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Abstract: Background: o-Methylene cycloalkanones are considered of interest because of their bio-
logical activity. Herein, in this paper the synthesis of () HomoSarkomycine Esters was described and

characterized.
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Methods: Using Bylis-Hillman adducts, triethlorthoacetate and propanoic acid, (+) HomoSarkomycine
Esters could be synthesized by smoothly Johnson-Claisen rearrangement.

Results: A small library of target compounds was prepared under optimized reaction conditions in
moderate yields. The reaction mechanism and the DFT study have been investigated.

Conclusion: This methodology provides ready access to 2-hydroxymethyl-2-cyclopentenone 1a which
can be served as the raw materials of the synthesis of (+) HomoSarkomycine Ester.

Keywords: Baylis-Hillman reaction, homosarkomycine, 2-hydroxymethylcyclopentenone, Johnson-Claisen rearrangement.

1. INTRODUCTION

a-Methylene cycloalkanones [1-12] (Fig. 1) are consid-
ered as versatile intermediates to natural products [13-15]
and are of current interest because of their anti-tumor
activity [16, 17]. Some examples of active compounds are
presented below [18-20]. Smith III, A.B. et al. prepared
(¥)HomoSarkomycin Ester 2a by the Johnson-Claisen rear-
rangement of the ketal of 1a, after hydrolysis of the ester and
ketal functionalities [16].

In continuation of our interest in the synthesis of biologi-
cal compounds [21-23], we established an efficient synthesis
of the (+) HomoSarkomycin Ester 2a via a Johnson-Claisen
rearrangement using the Baylis-Hillman adduct 1a (Scheme
1), that was prepared (in our laboratory) [24] in one step
from 2-cyclopentenone in high yield and in relatively high
scale.

2. RESULTS AND DISCUSSIONS

The Baylis-Hillman reaction produces highly functional-
ized adducts such as 1a [24] which may serve as the starting
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materials for the synthesis of useful targets. We envisaged
that the Johnson-Claisen rearrangement [25] would be a
powerful and practical route to the () HomoSarkomycine
Ester 2a (Scheme 1).

The reaction between 2-hydroxymethyl-2-cyclopentenone
(1a) [24] and triethyl orthoacetate in the presence of propa-
noic acid at 150°C leads to (+) HomoSarkomycine Ester (2a)
via a [3,3] sigma-tropic rearrangement (Scheme 1, Table 1).

In a second step, we studied if this Johnson-Claisen
rearrangement can be generalized in order to access to
o-alkylidene-B-methylethoxycarbonyl cyclopentanones 2b-d
[24] (Scheme 2, Table 1). The corresponding c-alkylidene
cyclopentanone adducts were obtained in moderate yield in
all the cases.

It should be noted that the reaction with 1e results in
the esterification product 2e instead of the rearrangement
(Scheme 3).

A plausible mechanism for the formation of compounds
2a-d and 2e is depicted in Scheme 4.

These mechanisms are supported by the following calcu-
lations.

© 2017 Bentham Science Publishers
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Fig. (1). Structures of o-Methylene cycloalkanones.
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Scheme (1). Synthesis of (+) HomoSarkomycin Ester 2a.
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Scheme (2). Synthesis of o-alkylidene-f3-methylethoxycarbonyl cyclopentanones 2b-d.
Table 1.  Synthesis of 2a-d from 1a-d with Johnson-Claisen rearrangement.
2 a b [ d
R H Me n-Pr i-Pr
Time 4h 4h 5h 30 mn 6h
Z/E" - 20/80 30/70 10/90
Yield (%) 70 60 58 64
* The proportion is calculated from the '"H NMR.
0 Ph 0 Ph O
ﬁ)\OH CH;C(OE)s, propanoic acid d/l\o)l\/

le

150 °C, Yield = 80 %

Scheme (3). Synthesis of 2-(1-Phenyl-propanoyloxyméthyl)cyclopent-2-en-1-one 2e.

Computational Details

The geometries of the CH;-C(OC,Hs);, CH3;CH,-COOH,
2-(1-hydroxyethyl)cyclopentenone 1b and 2-(phenyl-
hydroxymethyl)cyclopentenone le are optimized by Density
Functional Theory calculations applying the functional
B3LYP and the 6-31G (d) basis set and using the GAUSSI-
AN 09 program [26-28]. To characterize the reactivity, we
used Fukui function, defined as the differential change in
electron density due to an infinitesimal change in the number
of electrons. The condensed Fukui functions of an atom, say
k, in a molecule with N electrons are defined for nucleophilic
and electrophilic attack, respectively as:

fit = @ (N + 1) — g (V)
fi = W) — g (N —1)

Where ¢y is the electronic population of atom k in a mole-
cule. The corresponding local softness parameters can be
defined as [29-31]:

S =Sfi : Si=SK
The global softness is defined as S = ﬁ

Frupmo— Egomo

The hardness is given by n = P
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Scheme (4). A plausible mechanism for the formation of compounds 2a-d and 2e.

Table 2.  Calculated local reactivity properties of the selected molecules using BLYP/6-31g(d) method for NBO derived charges.
Entry 0, 0, C; H,

fz 0.177 0.046
fi 0.423 0.116

Ervmo - Enono 0.19458 0.17922 0.28787 0.27589
n 0.09729 0.08961 0.14393 0.13794
S 5.1390 5.5797 3.47380 3.6250
S: 0.9096 0.2567
S= 1.4660 0.4205

Results of local reactivity properties of the selected mol-
ecules are summarized in Table 2 and Fig. (2).

In this study, we have presented the reactivity parame-
ters, the local softness S and S; of the corresponding pro-

panoic acid, orthoester and the two Baylis-Hillman adducts
(1b and 1e) and the most reactive sites for nucleophilic and

electrophilic attack were derived. If we match the S% values
of the C; and H, atoms of the orthoester and propanoic acid,

respectively with S; values of the oxygen O; and O, in the
OH group of the Bayliss-Hillman adducts 1b and le, respec-

tively, one finds clearly that the S; of the O, atom match
better with the S% values of the of C; atom, whereas the S;
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Fig. (2). The 4 atoms Oy, O,, C; and H,.

of the O, atom match better with the Hy atom (Fig. 3). Thus
the local HSAB principle also predicts the reaction in ac-
cordance with the experimentally proved evidence.
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Fig. (3). Local softness for the 4 atoms O, O,, C; and H,.

3. EXPERIMENTAL

Proton ('H) and carbon (°C) nuclear magnetic resonance
(NMR) spectra were recorded on a Bruker AC-300 MHz
spectrometer as a solution in deuterochloroform. Infrared
(IR) spectra were recorded on a Perkin—Elmer Spectrum
(FT IR specter Pargon 1000 PC). The products are dosed on
an automatic analyzer type SCA-CHN with detector of ther-
mal conductivity-meter: catharometer (INRAP, Tunisia). The
plates used for thin-layer chromatography (TLC) were E.
Merck silica gel 60F254 (0.25 mm thickness) precoated on
aluminum plates, and they were visualized under both long
(365 nm) and short (254 nm) UV light. All compounds were
purified by column chromatography (Silica gel 60, 70-230
mesh ASTM). Mass Spectra (MS) were carried out on a
Hewlett-Packard 5890 (70 ev) by the staff of Medicine Fac-
ulty of Monastir, Tunisia, under electronic impact (EI) using
NHj; as the carrier gas.

3.1. Representative Procedure for the Synthesis of 2a-e

A 25 mL round bottomed flask was charged with
2-hydroxymethyl-2-cyclopentenone 1a (3 mmol, 336 mg),
triethylorthoacetate (3.6 mmol, 583 mg) and propionic acid
(3 mmol, 222 mg). The resulting mixture was stirred at re-
flux for 4 hours. When the reaction was completed, the mix-
ture was basified by 5 mL of saturated solution of NaHCO;
and extracted with 40 mL of ethyl acetate. After the usual

Saied et al.

EtO O

work, the crude product was purified by column chromatog-
raphy on silica gel using Diethyl ether/Petroleum ether (1:9)
as eluent, gave pure 2a in 70% yield.

3.1.1. 3-Ethoxycarbonylmethyl-2-methylenecyclopentan-1-
one (2a)

IR (CHCl3) em™: 1727 (C=0, ester), 1708 (C=0, ketone).
'H NMR (300 MHz, CDCL): 6.05-5.28 (AA’, J = 2.9
Hz, 2H), 4.19 (q, J = 6.9 Hz, 2H,), 3.20 (m, 1H), 2.73-2.66
(d, 1H3), 2.47-2.17 (m, 4H), 1.58 (m, 1H), 1.30 (t, /= 6.9 Hz,
3H). *C NMR (75 MHz, CDCl;): 206.1, 171.8, 147.6, 117.1,
60.6, 38.9; 37.5, 36.9, 26.5, 14.2. MS (m/z): 41(39), 53 (88),
67 (71), 79 (64), 98 (73), 108 (100), 125 (46), 137 (57), 154
(86), 182 (M+; 65). Elemental Analysis for C,oH40; calcld:
C,6591H,7.74 found: C, 65.98; H, 7.86.

3.1.2. 3-Ethoxycarbonylmethyl-2-ethylidenecyclopentan-1-
one (2b)

IR (CHCl3) em™: 1715 (C=0, ester), 1698 (C=0, ketone).
'H NMR (300 MHz, CDCl;): 6.66 et 6.03 (q, J = 2.9 Hz,
1H), 4.17 (q, J = 6.9 Hz, 2H), 3.48 (m, 1H), 2.38-2.05 (m, 6H),
1.88 (d, J = 2.9 Hz, 3H), 1.27 (t, J = 6.9 Hz, 3H). °C NMR
(75 MHz, CDCl;): 206.0, 171.5, 147.1, 125.2, 60.4, 38.6, 37.3,
359,264,243, 14.1. MS (m/z): 41 (27), 67 (21), 79 (43), 109
(100), 123 (39), 151 (19) 196 (M"; 65). Elemental Analysis for
C11H605 calcld: C, 67.32; H, 8.22 found: C, 67.40; H, 8.33.

3.1.3. 3-Ethoxycarbonylmethyl-2-butylidenecyclopentan-1-
one (2¢)

IR (CHCL;) ecm™: 1717 (C=0, ester), 1695 (C=0, ketone).
'H NMR (300 MHz, CDCl3): 6.64 and 5.56 (t, ] = 2.9 Hz,
1H), 4.22 (q, J = 6.9 Hz, 2H), 2.58 (m, 4H), 2.44-2.34 (m,
4H), 2.05-1.71 (m, 4H), 1.25 (m, 2H), 1.15 (t, J = 6.9 Hz, 3H),
0.91 (m, 3H). °C NMR (75 MHz, CDCl;): 207.3, 173.6,
158.3, 145.6, 69.2, 35.3, 35.1, 29.7, 27.7, 26.5, 18.5, 13.7, 9.2.
MS (m/z): 41 (13), 55 (15), 67 (18), 79 (21), 95 (21), 107 (11),
121 (11), 137 (100), 224 (M"; 29). Elemental Analysis for
C13H,0; caled: C, 69.61; H, 8.99, found: C, 69.55; H, 9.12.

3.1.4. 3-Ethoxycarbonylmethyl-2-(2-methylpropylidene)
cyclopentan-1-one (2d)

IR (CHCl3) em™: 1722 (C=0, ester), 1703 (C=0, ketone).
'H NMR (300 MHz, CDCls): 6.41 (d, J = 2.9 Hz, 1H), 4.17
(q, ] = 6.9 Hz, 2H), 3.74 (m, 1H), 2.44-1.85 (m, 7H), 1.25 (t,
J = 6.9 Hz, 3H), 1.04 (m, 6H). °C NMR (75 MHz, CDCls):
207.0, 171.8, 144.2, 137.4, 60.7, 39.4, 35.8, 34.8, 29.7, 28.7
25.2,22.1, 14.2. MS (m/z): 41 (13), 55 (14), 67 (17), 79 (23)
95 (18), 109 (16), 121 (10), 137 (100), 179 (8), 224 (M"; 30).
Elemental Analysis for C;3H,(O3 caled: C, 69.61; H, 8.99,
found: C, 69.54; H, 9.12.
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3.1.5. 2-(1-Phenyl-propanoyloxyméthyl)cyclopent-2-en-1-
one (2e)

IR (CHCL;) cm™: 1743 (C=0, ester), 1701 (C=0, ketone).
'H NMR (300 MHz, CDCLy): 7.48 (m, 1H), 7.37-7.18 (m,
5H), 6.54 (s, 1H), 2.58 (m, 2H), 2.45-2.29 (m, 4H), 1.17 (t, J
= 7.3 Hz, 3H). “C NMR (75 MHz, CDCly): 206.5, 171.9,
159.2, 1454, 138.2, 128.4, 128.3, 127.2, 70.2, 34.9, 27.6,
26.6, 9.0. MS (m/z): 57(98), 77(28), 109(55), 128 (97),
141(16), 141(16), 159(14), 171(20), 187(100), 244 (M"; 2).
Elemental Analysis for C;sH;c05 caled: C, 73.75; H, 6.60,
found: C, 73.78; H, 6.71.

CONCLUSION

In the present study, we have reported the preparation of
the () HomoSarkomycine Ester 2a in one step from 2-
hydroxymethl-2-cyclopentenone 1a. We have succeeded to
generalize this process with Baylis-Hillman adducts 1b-e.
Local reactivity descriptors are shown to be very powerful in
predicting the reactivity of Baylis-Hillman adducts 1a-e,
propanoic acid and triethylorthoester.
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