (NOR), berberine, magnoflorine, ligustrazine,
etc. The repair effect of SIN, TET, NOR on bone destruction in
RA has been confirmed.

SIN is a kind of bioactive compound extracted from the
medicinal rhizome of Sinomenium acutum (Thunb.) Rehder &
E.H. Wilson, which has been used in the treatment of various
diseases for hundreds of years. SIN is one of the strongest
histamine-releasing agents, and has been proved to have anti-
inflammatory, immunosuppressive, analgesic, antihypertensive,
and anti-arrhythmic effects (Sun et al., 2010). In China and
Japan, several SIN preparations have been used for RA in clinical
practice, such as Zhengqing Fengtongning sustained-release
tablets, SIN hydrochloride injection (Liu et al., 2016). The
pharmacological basis of SIN in the treatment of RA lies in its
anti-inflammatory, analgesic and immunosuppressive effects.
Wei-Wei Liu et al. systematically evaluated the efficacy and
safety of SIN in treating RA by searching the Pubmed,
Cochrane Library, and other databases electronically, and
including sixteen randomized controlled trials (RCTs)
involving 1,500 subjects; the results of this meta-analysis
indicated that SIN had better clinical efficacy and relatively
fewer adverse events in the treatment of RA when compared to
MTX (Liu et al., 2016). Initially, the effect of SIN on RA is the
inhibition of synovitis. Related studies have confirmed that SIN
exerted an effect on anti-inflammatory and immunomodulatory
activities in the treatment of synovitis in RA by inhibiting pro-
inflammatory cytokines, inhibiting synovial cells proliferation
and T cell activation, and regulating monocyte/macrophage
subsets (Zhao et al., 2007; Zhang et al., 2015; Liu et al., 2016).
In addition, the preponderance of SIN in the treatment of bone
destruction in RA are gradually emerging with the deepening of
basic research. On one hand, SIN can indirectly inhibit bone
destruction in RA by inhibiting the secretion of pro-
inflammatory cytokines. on the other hand, it can directly
inhibit osteoclast-mediated bone resorption (Bao et al., 2017;
Liu et al., 2018). NFATc1 is one of the important transcription
factors that induce osteoclast differentiation, and it can induce
the formation of osteoclast specific genes such as TRAP, CTR
and CTSK (Li H. et al., 2018). Recent studies have shown that
NFATc1 is mainly activated through NF-kB and Ca2+ signaling
pathways (Bendickova et al., 2017). Long-gang He et al. found
October 2020 | Volume 11 | Article 561962
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that SIN inhibited the expression and transcriptional activity of
NFATc1 mRNA during the differentiation of human peripheral
blood mononuclear cells into osteoclasts induced by
lipopolysaccharide (LPS), and the main mechanism was to
inhibit the activation of NF-kB and reduce the level of Ca2+ in
cells (He et al., 2016). In addition, SIN also reduced the breast
cancer cells induced bone destruction by inhibiting the protein
activity of NFATc1 (Zhang et al., 2019b). The OPG/RANKL
ratio plays a decisive role in osteoclast differentiation. SIN
regulated OPG/RANKL ratio induced by PGE2 and reduced
the amount of TRAP-positive multinucleated osteoclasts which
differentiated from RAW264.7 cells (Zhou B. et al., 2017).
Another study showed that SIN obviously reduced the
activation of caspase-3 and the phosphorylation of p38 (p-
p38), and JNK (p-JNK) in RANKL-stimulated RAW264.7 cells,
but has no effect on ERK1/2 posphorylation (He et al., 2014; Li X.
et al., 2013). Xiaojuan Li et al. confirmed that SIN prevented the
reduction of tissue mineral density (TMD), bone mineral density
(BMD), trabecular number (Tb. N), trabecular thickness (Tb.
Th), as well as the activity of TRACP5b and ALP in RA rat model
induced by M. tuberculosis H37Ra (Mt) (Li X. et al., 2013). The
inhibitory effect of SIN on bone resorption was also confirmed in
collagen-induced arthritis (CIA) rats that SIN reduced the level
of MMP-3 and MMP-13 in serum and RANKL protein
expression in the synovium (Sun et al., 2014). Obviously, SIN
has a good prospect and application potential in the field of
clinical treatment of bone destruction in RA. However, current
researches of SIN were mainly focused on its inhibitory effect on
bone resorption, its effect on bone formation in RA is still
unknown and needs further research. Meanwhile, the adverse
effects caused by SIN through histamine release, such as allergic
reactions and gastrointestinal reactions, have severely impeded
the further clinical application of SIN. For people with allergic
constitution, SIN should be taken in small doses and the use of
SIN should be cautious; and it is suggested to avoid taking high-
fat and high-protein diets during administration. For digestive
tract reactions, appropriate preparation forms should be selected
to alter the irritation and instability of SIN. Hence, further
studies are urgently needed to explore the possibilities of
decreasing the clinical adverse effects of SIN.

Besides SIN, other alkaloids also have the effect on bone
destruction in RA. As a potential ligand of aryl hydrocarbon
receptor (AhR), TET markedly inhibited the differentiation of
RAW264.7 cells and bone marrow-derived macrophages
(BMMs) into osteoclasts through AhR/c-Src/c-Cbl signal
pathway. Moreover, bone mineral density (BMD) and
trabecular bone (Tb) of bone parameters increased in CIA rats
significantly after continuous administration of TET (Yuan et al.,
2016; Jia et al., 2018; Jia Y. et al., 2019). NOR is the main
isoquinoline alkaloid that inhibited the differentiation of
osteoclasts via MAPK/NF-kB/c-fos/NFATc1, HIF, and p38/
ERK/AKT/AP-1 signal pathway, and it also significantly
reduced the number of TRAP-positive multinucleated
osteoclasts in the joints of CIA rats as well as the levels of
RANKL, IL-6, PGE2, and MMP-13 in serum of AIA rats
independently of its anti-inflammatory effect, but the results
Frontiers in Pharmacology | www.frontiersin.org 4
also showed that NOR could not reduce the levels of OPG and
MMP-1 (Luo et al., 2010; Wei et al., 2013a; Wei et al., 2013b; Wei
et al., 2015). All these experimental evidences have been
summarized in Table 1.

Berberine, magnoflorine, ligustrazine, and other alkaloids
have been confirmed to inhibit the bone resorption or promote
the bone formation in vitro, but whether they have any effect on
bone destruction in RA is still unknown and needs to be verified
in vivo (Wang et al., 2016; Wang et al., 2017; Cai Z. et al., 2018;
Dinesh and Rasool, 2018). Collectively, most of the alkaloids play
a role in relieving bone destruction by inhibiting the formation,
differentiation and maturation of osteoclasts, and their biological
activities may be related to their special structure which need to
be explored by more related researches. The major challenges
associated with alkaloid researches are the poor water solubility
and low bioavailability which will limit their oral administration.
Low bioavailability may be resolved by using semisynthetic and
biochemical transformation approach. Most of the alkaloids have
different biological characteristics, and biosynthesis of these
agents is also varied. Therefore, it is indeed a daunting task to
indicate the common mechanisms of action for alkaloids,
because compounds exhibit differential cellular and molecular
mechanisms even within a particular structural class. Hence,
more studies in vitro and in vivo are needed to verity the effects of
alkaloids agents on bone destruction in RA.

Saponins
Saponins are linked by hydrophobic sapogenins and hydrophilic
glycosyl groups through glycosides which the main components
are triterpenes or spiral steranes. They have the activities of anti-
inflammatory and improving body immunity (Zhao Y. et al.,
2018). Saponins’ bone protection is also very prominent,
triterpenoid saponins such as asperosaponin VI (ASA VI),
ginsenoside Rg1, notoginsenoside R1, glycyrrhizin, and
steroidal saponins such as dioscin, all of them are bone-
protective saponins. The repair effect of ASA VI, ginsenoside
Rg1 on bone destruction in RA has been confirmed.

ASA VI is the main bioactive compound of Dipsacus
japonicus Miq., which has a wide range of pharmacological
effects. Its pharmacological activities in neuroprotection,
prevention of osteoporosis, anti-apoptosis, analgesia, etc. that
have attracted the attention of the majority of scholars, and has
high research and development value (Ke et al., 2016). Liu et al.
demonstrated ASA VI inhibited osteoclast differentiation to
protect bone tissue, it reduced the levels of TNF-a and IL-1b
in serum of CIAmice, and significantly reduced the expression of
TRAP, CTSK, MMP-9 and b3-integrin involved in bone
resorption, in addition, the formation of F-actin ring induced
by RANKL in BMMs significantly inhibited, as well as the
phosphorylation levels of AKT, JNK, and p38 (Liu et al., 2019).
ASA VI not only inhibited osteoclast differentiation, but also
promoted osteoblast differentiation. ASA VI induced osteoblast
maturation and differentiation, and then increase bone
formation in MC3T3-E1 and primary osteoblastic cells via
increasing BMP-2 synthesis, and activating p38 and ERK1/2
(Niu et al., 2011). Ding et al. demonstrated ASA VI enhanced the
October 2020 | Volume 11 | Article 561962
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ALP activity of adipose-derived stem cells (ADSCs), promoted
matrix mineralization, and up-regulated the phosphorylation of
bone-related proteins OCN, Runx2, and Smad2/3, which
promoted the osteogenic differentiation of ADSCs (Ding et al.,
2019). Although the pharmacological action of ASA VI has a
wide application prospect, its development and popularization
are greatly limited by its poor bioavailability. It is suggested that
it can be further improved through preparation technologies
such as nano-drug delivery system, sustained and controlled
release drug delivery system and so on.

Ginsenoside Rg1 effectively controlled the bone damage in
CIA mice, which was mainly manifested by significant decrease
in the number of osteoclasts in the interphalangeal joint and
ankle joint, and the expression of TRAP, CTSK, MMP and
calcitonin receptor (CTR) induced by RANKL was inhibited
(Gu et al., 2014). This bone-protective effect was also effective in
AIA rats, after intraperitoneal injection of ginsenoside Rg1 for 14
days, the levels of TNF-a and IL-6 in the blood of AIA rats were
significantly decreased. In addition, Rg1 increased the expression
of peroxisome proliferators-activated receptors-gamma (PPAR-
Frontiers in Pharmacology | www.frontiersin.org 5
g) protein and inhibited NF-kB nuclear translocation
in RAW264.7 cells stimulated by lipopolysaccharide (LPS)
(Zhang et al., 2017). All these experimental evidences have
been summarized in Table 2.

In vitro studies, it has been proven that notoginsenoside R1,
glycyrrhizin, dioscin, and other saponins can inhibit the
osteoclasts’ differentiation or promote the osteoblasts’
differentiation, but their effect on bone destruction in RA
requires the verification of relevant animal experiments (Li Z.
et al., 2018; Qu et al., 2014; Wang et al., 2015). Based on the
above findings, we can find that most of the saponins (mainly
triterpenoid saponins) play a role in bone resorption or bone
formation. However, it is not known whether triterpenoid
saponins and steroidal saponins have different pharmacological
effects on bone-protection, whether the bone protection of
steroidal saponins is affected by the structural changes of liver
microsomes. Therefore, a large number of related experiments
are still needed. Similarly, because of the structural diversity and
complexity of saponins, the acquisition of many saponins is still a
difficult task, which greatly limits the further exploration of
TABLE 1 | Effects and mechanisms of alkaoids on bone destruction in rheumatoid arthritis (RA).

Bioactivecompounds Source Chemical structure Targets Functions References

Sinomenine Sinomenium
acutum (Thunb.)
Rehder & E.H.
Wilson

Down-regulated: GM-CSF, IL-1, IL-12, TNF-
a, IL-6, RANKL, NFATc1, TRAP, MMP-9,
CTSK, TLR4/TRAF6, Ca2+, p38MAPK-NF-kB
pathway
Up-regulated: OPG

inhibit
osteoclast
differentiation

(Liu et al.,
2018)
(Zhou B.
et al., 2017)
(Yuan et al.,
2018)
(He et al.,
2016)

Tetrandrine Stephania
tetrandra S.
Moore

Down-regulated: NF-kB-p65, NFATc1, IFN-g,
IL-17A, Syk-PLCg2 signaling pathway
Up-regulated: IL-10, AhR nuclear
translocation

inhibit
osteoclast
differentiation

(Jia et al.,
2018)
(Yuan et al.,
2016)
(Jia Y. et al.,
2019)

Norisoboldine Lindera
aggregata
(Sims) Kosterm.

Down-regulated: RANKL, IL-6, PGE2, MMP-
13, TRAF6-TAK1, p38/ERK/AKT/AP-1,
MAPKs/NF-kB/c-Fos/NFATc1, HIF signal
pathway

inhibit
osteoclast
differentiation

(Wei et al.,
2013a)
(Wei et al.,
2013b)
(Wei et al.,
2015)
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saponins’ pharmacological activity and mechanism. In addition,
the bioavailability of most saponins is low after oral
administration, which also brings difficulties to the research of
new drugs based on active natural saponins.

Flavonoids
Flavonoids generally refer to a series of bioactive compounds
formed by the connection of two benzene rings with phenolic
hydroxyl groups (A and B rings) through the central three
Frontiers in Pharmacology | www.frontiersin.org 6
carbon atoms. They have the effects of anti-inflammation, anti-
oxidation, scavenging free radicals and so on (Wen et al., 2017).
The bioactive compounds of flavonoids for protecting effect on
bone by acting on osteoclasts or osteoblasts include kaempferol
(KP), quercetin, icariin, poncirin, baicalin, silibinin, etc. The
repair effect of KP, quercetin, icariin on bone destruction in RA
has been confirmed.

KP is a natural flavonol-type flavonoid, which is present in
the rhizomes of the ginger plant Kaempferia galanga L.
TABLE 2 | Effects and mechanisms of saponins on bone destruction in rheumatoid arthritis (RA).

Bioactivecompounds source Chemical structure Targets Functions References

Ginsenoside Rg1 Panax
ginseng C.
A. Mey

Down-regulated: NF-kB p65,
MAPK, JNK, ERK1/2, P38, TNF-a,
IL-6
Up-regulated: PPAR-g

inhibit osteoclast
differentiation and
maturation

(Gu et al.,
2014)
(Zhang
et al., 2017)

Asperosaponin VI Dipsacus
japonicus
Miq.

Down-regulated: NFATc1, c-Fos,
TNF-a, IL-6, IL-1b, NF-kB, MAPKs,
AKT pathway
Up-regulated: OCN, Runx2,
Smad2/3 phosphorylation

inhibit osteoclast
formation;
promote
osteogenic
differentiation

(Liu et al.,
2019)
(Ding et al.,
2019)
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According to literature reports, previous studies have shown that
KP has many pharmacological effects, such as anticancer, anti-
inflammatory , ant ioxidant , ant ibacter ia l , ant iv ira l ,
immunosuppressive, etc (Calderón-Montaño et al., 2011; Jia Z.
et al., 2019). KP is the basis of the quality control standard of
Duanteng Yimutang preparation for clinical treatment of RA, the
mechanism and molecular target of KP in the treatment of RA
can provide more theoretical support and basis for its clinical
application. The effect of KP on synovitis is shown that it
inhibited proliferation, induced apoptosis, and ameliorated
inflammation in fibroblast-like synoviocytes by suppressing the
NF-kB and AKT/mTOR pathways or targeting on the fibroblast
growth factor receptor 3 (FGFR3)-ribosomal S6 kinase 2 (RSK2)
signaling axis (Wang J. et al., 2019). In addition to its inhibitory
effect on synovitis, KP also showed bone-protecting effect in the
treatment of RA. KP’s bone-protective function in RA is to
inhibit pro-inflammatory cytokines indirectly, it also can directly
act on osteoclast-mediated bone resorption or osteoblast-
mediated bone formation. Alice Wattel et al. explored the
effect of KP on bone resorption for the first time, they found
KP directly induced apoptosis of mature osteoclasts in the highly
purified rabbit osteoclasts, and its estrogenic effect could be
involved in the inhibition of bone resorption (Wattel et al.,
2003). KP inhibited RANKL-induced expression of c-fos, c-
RANK and CTR in RAW264.7 cells, however, TNF-a-
stimulated intracellular ROS production was unaltered by KP
(Pang et al., 2006). KP inhibited IL-1b-stimulated, RANKL-
mediated the expression of NFATc1, phosphorylation of ERK
1/2, p38 and JNK MAP kinases in bone marrow cells (Lee et al.,
2014). Autophagy has pivotal roles in maintaining bone
metabolic balance. Sequestosome 1 (p62/SQSTM1) is an
important bridge protein that becomes incorporated into
autophagosomes in RANKL-induced autophagy and
osteoclastogenesis (Rea et al., 2013). Kim et al. found KP
inhibited autophagy and promoted apoptotic cell death in
RAW 264.7 cells by the degradation of p62/SQSTM1. KP’s
main manifestation of inhibiting osteoclastogenesis was to
abrogate the formation of TRAP-positive multinucleated cells
induced by RANKL in this in vitro experiment (Kim C. J. et al.,
2018). There are studies that showed the direct effects of KP on
osteoblastic cells or osteoblastic precursor cells by different
mechanisms. KP’s estrogenic effect acted on osteoblast
differentiation, KP induced the activity of osteoblast
differentiation biomarkers including ALP, OCN, osterix, Runx2
by estrogen receptor activation in rat primary osteoblasts (Guo
et al., 2012). Interestingly, KP-mediated autophagy promotes
osteoblast differentiation and bone mineralization. Kim et al.
found KP increased the expression of the autophagy-related
factors beclin-1, p62/SQSTM1, and the expression of
osteoblast-related factors Runx2, osterix, BMP-2, and collagen
I also decreased with dose dependent under the concentration of
10 mM in MC3T3-E1 cells (Kim et al., 2016). With further
insights into the mechanism of bone-protective action of KP,
Yang Wang et al. found KP’s regulation of Wnt/b-catenin
pathway was to up-regulate the microRNA-101 in MC3T3-E1
cells (Wang Y. et al., 2019). The effect of KP on bone destruction
Frontiers in Pharmacology | www.frontiersin.org 7
in RA has also been confirmed in vivo. After intragastric
administration of KP, the effect of synovitis on the invasion of
surrounding bone and the level of MMP were suppressed in CIA
model (Pan et al., 2018). Furthermore, KP inhibited the
progressive structural destruction of RA joints by blocking the
bFGF/FGFR3/RSK2 signaling axis in CIA model, the mainly
manifest was shown as decreased the levels of osteoclast specific
genes TRAP, CTR, CTSK, c-jun, and p50 (Lee et al., 2018).
Though KP’s poor bioavailability represents a significant
obstacle, the use of KP-based nanoparticles has brought more
hope on chemoprevention strategies. While KP shows potential
for improving bone destruction by the alterations of osteoclast or
osteoblast related protein genes or RNAs, but most of the research
conducted on KP resistance to bone destruction potency was in
vitro, making it difficult to draw a final conclusion on its
usefulness, in vivo studies and clinical trials are scarce so far,
thus stressing the need for more in-depth experiments.

Quercetin and icariin are two other flavonoids with the effect
of treating bone destruction in RA. Quercetin not only inhibited
the expression of osteoclast-specific genes TRAP, CTSK,
NFATc1 in vitro, and the plasma level of MMP-3, MMP-9 in
CIA mice, but also up-regulated the mRNA and protein
expression of osteoblast-specific genes Osx, Runx2, ALP and
OCN (Guo C. et al., 2017; Haleagrahara et al., 2018; Kim H. R.
et al., 2019). Icariin blocked osteoclast generation by inhibiting
the expression of TRAF6 in the early stage of osteoclast
formation and the activation of ERK1/2 and NF-kB. In
addition, the decrease of F-actin ring formation revealed that
bone resorption capacity of mature osteoclasts was inhibited by
Icariin. Moreover, Icariin’s inhibitory effect on bone resorption
in RA has also been confirmed in CIA model (Chi et al., 2014;
Kim B. et al., 2018; Xu et al., 2019). All these experimental
evidences have been summarized in Table 3.

Poncirin, baicalin, silibinin, and other flavonoids have been
shown significant effects on osteoclasts or osteoblasts (Kim et al.,
2009; Lu et al., 2017; Chun et al., 2020). But whether they can
repair bone destruction in RA is not verified which need a large
number of relevant animal experiments. Actually, most of the
flavonoids play a role in bone resorption or bone formation by
different signal transduction mechanisms. Autophagy may be
involved in, but still need conduct appropriate animal
experiments. The difference between protective autophagy and
inhibitory autophagy induced by flavonoids may be related to the
type, mode and dose of flavonoids, as well as the type and the
state of the cell lines. Moreover, most flavonoids have low
cytotoxicity to normal cells at normal dose, and are safer than
traditional cytotoxic drugs, so they have strong potential for
clinical application.

Terpenoids
Terpenoids, a kind of compounds with isoprene unit (C5 unit) as
the basic structural unit in the molecular framework, have anti-
inflammatory, immunoregulatory and other pharmacological
activities (Guesmi et al., 2017). The bioactive compounds of
terpenoids for protecting effect on bone include triptolide (TP),
celastrol, artesunate, parthenolide, andrographolide (AP), etc.
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The repair effect of TP, celastrol, artesunate on bone destruction
in RA has been confirmed.

TP (a dierpene triepoxide in chemical structure), extracted
from Tripterygium wilfordii Hook.f., is a kind of natural product
with various biological activities. It attracted worldwide attention
in the 1960s because of its pharmacological effects in a variety of
diseases such as RA, no small cell lung cancer, and refractory
nephrotic syndrome (Yuan et al., 2019). TP has been considered
as a promising anti-RA drug which has definite effects including
immunosuppression, anti-inflammatory reaction, inducing
apoptosis, inhibiting angiogenesis (Li et al . , 2014).
Tripterygium wilfordii tablets, Tripterygium wilfordii
glycosides tablets, and Tripterygium hypoglaucum hutch
tablets which take triptolide as the quality control standard are
Frontiers in Pharmacology | www.frontiersin.org 8
available in clinic (Law et al., 2011). The pharmacological effect
of TP on synovitis is the focus of researchers to explore the
mechanism of triptolide in the treatment of RA at the very start.
TP treated synovitis in RA by regulating immune-related cells
(such as T cells, macrophages, dendritic cells), immune-related
inflammatory mediators and immune-related angiogenesis
(Chan et al., 1999; Zhu et al., 2005; Kong et al., 2013). With
the research developed, researchers found that delaying or even
blocking bone destruction is another primary mechanism of TP
in the treatment of RA. Zhu et al. systematically evaluated the
effect of Tripterygium wilfordii glycosides tablets in the
treatment of RA by searching the Pubmed, Web of Science,
Cochrane Library and other databases, three RCTs were
employed which involved a total of 223 subjects, and the
TABLE 3 | Effects and mechanisms of flavonoids on bone destruction in rheumatoid arthritis (RA).

Bioactivecompounds Source Chemical structure Targets Functions References

Kaempferol Kaempferia
galanga L.

Down-regulated: MMP-1,
MMP-3, COX-2, PGE2,
ERK-1/2, p38, JNK, NF-
kB, TRAP, CTR, MAPKs,
c-Fos, NFATc1, CTSK, c-
Jun
Up-regulated: collagen I,
Runx2, Osx, BMP-2,
ATG5, beclin-1, LC3

inhibit osteoclast
differentiation;
promote osteoblast
differentiation

(Yoon et al.,
2013)
(Lee et al.,
2018)
(Lee et al.,
2014)
(Kim et al.,
2016)

Quercetin Sophora
japonica L.

Down-regulated: TNF-a, IL-
1b, MCP-1, IL-17, ERK,
IkBa, TRAP, CTSK, DC-
STAMP, NFATc1, OC-
STAMP, caspase3
Up-regulated: Wnt/b-
catenin signaling pathway

inhibit osteoclast
differentiation;
promote osteoblast
differentiation and
inhibit osteoblast
apoptosis

(Kim et al.,
2019)
(Guo C.
et al., 2017)

Icariin Epimedium
brevicornu
Maxim.

Down-regulated: TRAF6,
ERK phosphorylation, NF-
kB, MAPK signaling
pathway

inhibit osteoclast
formation and
differentiation

(Kim B.
et al., 2018)
(Xu et al.,
2019)
(Hsieh et al.,
2011)
October
 2020 | Volume 11 | A
rticle 561962

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Shi et al. Bioactive Compounds Inhibit Bone Destructions
results indicated that Tripterygium wilfordii glycosides tablets
had a good effect on regulating the modified Sharp score (m
TSS), tender join joint erosions (JE) and joint space narrowing
(JSN), and the effect is better than the positive drugs MTX and
sulfasalazine, which reflected the advantages of TP in the
treatment of bone destruction in RA (Zhu G. Z. et al., 2019).
As a typical anti-inflammatory drug, TP indirectly treated bone
destruction in RA by inhibiting the levels of pro-inflammatory
cytokines such as TNF-a and IL-1b and promoting the secretion
of IL-10 and TGF-b1 derived from T cells (Xu et al., 2016).
RANK-RANKL signaling activates a variety of downstream
signaling pathways required for osteoclast development. TP
suppressed RANKL-induced NF-kB activation in osteoclast
precursor cells by inhibiting IkBa kinase activation, IkBa
phosphorylation, and IkBa degradation effectively, and osteoclast
formation induced by tumor cells was inhibited (Park, 2014).
Spleen cells are also one of the main sources of osteoclast
precursors, low-dose TP promoted the apoptosis of osteoclast
precursors by inhibiting the overexpression of cellular inhibitor
of apoptosis protein 2 (cIAP2) in fresh spleen cells induced by M-
CSF (Wang et al., 2018). AKT-MDM2‐induced cell death might
contribute to the osteoclastogenesis suppression. Cui et al. found
TP suppressed NFATc1 overexpression and AKT phosphorylation
when PI3K-AKT-NFATc1 pathway was activated induced by
RANKL in BMMCs or RAW264.7 cells (Cui et al., 2020). The
therapeutic effect of TP on bone destruction in RA has been
confirmed in vivo, TP improved bone destruction of TNF-Tg
mice by decreasing the levels of pro-inflammatory cytokines,
promoting the apoptosis of osteoclast precursors and inhibiting
the generation of osteoclast (Wang et al., 2018). The result of Micro
CT showed that TP significantly increased joint bone density, bone
volume fraction and trabecular thickness of CIA mice, reduced
trabecular separation of inflammatory joints through inhibiting the
expression of RANKL and increasing the expression of OPG (Liu
et al., 2013). Although TP has already been proved to have potential
advantages in the treatment of bone destruction in RA in vitro and
in vivo, its precise molecular targets that responsible for the potent
biological activity have not been fully identified yet. At the same
time, the side effects of TP are to block its clinical application to a
great extent, development of efficient TP-targeted delivery system
is an available strategy to realize targeted delivery of TP with
reduced toxicity.

Celastrol and artesunate are two other terpenoids with the
effect of treating bone destruction in RA. Celastrol played an
inhibitory effect against the formation and function of osteoclasts
by regulating the ratio of RANKL/OPG and the expression of
transcription factors in osteoclasts induced by RANKL, the main
mechanisms involved the phosphorylation of NF-kB and MAPK
(Nanjundaiah et al., 2012; Gan et al., 2015; Cascao et al., 2017).
Artesunate down-regulated the expression of osteoclast-specific
genes TRAP, CTSK, c-fos, and NFATc, as well as the expression
of MMP-9 protein in CIA model hind paw by inhibiting the
ERK and JNK phosphorylation (Li Y. et al., 2013; Wei et al.,
2018). All these experimental evidences have been summarized
in Table 4.
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Parthenolide, AP and other terpenoids exerting an effect on
osteoclasts or osteoblasts has been found in vitro (Kim et al.,
2014; Qu et al., 2014; Zhang et al., 2014; Li et al., 2016). But
whether they have any effect on bone destruction in RA is
unknown, it is critical to verified terpenoids’ pharmacological
action of bone protection in vivo. Terpenoids are expected to
become the main drugs for the treatment of bone destruction in
RA with its significant pharmacological effects, low toxicity and
side effects, but the efforts to further improve terpenoids’ efficacy
are limited because of the unclear structure-activity relationship.
Therefore, it is necessary to explore new technical measures to
definite the structure-activity relationship.

Phenols
Phenols is a kind of bioactive compound, and its hydroxyl group
is directly connected to benzene ring or other aromatic ring.
Phenols has strong effects of anti-oxidation, anti-atherosclerosis,
anti-infection, anti-tumor, and anti-osteoporosis (Zenkov et al.,
2016). The bioactive compounds of terpenoids for protecting
effect on bone by acting on osteoclasts or osteoblasts including
resveratrol (RES), ferulic acid (FA), curcumin, gastrodin,
paeonol, etc. The repair effect of RES, FA on bone destruction
in RA has been confirmed.

RES, extracted from Reynoutria japonica Houtt., is a naturally
occurring polyphenolic compound containing stilbene structure.
It has reported that RES has positive effects on health and
increase life span (Baur and Sinclair, 2006). RES mainly
functioned on the centrum restraint, heart sturdiness,
inflammation diminishing, and anti-cancer (Ko et al., 2017;
Wahab et al., 2017). At present, the role of RES in the
treatment of RA is particularly remarkable because of its
unique ant i - inflammatory and immunosuppress ive
pharmacological effects. RES treated RA by enhancing the
apoptosis of fibroblast-l ike synoviocytes, inhibiting
angiogenesis, etc, the mechanism of its inhibition of synovitis
included the regulation of NF-kB, MAPK-p38, JAK/STAT,
PI3K/AKT, etc signaling pathways (Yang et al., 2017; Yang
et al., 2018; Zhang et al., 2019a). As a natural phytoestrogen,
RES acts as an estrogen receptor agonist which obviously
promotes bone growth under normal bone growth
environment and protects bone under weightlessness and
diseases (Baur and Sinclair, 2006). The dosage forms of RES
used for RCT to investigate the effects of RES on bone in type 2
diabetic patients or metabolic syndrome (MetS) include RES
tablets and RES capsules, these clinical trials further confirmed
the protective effect of RES on bone (Ornstrup et al., 2014; Bo
et al., 2018). RES is reported to impact bone destruction by
increasing osteoblast differentiation and function in vitro. RES at
non-toxic concentrations dose-dependently inhibited RANKL-
induced osteoclast differentiation and induced osteoclast
apoptosis by inhibition of ROS generation (He et al., 2010).
RES improved the oxidative stress state of RAW264.7 cells, thus
inhibited the mRNA expression of osteoclast specific enzyme
MMP-9, TRAP, CTSK, this was the first time to confirm that RES
promoted resistance to oxidative damage and restrained
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osteoclastogenesis by inhibiting the PI3K/AKT signaling
pathway at the molecular level (Feng et al., 2018). The role of
RES in promoting osteoblast differentiation may be more
prominent. RES suppressed OCN synthesis in osteoblasts
induced by stimulating factors (triiodothyronine or BMP-4)
via the activation of SIRT1 or the amplification of p38 MAP
kinase activity (Kuroyanagi et al., 2015; Fujita et al., 2017).
Although RES indirectly promoted osteoblast differentiation by
inhibiting inflammation, RES promoted the increase of ALP and
OPG in BMSCs induced by LPS, but did not decrease the levels of
IL-6 and IL-8, the result indicated RES’s effect on osteoblasts
could be independent of inflammation. Meanwhile, the Wnt/b-
catenin and ERK/MAPK signaling pathways also participated in
the mechanism of RES’s bone-protection (Ornstrup et al., 2016;
Zhao X. E. et al., 2018). Silent information regulator 2 homologue
1 (SIRT1) is a positive regulator of the master osteoblast
transcription factor, RES reduced the decrease of OCN, OPN,
and RUNX2 expression in MC3T3-E1 cells induced by LPS, and
the main possible mechanism was to regulate mitochondrial
function of osteoblasts by increasing the expression of SIRT1
(Ma et al., 2018). Yaqiong Yu et al. found a new mechanism of
Frontiers in Pharmacology | www.frontiersin.org 10
RES promoting osteoblast differentiation under the same result,
the activation of AMP-activated protein kinase (AMPK)
phosphorylation and inhibitor of suppressor of cytokine
signaling 1 (SOCS1) were important signal events that RES
inhibited LPS-induced MMP-2 production in MC3T3-E1 cells
(Yu et al., 2018). The potential protective effects of RES on bone
destruction in RA has been confirmed in vivo, RES significantly
improved the narrowing of joint space, and the expression level of
MMP1 and MMP13 in the synovial tissue was significantly
reduced in CIA rats (Hao et al., 2017). Similarly, the expressions
of MAPK, Src kinase, STAT3, and Wnt5a in the CIA model joint
tissue also participated in the repairing effect of RES on bone
destruction in RA (Oz et al., 2019). More and more experimental
studies have emphasized the immunomodulatory and
osteoprotective effects of RES in vivo and in vitro. Although these
studies have produced exciting results, we still faced with some
problems such as poor water solubility and low bioavailability.
Therefore, various strategies are being implemented, including the
development of RES-related preparations (nanoparticles, liposomes,
micelles and phospholipid complexes, etc.) to improve their
bioavailability. In addition, several other methods have been used
TABLE 4 | Effects and mechanisms of terpenoids on bone destruction in rheumatoid arthritis (RA).

Bioactivecompounds Source Chemical structure Targets Functions References

Triptolide Tripterygium
wilfordii
Hook.f.

Down-regulated: IL-1a, IL-1b,
TNF-a, cIAP2, RANKL
Up-regulated: IL-10, TGF-b1,
OPG

promote the
apoptosis of
osteoclast and
inhibit
osteoclast
differentiation

(Wang et al.,
2018)
(Wang S.
et al., 2019)
(Liu et al.,
2013)
(Xu et al.,
2016)

Celastrol Tripterygium
wilfordii
Hook.f.

Down-regulated: IL-6, IL-1b, NF-
kB, 90b protein, c-Fos, c-Jun,
NFATc1, TRAP, CTSK, CTR,
MMP-9, RANKL, GM-CSF, M-
CSF, OPN, IGF-1, MMP-9

inhibit
osteoclast
differentiation
and function

(Astry et al.,
2015)
(Cascao
et al., 2017)
(Gan et al.,
2015)
(Nanjundaiah
et al., 2012)

Artesunate Artemisia
annua L.

Down-regulated: MMP-9, TNF-a,
IL-1b, IL-17, ERK, JNK, TRAP,
CTSK, c-Fos, NFATc1

inhibit
osteoclast
differentiation

(Li Y. et al.,
2013)
(Wei et al.,
2018)
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to improve its bioavailability, including changing the route of
administration of resveratrol and blocking the metabolic pathway
through treatment with other drugs. In fact, since RES has multiple
intracellular targets, additional data are needed to determine the
results of interactions or synergies between other polyphenols.

FA has the functions of anti-inflammatory, anti-oxidation,
inhibiting platelet aggregation, improving microcirculation, and
so on (Zheng et al., 2019; Perez-Ternero et al., 2017). Zhu et al.
found FA significantly alleviated joint swelling and reversed the
increase of C-reactive protein (CRP) and rheumatoid factor (RF)
in CFA rats, its protective mechanism on joints is mainly to
reduce the secretion of TNF-a and increase the secretion of
TGF-b by inhibiting JAK/STAT pathway (Zhu et al., 2020b).
Sagar et al. found that FA inhibited the expression of DC-
STAMP which is necessary for the differentiation and
maturation of osteoclasts, as well as inhibited RANKL-induced
upregulation of MMP-9 and CTSK. In addition, it induced
mature osteoclast apoptosis through the caspase-3 pathway
(Sagar et al., 2016). Scanning electron microscopy and TRAP
staining analysis showed that FA significantly inhibited the
osteoclast differentiation induced by RANKL, it inhibited the
formation of mature osteoclasts by inhibiting the expression of
NFATc1 and c-fos, it further inhibited the bone resorption
activity of mature osteoclasts by inhibiting the expression of
TRAP, MMP-9, and CTSK (Doss et al., 2018). All these
experimental evidences have been summarized in Table 5.

In vitro studies, it has been found that curcumin, gastrodin,
paeonol and other phenols can also inhibit bone resorption or
promote bone formation (Zhou F. et al., 2017; Li et al., 2019;
Wang Q. et al., 2019). However, we need more experiments in
vivo to explore their effects on bone destruction in RA. Phenols
has good antioxidant activity because of the high reactivity of
Frontiers in Pharmacology | www.frontiersin.org 11
hydroxyl substitution and the ability to engulf free radicals. It is
known that oxidative stress can improve the activity of
osteoclasts, whether phenols’ antioxidant properties are closely
related to its pharmacological effects on osteoclasts or osteoblasts
needs to be further studied.
CONCLUSION AND FURTHER
PERSPECTIVES

Bone destruction in RA is difficult to cure, and the disability rate
is high, which is a serious threat to human health. Therefore, it is
particularly important to find more effective and reliable
treatment methods and means. TCM in the treatment of RA
has a long history, the research of TCM in the treatment of bone
destruction in RA has made rapid progress, which shows that
TCM has strong advantages and characteristics in the treatment
of bone destruction in RA. These bioactive compounds extracted
from TCM display anti-bone destructive activity in vitro and in
vivo, and they have shown very good results from different
aspects. The potential of bioactive compounds extracted from
TCM to provide or inspire the development of anti-bone
destruction bioactive drugs is, therefore, really quite evident.
However, the biological tests about these compounds and test
results are different, mainly due to the different extraction
protocols, compounds purity and intervention projects
(including doses, animal, or cell models, test methods, and so
on). Even compounds with the same purity in the study may
have different test results and will make people doubt the
authenticity of these tests. Therefore, it has become necessary
to use some advanced and interdisciplinary technology and
methodology unify extraction protocols and purity
TABLE 5 | Effects and mechanisms of phenols on bone destruction in rheumatoid arthritis (RA).

Bioactivecompounds Source Chemical structure Targets Functions References

Resveratrol Reynoutria
japonica
Houtt.

Down-regulated: ROS, MMP-9,
TRAP, CTSK, PI3K/AKT, MAPK
signaling pathway
Up-regulated: ALP, OPG, OCN,
OPN, RUNX2, Wnt/b-catenin
signaling pathway

inhibit
osteoclast
differentiation;
promote
osteoblast
differentiation

(He et al.,
2010)
(Feng et al.,
2018)
(Zhao X. E.
et al., 2018).
(Ma et al.,
2018).
(Hao et al.,
2017)

Ferulic acid Ferula
assa-
foetida L.

Down-regulated: TNF-a, JAK2,
MMP-9, CTSK, NFATc1, c-Fos,
TRAP, NF-kB signaling pathway
Up-regulated: TGF-b, caspase-3

inhibit
osteoclast
differentiation
and mature

(Zhu L.
et al., 2019)
(Sagar et al.,
2016)
(Doss et al.,
2018)
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identification standard. Furthermore, the studies on compounds
are only in the early stage, most of them are focused on in vitro
exper iments . Hence , addi t ional invest igat ion into
pharmacokinetics with animal models and clinical studies are
necessary. In addition, proper dosage needs to be considered to
prevent the potential toxicity when developing these compounds
into clinically viable drugs. Similar compounds can treat bone
destruction of RA through different signal transduction
mechanisms. Whether these mechanisms are interrelated, and
whether compounds with the same or similar structures have
similar pharmacological effects on osteoclasts or osteoblasts
remain to be further verified. Combinations of different
compounds that regulate bone destruction in RA through
different mechanisms may have synergistic or cumulative
effects. This also needs to be further verified.

It is hoped that this review can highlight the importance of
bioactive compounds extracted from TCM in the treatment of
bone destruction in RA and provide a new direction for future
researchers. In the future, we need advanced technology to
separate more bioactive compounds from TCM for the
Frontiers in Pharmacology | www.frontiersin.org 12
treatment of bone destruction in RA, and further explore the
exact molecular mechanism and therapeutic targets of the
bioactive compounds, which will be helpful for the treatment
of bone destruction in the early stage, preventing disability and
enhancing the quality of patients’ life.
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