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Rheumatoid arthritis (RA) is a chronic autoimmune disorder of bone joints caused by
the complex interplay between several factors like body physiology, the environment
with genetic background. The recent meta-analysis of GWAS has expanded the total
number of RA-associated loci to more than 100, out of which approximately ∼97% (98
variants) loci are located in non-coding regions, and the other ∼3% (3 variants) are in
three different non-HLA genes, i.e., TYK2 (Prp1104Ala), IL6R (Asp358Ala), and PTPN22
(Trp620Arg). However, whether these variants prompt changes in the protein phenotype
with regards to its stability, structure, and interaction with other molecules, remains
unknown. Thus, we selected the three clinically pathogenic variants described above,
as positive controls and applied diverse computational methods to scrutinize if those
mutations cause changes in the protein phenotype. Both wild type and mutant protein
structures of PTPN22 (W620R), IL6R (D358A), and TYK2 (P1104A) were modeled and
studied for structural deviations. Furthermore, we have also studied the secondary
structure characteristics, solvent accessibility and stability, and the molecular interaction
deformities caused by the amino acid substitutions. We observed that simple nucleotide
predictions of SIFT, PolyPhen, CADD and FATHMM yields mixed findings in screening
the RA-missense variants which showed a ≥P-value threshold of 5 × 10−8 in genome
wide association studies. However, structure-based analysis confirms that mutant
structures shows subtle but significant changes at their core regions, but their functional
domains seems to lose wild type like functional interaction. Our findings suggest that
the multidirectional computational analysis of clinically potential RA-mutations could act
as a primary screening step before undertaking functional biology assays.

Keywords: deleterious mutations, rheumatoid arthritis, molecular analysis, protein modeling, biological network

INTRODUCTION

Rheumatoid arthritis (RA) is a chronic, progressive and disabling autoimmune disease of bone
joints (Fazal et al., 2018). Although the full etiology of RA remains unclear, it is widely seen
as a complex disease caused by the combined influence of several factors like body physiology,
environment and genetic background (Chaudhari et al., 2016; Angelotti et al., 2017). The

Frontiers in Genetics | www.frontiersin.org 1 March 2019 | Volume 10 | Article 168

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00168
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2019.00168
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00168&domain=pdf&date_stamp=2019-03-07
https://www.frontiersin.org/articles/10.3389/fgene.2019.00168/full
http://loop.frontiersin.org/people/84160/overview
http://loop.frontiersin.org/people/138268/overview
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00168 March 5, 2019 Time: 19:7 # 2

Shaik and Banaganapalli Computational Analysis of Rheumatoid Arthritis Mutations

genetic basis of RA is well demonstrated by epidemiological
studies which reported variable disease prevalence’s among
different ethnic groups, inheritance pattern in families, and
shared susceptibility loci with other autoimmune diseases (Ek
et al., 2014). The heritable nature of RA is assessed to be
approximately 60%, while the contribution of the human
leucocyte antigen region (HLA), which allows the immune
system to differentiate between self and foreign bodies, to
heritability is estimated to be between 11 and 37%. Out of all HLA
genes, the HLA-DRB1 region is recognized as a major contributor
of RA susceptibility, i.e., ∼30% (Knevel et al., 2017). In addition
to the HLA region genes, some non-HLA candidate genes like
PTPN22 and PAD14 have also been discovered to play a major
role in RA susceptibility (Rodriguez-Elias et al., 2016).

As in other complex diseases, the advent of Genome Wide
Association Studies (GWAS) have dramatically enhanced the
resolution of RA genetics, by successfully identifying disease
associated common genetic variants (Manolio, 2010). More
notably, GWAS followed by subsequent meta-analysis of GWAS
data derived from the single nucleotide polymorphisms (SNPs)
based dense genotyping of 73,758 controls and 29,880 RA cases,
belonging to Asian and European ethnicities, has expanded the
total number of RA-associated loci to more than 100 (Okada et al.,
2014). This finding has expanded the list of non-HLA loci genes
(including PADI4, PTPN22, TNFAIP3, IRF5, STAT4, TRAF1/C5,
REL, and CCR6 genes etc) proposed in the genetic etiology of
RA. Together, these loci can share the heritability of RA among
different ethnicities by∼80%. Approximately 97% (98 lead SNPs)
of these risk loci are located in non-coding regions, and the
other 3% (3 SNPs) are found in three different genes, i.e., TYK2
(rs34536443), IL6R (rs2228145), and PTPN22 (rs2476601), which
play a critical role in mediating autoinflammation. However, the
specific structural and functional deformations caused by these
non-synonymous (nsSNPs) is not yet fully explored.

The SNPs which occur in protein coding regions are often
evolutionarily conserved and are significant to disease etiology,
by changing the amino acid sequence and physicochemical
properties of the polypeptide chains they encode. It is therefore
possible that these coding SNPs may possess the largest impact in
disease pathogenesis, compared to their counterparts, i.e., non-
coding SNPs which are mostly neutral to disease pathogenesis
(Ng and Henikoff, 2006). Although, both in vitro and in vivo
experimental methodologies can improve our ability to explore
the effects of nsSNPs, they often require vast technical resources
and manpower in addition to incurring huge costs. In recent
decades various computational methods have been launched
for predicting the impacts of mutations on protein structure
and function. These methods can successfully identify several
structural and stability changes which occur in proteins due to
mutations (Anwer et al., 2015; Sneha and Doss, 2016; Mohajer
et al., 2017). The aim of this study was to assess the ability
of diverse computational methods in predicting the missense
variant induced alterations in amino acid sequence conservation,
structural and functional features of RA candidate proteins.
Therefore, in the conext of the current study’s objective, we
selected PTPN22 (W620R,) IL6R (D358A), and TYK2 (P1104A)
as “positive control variants” because we know their pathogenic

potential in contributing to the development of RA, from GWAS
findings (≥P-value significance threshold of 5× 10−8).

METHODOLOGY

Selection of RA Susceptibility Loci
The 101 RA susceptibility loci, as confirmed by Okada, Jostins
et al. (2012), were used as the core data set for this study. The
relevant information (e.g., rsID, Genome wide significance with
a ≥P-value threshold of 5 × 10−8, odd ratios) of these SNPs
was retrieved from the article. Only missense mutations were
studied in the present investigation. The full-length amino acid
sequence of the candidate proteins was collected from UniProt.
The description terms like variants, SNPs, and mutations are
interchangeably used in this manuscript.

In silico Assessment of Deleterious
Potential of nsSNPs of RA
The Variant Effect Predictor (VEP) toolset, hosted on the
Ensembl webpage, was used for the analysis and annotation of
coding region genomic variants. This powerful computational
tool offers accessibility to an extensive range of genetic
annotations and provides simple options for configuring and
extending the data analysis. VCF (variant call format) is
an accepted format of input data for VEP. However, other
variant identification formats of dbSNP and HGVS are also
recognized by this toolset. The output consists of comprehensive
information about mutation (chromosomal location, variant
effect, transcript ID) and its functional impact on the protein
in form of prediction scores for different computational
methods. In this study, the prediction scores of Sorting Tolerant
from Intolerant (SIFT) (Vaser et al., 2016). Polymorphism
Phenotyping v2 (PolyPhen-2); (Adzhubei et al., 2013), Combined
Annotation Dependent Depletion (CADD) (Rentzsch et al.,
2018); and Functional Analysis through Hidden Markov Models
(FATHMM) (Shihab et al., 2013) for each variant query
were generated. The consequences of variants are described
in accordance to the standard annotation terms of Sequence
Ontology (Cunningham et al., 2015).

Structural Analysis of RA Proteins
3-Dimensional Modeling of Wild Type and Mutant
Protein Models
In the initial stage, the protein data bank (PDB) database was
searched for x-ray crystallized structures of candidate proteins.
Wherever full length protein structures were not available, we
simulated them through ab initio procedures using I- TASSER
(Iterative Threading ASSEmbly Refinement) web server (Yang
et al., 2015), by providing an amino acid sequence of the
corresponding candidate protein as an input. This computational
tool utilizes basic protein structure templates available in
PDB for constructing the full-length atomic models of three-
dimensional proteins following the iterative template fragment
assembly approach (Yang and Zhang, 2015). Out of the top five
models generated for each candidate protein, the best models’
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selection was based on the estimated template model (TM)
score, confidence score, and root mean square deviation (RMSD)
scores. In the eventual stages, these selected models were further
processed for energy minimization using the gromacs-steepest
descent energy minimization method in NOMAD-Ref web server
(Lindahl et al., 2006). The energy minimized three-dimensional
protein models were further used in constructing the mutant
versions of proteins, by substituting the amino acid residues in
place of the reference amino acid sequence of each candidate
protein, through a homology modeling procedure using Modeller
v9.21 (Webb and Sali, 2017). This software adopts an automated
approach for comparative protein structure modeling, through
the satisfaction of spatial restraints in the candidate protein of
interest (Sanchez and Sali, 2000). The three-dimensional protein
structure modeling procedure starts with the alignment of a target
model against similar known protein structures. The energy
minimization and stereochemical quality check of built mutant
models was done using the Procheck tool (Laskowski et al., 1996).
Finally, mutant models were visulized by PyMol (Janson et al.,
2017) and Chimera computational programs (Banaganapalli
et al., 2016; Shaik et al., 2018).

Secondary Structure Analysis
The correlation between mutant amino acid sequences and
protein structures can be made unambiguous by obtaining
information about the alterations of different secondary
structural elements such as the orientation and numbers of
helices (α), strands (β), bends and turns, which are basic
structural elements of protein scaffolds. To obtain the knowledge
of the structural context of the amino acid substitution variants
of RA-candidate proteins, we used an online web server program
called PDBsum. The input for this tool is a PDB structure
four-letter code of queried proteins and the output is in the form
of a ‘wiring diagram,’ which shows the important secondary
structural elements and their orientation along the query
protein’s sequence.

Solvent Accessibility Analysis
Solvent accessibility refers to the exposed surface area of amino
acid residues within a three-dimensional structure and in an
extended tripeptide conformation. The ratio of relative surface
accessibility of mutated amino acids of RA candidate proteins
towards solvents was predicted using the NetSurfP server
(Petersen et al., 2009). The data input for this web server consists
of a FASTA format of amino acid sequences of the queried
protein. The relative solvent accessibility of each amino acid is
predicted in the form of a Z-score (Klausen et al., 2019).

Protein Stability Analysis
DUET, an easy-to-use bioinformatics web server, which
integrates two complementary methods such as, mCSM
(mutation Cutoff Scanning Matrix) and SDM (Site Directed
Mutator) into a consensus/optimized prediction, using Support
Vector Machines (SVMs), was used to understand the effect
of point mutations on the protein structure. Input options for
this tool consists of a PDB structure of a wild-type protein,
in addition to amino acid information (wild type or mutant)

in one letter codes. The output is in form of individual and
combined predictions, in addition to the interactive visualization
of proteins. The prediction results are expressed as Gibbs Free
Energy (11G) values, where negative values indicate that the
given mutation is highly destabilizing (Pires et al., 2014).

Protein Structural Equivalency Analysis
We have superimposed the wild type proteins on to mutant
protein structures, to examine structural equivalency of native
versus mutant amino acid residues and their corresponding
whole protein structures, using PyMOL software (Janson et al.,
2017). The input options for superposition requires PDB files
(txt format) or PDB accession numbers of both wild and mutant
protein structures. The outputs of a structural alignment are
a superposition of the atomic coordinate sets (Ca traces and
backbone atoms) and a minimal RMSD between the structures.
The difference in RMSD scores, of two aligned amino acid
residues (<0.2 Å) or whole protein structures (<2.0 Å), indicates
their divergence from one another.

Conserved Domains Identification
The functional domains in RA candidate proteins were searched
in the Conserved Domain Database using query sequences
(nucleotide or amino acids) to gain insights into the relationships
between mutated amino acid sequence, with both protein
structure and function. This tool relies on RPS-BLAST, which
can quickly scan the pre-computed position-specific scoring
matrices (PSSMs) in the query protein, to identify the different
conservation features related to protein domains. The output
is in the form of annotated protein domains against the
input query sequence, along with visualization options. The
high level associations between query protein sequences and
annotated conserved domains are shown as specific hits
(Marchler-Bauer et al., 2011).

Gene Functional Analysis
The STRING1 web interface, which generates data on gene
functions, gene list analysis, and gene prioritization for functional
biology assays, was used to identify direct and indirect genetic
interaction networks of RA candidate proteins. The input options
include either query genes or protein names, their sequences, or
large data sets (Szklarczyk et al., 2017). The output format is in the
form of network node predictions, which reveal the functional
associations between query genes based on their neighborhood
or evidence of co-expression in data generated from high-
throughput biological experiments. The highest interacting gene
or proteins were identified based on the strength of the
confidence score generated in the network.

Protein–Protein Molecular Docking
The Hex protein docking server was employed to execute the
molecular docking of RA proteins and interacting proteins,
to examine their mutual structural plasticity and interaction
potential, while forming molecular complexes. In this step, the
protein partner showing the highest confidence score of the

1https://string-db.org/
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queried protein in the molecular network (derived from STRING
results), was taken as a ligand molecule and the query protein
as a receptor. The molecular models of the experimentally
solved crystal structures of proteins retrieved from PDB or
ab initio modeled protein structures, were used in this step.
The major default setting used in the docking procedure is the
“free energy calculation,” which is set at 180◦ to enable the total
possible rotational increments for receptor and ligand sampling
of their own centroids. The other parameters include a grid
spacing set at 0.6 Å, positive and negative steps at 0.75 Å, 53
intermolecular separations calculated in 20 steric scan phases.
In the final calculations the final 25 phase was applied to obtain
the highest orientation score of 0.76.2 Å. At the end, to obtain
10,000 the lowest ordered docking energy score, 500 clusters
were retained from the best 1000 orientations (Ritchie, 2003;
Shaik et al., 2014).

RESULTS

Coding SNPs of RA Risk Loci
The 101 RA risk loci included 98 (97%) non-coding SNPs and
three (3%) coding region SNPs. The molecular details of these
three coding SNPs, including chromosomal position, gene name,
cDNA change, type and position of amino acid variant are
provided in Table 1.

Deleterious Potential of Missense
Mutations
The SIFT prediction algorithm uses the nucleotide sequence
homology principle to classify the pathogenic amino acid
substitutions, based on their deleterious potential on the function
of the concerned protein. SIFT prediction values range from 0 to
1, where lower scores reflect the highly deleterious potential of
non-synonymous mutation towards the structural and functional
features of the corresponding protein. The missense mutation
P1104A (SIFT score is ‘0.’) revealed its highly deleterious

potential towards the function of TYK2 protein. The remaining
two missense mutations, i.e., W620R of PTPN22 and D358A of
IL6 are tolerant to protein’s function (tolerance score index is 0.06
to 1). The Polyphen algorithm uses a Naive Bayes probabilistic
score to calculate the pathogenicity potential of amino acid
substitution mutations. The P1104A missense mutation of the
TYK2 gene showed a probable damaging potential (score is 0.97),
whereas W620R of PTPN22 (score is 0) and D358A of IL6
(score is 0.05) are found to be benign in their effect. The CADD
is an integrative annotation of multiple mutation prediction
methods into one framework. It generates a combined annotation
score (c-score) for each query variant and classifies them as
non-functional variants (if C-score is ≥10%), damaging variants
(if C-score is ≥20%), and lethal (if C-score is ≥30%). As per
this criterion, only the P1104A variant of TYK2 is a damaging
variant. The remaining two variants, i.e., W620R of PTPN22 and
D358A of IL6R are non-functional variants with an unknown
significance. The FATHMM is a species-independent method,
with optional species-specific/evolutionary unit weighting, in
order to predict the functional effects of coding variants in form
of P-values (ranging from 0 to 1) based on ENCODE outcomes.
If a given variant shows a p-score of ≥0.5 then it is considered
as deleterious and if it shows a p-score of ≤0.5, then it suggests
the neutral nature of the queried genetic variant. Similar to
the above three predictions FATHAMM has also predicted the
deleterious effect of the P1104A variant on the TYK2 protein
(Score is 0.821) (Table 2).

Protein Structural Analysis
Protein Modeling and Structural Equivalency Analysis
3D modeling
The I-Tasser prediction server has produced five protein models
for each queried amino acid sequence (Uniport ID: PTPN22-
Q9Y2R2; TYK2-P29597; IL6R-P08887). From the output, the
best protein models were selected based on their TM scores,
confidence (c) scores and RMSD scores. The prediction scores of
three studied proteins are as follows, PTPN22 (c score = −2.12,

TABLE 1 | Basic characteristics of RA-GWAS missense SNPs selected in this study.

Gene symbol Gene name rsID Genomic location Alleles cDNA location Codon change Exon Protein effect

PTPN22 Protein tyrosine phosphatase,
non-receptor type 22

rs2476601 1:113834946 T/C c.1858 T > C Tgg-Cgg 14 Trp620Arg

IL6R Interleukin 6 receptor (IL6R) rs2228145 1:154454494 A/C c.1073 A > C gAt-gCt 9 Asp358Ala

TYK2 Tyrosine-protein kinase TYK2 rs34536443 19:10352442 C/G c.3310 C > G Ccc-Gcc 21 Pro1104Ala

TABLE 2 | The SIFT, Polyphen-2, CADD, and FATHMM prediction scores for RA-GWAS amino acid substitution mutations.

No. Variant Pathogenicity predictions

SIFT PolyPhen CADD FATHMM

Score Prediction Score Prediction Score Prediction Score Prediction

(1) PTPN22-rs2476601 1 Tolerated 0 Benign 10.78 Non-functional 0.028 Benign

(2) TYK2-rs34536443 0 Deleterious 0.97 Probably Damaging 26.1 Damaging 0.821 Deleterious

(3) IL6-rs2228145 0.08 Tolerated 0.05 Benign 4.99 Non-functional 0.163 Benign

Frontiers in Genetics | www.frontiersin.org 4 March 2019 | Volume 10 | Article 168

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00168 March 5, 2019 Time: 19:7 # 5

Shaik and Banaganapalli Computational Analysis of Rheumatoid Arthritis Mutations

FIGURE 1 | Secondary structure components of wild type and mutant PTPN22, IL10RA, and TYK2.

TM score is 0.46 ± 0.15 and RMSD score is 13.7 ± 4.0 Å), TYK2
(c score = −1.12, TM score is 0.26 ± 0.10 and RMSD score is
12.7± 2.8 Å) and IL6R (c score =−1.65, TM score is 0.35± 0.05
and RMSD score is 12.2± 3.0 Å). The C-score reflects the quality
of the predicted protein models and its value ranges from −5 to
2. A higher C-score indicates the high-quality of the predicted
protein model. A C-score of >−1.5 indicates the accurate folding
of the polypeptide chain. The full-length models of IL6R, TYK2,
and PTPN22 were subjected to energy minimization applying
Gromacs 96 force field in Nomad-Ref server (Figure 1). The
energy minimization step repairs distorted geometries by moving
atoms and releasing the internal constraints in the protein
structure. The stereochemical quality checking of full-length
models with Procheck software showed that few amino acid
residues have their phi/psi angles in the disallowed regions of
the protein. Approximately 98.5% of all amino acid residues in
three proteins were in the core (allowed region) and 1.5% were in
the non-core (disallowed) region, respectively. We have created
the mutant versions of proteins, by manually inserting the amino

acid change in the protein sequence and template structures of
IL6R, TYK2, and PTPN22 native proteins. Out of the 100 guess
structures produced (based on randomized initial models), we
have selected the best homologous structures of these mutant
proteins for energy minimization, stereochemical quality checks
and Ramachandran plot assessments.

FIGURE 2 | 3D-Structural representation of the refined protein models of (1)
PTPN22 (red in color); (2) IL6R (blue in color) (3) TYK2 (yellow in color),
generated from I-Tasser.
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FIGURE 3 | Mutated regions in (A) PTPN22, (B) TYK2, and (C) IL10R proteins.
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Secondary structure and surrounding amino acid changes
analysis
In order to understand the effect of amino acid substitutions
on secondary structural features, we calculated the structural
differences in elements such as sheets (β-sheets, β-hairpins,
β-bulges, and β-strands), helices (helix, helix–helix interactions),
and turns (β turns, γ turns, and disulfide bonds) in both
native and mutant models of the PTPN22, IL10RA, and TYK
proteins (Figure 2). In PTPN22, the substitution of arginine
residue at the 620th position generated two β-hairpins, one

β-bulge, four helixes, three helix–helix interactions, two γ-turns
and one di-sulfide bond and lost one β-sheet and two strands,
and 19 β-turns in the secondary structure of the protein. In
IL6R (Asp358Ala) and TYK2 (Pro1104Ala) mutant proteins, the
numbers of secondary structural elements are observed to be
equal like in their native forms. Overall, the structural analysis
results inferred that out of three deleterious mutations of RA
(PTPN22-Trp620Arg; IL6R-Asp358Ala; and TYK2-Pro1104Ala),
only the Trp620Arg (located in loop region) mutant brought
drastic changes, disturbing the secondary structure of PTPN22.

TABLE 3 | The solvent accessibility (SA), stability and root mean square deviation (RMSD) prediction scores for three RA-GWAS amino acid substitution mutations.

Protein Variant SA Stability prediction RMSD

McSM (Kcal/Mol) SDM (Kcal/Mol) DUET (Kcal/Mol) Polypeptide Chain (Å) Amino Acid (Å)

PTPN22 W620R 17.20% B > E −0.326 4.47 −0.453 0.02 2.85

IL6R D358V 51.90% B > E −0.197 0.01 −0.093 0.05 1.89

TYK2 P1104A 0% B > B −1.699 2.74 −1.493 0.05 1.24

FIGURE 4 | Distribution of conserved domains in PTPN22, TYK2, and IL6R.
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Root mean square deviation
The structural impact of amino acid substitution mutations
can be estimated if there is a divergence at the amino acid
or polypeptide chain level of the corresponding proteins. We
have observed changes in the cavity volume and residue RMSD
scores of Arg620 (2.85 Å) compared to Trp620 of PTPN22. For
IL6R (D358V) and TYK2 (P1104A) mutations, the residue level
changes were 1.89 and 1.24 Å, respectively (Figure 3).

C&D: solvent accessibility and stability (SAS) analysis
The Tryptophan to Arginine conversion at the 620th amino acid
residue of the PTPN22 protein, increases its solvent accessibility
property by 17.20%. In the IL6R protein, the mutated Valine
amino acid residue at the 358th position is exposed to solvents
by 51.90% compared to its native counterpart Aspartic acid,
which exists in a buried state. In the TYK2 protein, both Proline
(wild type) and Alanine (mutant) amino acid residues at the
1104th position, remain in the buried state and inaccessible to
solvents (Table 3).

Solvent accessibility and stability is one of the decisive
factors in protein folding and to further evaluate the protein
stability (net balance of forces that determine the native fold
of protein structure) we used an integrated computational
approach, the DUET method. This DUET analysis provides
the consensus output of SDM and mCSM methods in a non-
linear regression fashion, based on Radial Basis Function Kernel
function. The Gibbs free energy (11G) change of the PTPN22,
W620R (−0.453 Kcal/Mol), IL6R, D358V (−0.093 Kcal/Mol),
and TYK2, P1104A (−1.493 Kcal/Mol) missense mutations
were found to be in the range of negative values, further
indicating their deleterious potential to the stability of the
proteins concerned.

Conserved Domains Identification
The mapping of evolutionary conserved domains of disease-
causing proteins, is an essential step in inferring the relationship
between the nucleotide sequence and protein structure and its
function. Functional annotation of 807 amino sequences of

FIGURE 5 | Protein interaction network of (A) PTPN22, (B) IL6R, and (C) TYK2 using STRING web server. Here genes are represented as nodes and edges
indicating different types of interaction between genes. Black circles are the query genes and coloring on edges indicate different types of interaction which is
defined in the network legend.
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FIGURE 6 | Docking view of PTPN22 (wild type) ZAP70 and PTPN22
(mutated)-ZAP70.

PTPN22 has revealed that the Trp620Arg variant is located
outside (332 amino acids downstream) of the protein tyrosine
phosphatase (PTP) domain which exists in between the 24th
and 288th amino acids. The PTP domain catalyzes the
dephosphorylation of phosphorylated tyrosine peptides and
regulates its levels in the signal transduction pathways. The
Asp358Val of human IL-6R alpha, is located outside of three
domains [Ig superfamily, two fibronectin type III (FnIII) domains
each ≈100 residues] of the extracellular region of the 468 amino
acids long protein molecule. The domain mapping of Pro1104Ala
mutation of the TYK2 protein, which is made up of 1187
amino acids, revealed that it was located in the c-terminus

pseudo kinase catalytical domain (897–1169) of the TYK2
protein (Figure 4).

Gene Network Analysis
We analyzed the genetic association networks of three RA
genes, i.e., PTPN22, IL-6RA, and TYK2, to identify their best
physical interacting partners in a cellular context. The PTPN22
gene network analysis revealed its tight network with 10 genes
including CSK, LCK, ZAP70, HLA-DRB1, CD3E, HLA-DQA2,
HLA-DPB1, HLA-DRA, HLA-DRB5, and CD4, of which the
highest interaction score (c-score = 0.995) was observed with
ZAP70. The IL6R protein showed highest interaction with its
ligand IL6 molecule (c-score = 0.998). It also showed diverse
association levels with other networking genes such as IL6ST
(0.990), STAT3 (0.989), JAK1 (0.971), SOCS3 (0.971), PTPN11
(0.962), JAK2 (0.957), CNTF (0.952), STAT1 (0.951), and TYK2
(0.942). For the TYK2, the best interacting partner was IL23R,
which had a c-score of 0.98. Besides these protein molecules,
it also interacts with STAT5B, STAT5A, STAT1, STAT2, IL23A,
STAT6, STAT3, SOCS1, and PTPN1 proteins (c-scores ranging
from 0.98 to 0.99). From the predicted interaction networks,
it is evident that all three RA genes, in conjunction with their
gene partners, activate different auto immune reactions central
to the pathogenesis of RA (Figure 5). We also identified the
relationship between PTN22, TYK2, and IL6R, using protein–
protein network analysis, we identified that TYK2 and IL6R
are significantly enriched in the Interleukin-6 signaling and
Tyrosine phosphorylation pathways, the hallmark pathway in
inflammation (Figure 5).

Molecular Docking
Based on the results obtained from the protein networking
analysis, we identified the best interacting partners of the
PTPN22, IL6R, and TYK2 proteins and studied the impact of
mutations on their molecular function. Table 3 shows that RA
missense mutations contribute to altered interactions with ligand
molecules, primarily because of the shift in interacting amino acid
residues. Among all the proteins analyzed, TYK2 was calculated
to show the lowest binding energy value of −19.90 Kcal/mol
with IL23R.

TABLE 4 | The molecular docking scores for RA-GWAS amino acid substitution mutations.

Protein complex Binding energya (Kcal/Mol) Energy difference Interacting amino acids

Protein Ligand

Wild type PTPN22(S) ZAP70(R): −391.18 KJ/Mol +16.02 Kj/mol Ala372, Lys683, Asn806, Gln457, Asp388, Asn432

W620R-PTPN22(S) ZAP70(R): −407.20 KJ/Mol Lys663, Meth729, Lys300, Ser643, Gln307, Thr545, Gly303, Ser652

Wild type IL10(R) IL10(L) −554.7 KJ/Mol +28.17 Kj/Mol Ala7, Ser, 171, Gln118, Arg137, Pro30

D358V-IL10(R) IL10(L) −582.87 Ala7, Leu12, Gln118, Arg137, Pro 308, Trp306

Wild-TYK2(L) IL23(R) −19.90 +9.35 Kj/Mol Arg539, Thr1161, Ser1157

P1104A-TYK2(L) IL23(R) −29.25 Arg539, Thr1161, Ser1157, Asp949, Arg952

aThe change in binding free energy is related to the inhibition constant as per the following the equation: 1G = RT in Ki, where R is the gas constant 1.987 cal K−1 Mol−1,
and T is the absolute temperature assumed to be 298.15 K.
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TYK2 (P1104A) showed a weaker interaction
(−29.25 Kcal/mol) with IL23R. In native TYK2, Arg539,
Thr1161, and Ser1157, amino acids form a hydrophobic
interaction with IL23, whereas in the P1104A mutant stage, two
new Asp949, Arg952 amino acids participate (in addition to
Arg539, Thr1161, and Ser1157) in forming strong H-bonds with
Asp349 and Arg351 of IL23R. The PTPN22 wild type protein
interacts with six amino acid residues (Ala372, Lys683, Asn806,
Gln457, Asp388, and Asn432) of the ZAP70 protein with a
binding constant of −391.18 KJ/Mol. However, the W620R
mutant PTPN22 binds at a different region of ZAP70 (Lys663,
Meth729, Lys300, Ser643, Gln307, Thr545, Gly303, and Ser652)
due to a change in the conformation of the mutant structure
showing a reduced binding affinity (1G is −407.20 KJ/Mol)
towards ZAP70. In case of the native IL10R molecule, the
docking analysis revealed that five amino acid residues (Ala7,
Ser, 171, Gln118, Arg137, and Pro30) interact with the IL10
ligand molecule, by forming strong Hydrogen, ionic interactions
and a binding affinity of −554.7 Kcal/Mol. However, in the
D358V mutant, Ala7, Leu12, Gln118, Arg137, Pro308, and
Trp306 amino acids participate in forming the majority of the
weak interactions with IL10, and positively shifts the interaction
energy to+28.17 Kj/Mol (Table 4 and Figures 6–8).

FIGURE 7 | Molecular interaction of IL10R (wild type)-IL10 and IL10R
(mutated)-IL10.

DISCUSSION

There have been numerous attempts to understand the
mechanisms through which RA genetic variants could influence
the activity of candidate proteins and subsequently affect the
cell physiology and function. For PTPN22, animal model studies
have shown that the tryptophan (W) amino acid at the 620th
position positively increases the autoreactive B cell selection, the
enlargement of the thymus and spleen, T cells, and dendritic
cell activation (Stanford et al., 2010; Zhang et al., 2011). In
mice, the expression levels of LYP/Pep were found to be
reduced when Pep619W (equivalent of W620R variant) was
expressed. It is suggested to be due to the calpain1-mediated
rapid degradation of the Pep619W variant compared to that of
wild types (Menard et al., 2011; Diaz-Gallo and Martin, 2012).
The PTPN22/W620R expression enhances the production and
function of neutrophils, calcium release and free radical oxygen
concentration around joints. The hyperactivation of W620R
carrying cells may directly cause damage to bone joints, in
addition to the initiation and continuation of other inflammatory
reactions that contribute to the disease development (Bayley
et al., 2015). The cytokine interleukin-6 (IL-6) is known to
regulate the complex mechanisms that underlie the inflammatory
reactions of diverse chronic diseases (Ferreira et al., 2013). In RA
patients, the IL-6 molecule is overexpressed in inflamed synovial
tissues, where it effects the functions of lymphocytes (T and
B), macrophages and osteoclasts by binding to IL-6R (Smolen
et al., 2008). A genetic polymorphism of the IL-6 receptor
locus (Asp358Ala) is known to cause changes in serum IL-6R
levels and a modest change in levels of IL-6. Functional studies
demonstrated that IL-6,358Ala allele increases the expression of
soluble ILR isoform, but reduces the membrane bound (CD4+
T cells and monocytes) isoform, which further results in the
impaired IL-6R response (Ferreira et al., 2013). The protein
TYK2, which belongs to the Janus kinase superfamily (JAKs),
interacts with the intracellular domain portion of the type 1
interferon receptor. Other receptors such as IL-6, IL-10, IL-12,
and IFNλ are also known to interact with TYK2 (Ghoreschi
et al., 2009). The rs34536443 variant that causes the Proline to
Alanine substitution at the 1104th amino acid, occurs in the αFG
helix of TYK2. Experimental studies observed that the TYK2,
P1104A variant influences the enzyme activity of the protein
and thereby also the associated cytokine pathways (Li et al.,
2013). The modified TYK2 activity may exacerbate T helper cell
polarization across bone joints in individuals that carry the RA
associated AlaTYK2 allele.

Recent decades have seen a surge in the discovery of
different variant filtering computational methods to analyze
the GWAS data (Hou and Zhao, 2013). Most of these better
performing methods align multiple protein sequences and judge
the functional relevance of residues based on their evolutionary
conservation across different species. Detailed comparisons of
different variant prediction methods (SIFT, Polyphen, CADD,
and FATHMM) and their prediction sensitivities are reviewed
elsewhere (Cooper and Shendure, 2011; Miosge et al., 2015; Lu
et al., 2016). Although, W620R of PTPN22, D358A of IL6R
and P1104A of TYK2 variants are known to have very strong
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FIGURE 8 | Docking pose of IL23R-TYK2 (wild type) and IL23R-TYK2 (mutated).

genome wide significant associations (≥P-value threshold of
5 × 10−8) with the RA risk, computational methods like SIFT,
Polyphen-2, CADD, and FATHMM have predicted them to be
non-deleterious. These findings underline that nucleotide variant
prediction methods are not always sensitive in predicting the
pathogenic potential of clinically significant variants. This could
be due to the differences in datasets used in training these variant
prediction programs (Al-Abbasi et al., 2018). We have therefore
further investigated the impact of RA mutations on structural
features of proteins.

It is noteworthy to mention that disease can arise if
missense mutation leads to the loss or gain of critical functions,
due to the altered conformation of secondary structures.
Secondary structures are the most common energetically
favorable polypeptide structures, which further folds to form
super secondary structures, domains, motifs and tertiary
structures (Khan and Vihinen, 2007). We have investigated the
existence, position and distribution of three missense mutations
in secondary structures of those corresponding proteins. Overall,
the secondary structural analysis results inferred that out
of three deleterious mutations of RA (PTPN22-Trp620Arg;
IL6R-Asp358Ala; and TYK2-Pro1104Ala), only the Trp620Arg
(located in loop region) mutant brought drastic changes that
disturbed the secondary structure of PTPN22. The substitution
of the arginine residue at the 620th position in PTPN22, resulted
in the gain of extra sheets (two β-hairpins and one β-bulge),
helices (four helixes and three helix–helix interactions) and turns
(two γ-turns and one disulfide bond) and the loss of one β-sheet
and two strands. Since changes in the secondary structural
elements were observed; we can expect some promising changes
in the pattern of hydrogen bonds between amino hydrogen and
carboxyl oxygen atoms in the peptide backbone of PTPN22,
which may result in the alteration of dihedral angles in the
protein structure.

Our three-dimensional protein modeling and structural
equivalency analysis observed huge changes in cavity volume

and amino residue RMSD scores of Arg620 (2.85 Å) compared
to the Trp620 of PTPN22. Following this trend, even IL6R
(D358V) and TYK2 (P1104A) variants have also shown similar
structural changes. The degree of protein structure difference
caused by mutant amino acid residues, in general, corresponds
to their biophysical and chemical properties such as charge, size,
molecular weight, hydrophobic nature and chemical side chains
(Miao and Cao, 2016). These structural aberrations may, in
turn, affect H-bond, ionic, and Vander wall interactions required
to uphold the secondary (α helix and β-sheets), tertiary (3D)
and quaternary (biomolecular complexes) structural features of
RA proteins. The specific function of a protein is related to
the interaction of its exposed surface with a solvent. Amino
acid residues that form the hydrophobic core of a protein are
critical for its stability, therefore they are the site of deleterious
mutations. Our predictions show that the Arginine residue at
the 620th position of the PTPN22 protein, and the Valine
residue at the 358th of IL6R, and the Proline residue at the
1,104th of TYK2 changes the physical orientation and solvent
accessibility of the concerned protein molecules. A change,
whether an increase or decrease in the surface accessible area
to solvents, is determined by the physical orientation of the
amino acid (exposed or buried), which could in turn affect
the tertiary structure of the proteins (Ramsey et al., 2011).
The consensus output of the mutation Cutoff Scanning Matrix
and Site Directed Mutator methods revealed the negative Gibbs
free energy (DDG) changes for W620R of PTPN22, D358V of
IL6R and P1104A of the TYK2 mutations. Negative free energy
changes (namely the 11G sign) shifts the stability of proteins
to destabilization.

Most disease associated mutations not only interfere with
the structural conformation and stability of protein structures,
but also induce changes in the molecular binding energies
(Hijikata et al., 2017). We therefore further studied the impact
of three RA missense mutations in the context of intermolecular
interactions. Our protein networking analysis of three RA
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proteins, i.e., PTPN22, IL-6RA, and TYK2 highlighted their
functional interlinking with several immune system molecules,
reinforcing the centrality of immune dysfunction in the
pathogenesis of RA. Our molecular docking results show that
RA missense mutations contribute to altered interactions with
ligand molecules, primarily because of the shift in interacting
amino acid residues. For molecular docking, we used the Hex
Sever, which conveniently performs high quality exhaustive rigid
body docking predictions. It takes only ∼15 s to perform 6D
docking calculations with this server (Macindoe et al., 2010).
All three proteins analyzed, PTPN22 (W620R variant) IL6R
(D358V variant) and TYK2 (P1104 variant) were predicted to
manifest shifts in the interacting amino acid residues and ligand
binding energy values with their corresponding ligand molecules.
Furthermore, these three SNPs may also indirectly influence the
RA development through the expression of the genes located in
the regions of their under-linkage disequilibrium.

CONCLUSION

In the present study, the difference between variant prediction
methods (pathogenicity predictions, 3D protein structure
mapping and alterations in molecular interaction abilities) in
classifying the three best known RA missense mutations was
shown. We noticed that simple nucleotide predictions of SIFT,
PolyPhen, CADD, and FATHMM yielded mixed findings when
screening the clinically potential variants. The underlying reason
for these diverse prediction outcomes could be due to the
differences in datasets used in training these variant prediction
programs. In fact, a comprehensive multidirectional screening
ranging from secondary structure analysis, 3-D modeling,

structure equivalency, surface accessibility and stability analysis,
protein networking analysis, to molecular docking analysis will
provide a more realistic prediction of variant effects. However,
the variant prediction test outcomes require validation by
functional biology assays.
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