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Abstract

Background

Biomarkers are a key component of precision medicine. However, full clinical integration of

biomarkers has been met with challenges, partly attributed to analytical difficulties. It has

been shown that biomarker reproducibility is susceptible to data preprocessing approaches.

Here, we systematically evaluated machine-learning ensembles of preprocessing methods

as a general strategy to improve biomarker performance for prediction of survival from early

breast cancer.

Results

We risk stratified breast cancer patients into either low-risk or high-risk groups based on four

published hypoxia signatures (Buffa, Winter, Hu, and Sorensen), using 24 different prepro-

cessing approaches for microarray normalization. The 24 binary risk profiles determined for

each hypoxia signature were combined using a random forest to evaluate the efficacy of a

preprocessing ensemble classifier. We demonstrate that the best way of merging prepro-

cessing methods varies from signature to signature, and that there is likely no ‘best’ prepro-

cessing pipeline that is universal across datasets, highlighting the need to evaluate

ensembles of preprocessing algorithms. Further, we developed novel signatures for each

preprocessing method and the risk classifications from each were incorporated in a meta-

random forest model. Interestingly, the classification of these biomarkers and its ensemble

show striking consistency, demonstrating that similar intrinsic biological information are

being faithfully represented. As such, these classification patterns further confirm that there

is a subset of patients whose prognosis is consistently challenging to predict.

Conclusions

Performance of different prognostic signatures varies with pre-processing method. A simple

classifier by unanimous voting of classifications is a reliable way of improving on single
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preprocessing methods. Future signatures will likely require integration of intrinsic and

extrinsic clinico-pathological variables to better predict disease-related outcomes.

Introduction

Cancer is fundamentally a disease driven by genetic alterations, with the stepwise accumula-

tion of mutational hits in oncogenes and tumor suppressors [1]. However, cancer is not one

disease but many, with significant variability between tumor subtypes and within individual

tumours in both the rate of mutation and the specific genes that are mutated [2]. Conse-

quently, the molecular landscape of tumours can vary wildly, leading to differences in progres-

sion and overall prognosis. These differences are described as genetic heterogeneity, while

intra-tumor heterogeneity refers to heterogeneity within a tumor [3–6].

Currently, treatment decisions for individual patients are largely based on tumor subtype,

histology and pathology; clinico-pathological correlation; and tumor size, nodal and metastatic

status (TNM stage), along with a few molecular characteristics. This approach does not

account for the wide spectrum of genetic burden experienced by the individual patients, lead-

ing to divergent responses to therapy that are currently unpredictable. Accordingly, biomark-

ers play a key role in the realization of precision oncology to determine the treatment that

generates optimal response with minimal toxicity [7]. Biomarkers could be used at all stages of

disease management, including prognosis (determining an individual patient’s likely course of

disease-related outcomes such as recurrence and survival), or drug-sensitivity prediction [8,

9]. An ideal biomarker may predict multiple of these end-points simultaneously, and current

research focuses on creating panels of biomarkers for each disease.

To this end, numerous groups have sought to develop transcriptomic biomarkers using

microarray and RNA-sequencing approaches [7]. These efforts have resulted in a wide spec-

trum of signatures with prognostic potential, with the hope of fulfilling the gap between the

underlying genomic heterogeneity and clinical oncology. However, few of these signatures

have been successfully translated into routine clinical practice [10]. There are several reasons

for this high failure rate of biomarkers [11]. First, there is little overlap in the genes incorpo-

rated across biomarkers, leading to criticism that variability in the experimental and computa-

tional techniques introduce artificial noise [12, 13]. Second, signatures have been derived from

a variety of sources including cell lines, transgenic mouse models, combination of biological

pathways known to be perturbed in tumor subtypes, and profiling of tumor specimens. Third,

small sample size with low statistical power limits the generalizability of the signatures [14].

Fourth, biases often exist between the training and testing populations, yielding a signature

that reflects interdependencies between known clinical variables [15]. Fifth, the lack of guide-

lines on strenuous evaluation of biomarker performance in independent validation datasets

further accentuates false-positive rates and confuses the literature [14]. Finally, lack of stan-

dardized preprocessing methods challenge the consistency of the data obtained, which is often

re-used in secondary studies.

Several groups have demonstrated that biomarker reproducibility is highly sensitive to the

choice of preprocessing algorithm [13, 16, 17]. For example, we demonstrated that applying 24

preprocessing techniques for mRNA abundance normalization and predicting two established

signatures led to only ~33% of patients having consistent predictions in a cohort of 442 non-

small cell lung cancer (NSCLC) patients [18]. Surprisingly, those patients with unanimous pre-

dictions across all preprocessing methods had more robust classifications than those from any
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individual preprocessing algorithm alone. These findings were corroborated when we evalu-

ated pipeline concordance in a cohort of 1,564 early breast cancers using hypoxia signatures.

The ensemble approach of merging multiple preprocessing methods improved the perfor-

mance of hypoxia signatures, outperforming any individual method [19].

Hypoxia is the result of cancer altering cellular metabolism to focus on anaerobic glycolysis

along with the tortuous nature of their blood vessels [19]. Hypoxic regions of the tumor have

been implicated in promoting genomic heterogeneity, genomic instability and subclonal

expansion of a more aggressive tumor cells [20, 21]. The selective pressures experienced by

tumor cells in hypoxic conditions consequentially results in altered gene expression by epige-

netics and transcription factor activation for angiogenesis, and gaining of metastatic features.

Hypoxia is associated with poor prognosis and treatment failure, prompting the development

of several biomarkers to identify such patients [21, 22].

It is unclear why this ensemble-of-preprocessing methods approach works so effectively.

One hypothesis is that each individual preprocessing removes a different aspect of underlying

noise in the microarray dataset, and that the merged ensemble of noise reduction from various

perspectives allows a more accurate estimate of the true biomarker signal. The vast majority of

current implementations involve simple voting, which may significantly underestimate the

advantages of ensembles. Further, unanimous voting classification method leaves a large frac-

tion (36%-80% depending on the signature) of patients unclassified. To try to bring such

approaches to greater clinical utility, we set out to systematically evaluate whether ensembles

of preprocessing methods may improve classification in a greater proportion of patients. We

replaced the simple voting scheme with supervised machine-learning and evaluated a broad

range of signatures.

Methods

Datasets

To systematically evaluate the impact of preprocessing ensemble classifier on risk stratification,

two separate sets primary breast cancer mRNA abundance were gathered. First, eight datasets

profiled on the Affymetrix Human Genome U133A (HG-U133A) microarray platform were

obtained and integrated, comprising a total of 1,564 early breast cancer patients [23–30]. Sec-

ond, two datasets profiled on the Affymetrix Human Genome Plus 2.0 (HG-U133 Plus 2.0)

GeneChip Array were obtained for a total of 579 early breast cancer patients [31, 32]. All sam-

ples incorporated in the analysis were surgical specimens taken prior to any treatment. To ver-

ify the ensemble method can be effective in other data types, a prostate cancer methylation

preprocessing dataset containing 310 samples normalized using 11 different strategies was

used [33].

Preprocessing pipelines

To evaluate the performance of preprocessing ensemble classifiers learnt from various prepro-

cessing pipelines, data from the two microarray platform datasets specified above were prepro-

cessed in 24 different ways. There were three aspects that were considered to yield the unique

24 preprocessing methods: six preprocessing algorithms, two gene annotation methods, and

two dataset handling procedures. The combinations of these that precipitate the 24 preprocess-

ing pipelines were carried out as previously described [19]. Briefly, the six preprocessing algo-

rithms include 4 without log2-transformation [Robust Multi-array Average (RMA) [34],

MicroArray Suite 5.0 (MAS5) [35], Model-base Expression Index (MBEI) [36], GeneChip

Robust Multi-array Average (GCRMA) [37], and 2 log2-transform versions of MAS5 and

MBEI. These algorithms were all available in the R statistical environment (R packages: affy
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v1.36.0, gcrma v2.30.0). S1 Table provides a brief summary of each of these algorithms. The

two dataset handling approaches include either independent or merged preprocessing. The

two ProbeSet annotations used were either default Affymetrix gene-annotation (R packages:

hgu133aprobe v2.10.0, hgu133acdf v2.10.0, hgu133a.db v2.8.0, hgu133plus2probe v2.6.0,

hgu133plus2cdf v2.6.0, hgu133plus2.db v2.8.0) or an alternative Entrez Gene-based updated

annotation (R pack- ages: hgu133ahsentrezgprobe v15.1.0, hgu133ahsentrezgcdf v15.0.0,

hgu133plus2hsentrezgprobe v15.1.0, hgu133- plus2hsentrezgcdf v15.1.0). S2 Table provides a

summary of each of these preprocessing pipelines.

Patient risk classification: Hypoxia signatures

To assess the influence of preprocessing variation on risk stratification of patients, we used

four published hypoxia gene signatures: Buffa metagene [38], Winter metagene [39], Hu signa-

ture [40], and Sorensen gene set [41]. These signatures were chosen as they exhibited the best

performance in predicting patient outcome in our previous work. Briefly, each gene signature

was used to stratify patients into either low-risk or high-risk. Following pre-processing of data

using pipelines, the multi-gene signature score was calculated for each patient using all genes

on the signature’s gene list. First, for each gene of the signature, patients were median dichoto-

mized (0 or 1) based on the signal-intensity of the gene compared to the expression level of

that gene across all patients. Next, the multi-gene signature score for each patient was calcu-

lated as the sum of all gene scores. Finally, the scores were used to median dichotomize

patients into high and low risk groups for each signature.

For preprocessing pipelines with independent dataset preprocessing, stratification was con-

ducted independently. In preprocessing pipelines with merged dataset preprocessing, stratifi-

cation was conducted simultaneously. In summary, for each patient, 24 risk classifications

(high or low risk) was derived from 24 different pre-processing pipelines based on gene signa-

ture expression.

Brief descriptions of the original studies deriving these signatures are provided in S3 Table.

Of note, genes contained in these signatures are genes that were found to be upregulated in

hypoxic tumor environments, resulting in worse prognosis.

Ensemble classifier: Risk classification votes

The primary endpoint was to delineate whether an ensemble of preprocessing pipeline classifi-

ers using hypoxia signatures may improve the prediction of prognosis in early breast cancer

patients beyond that achieved by single pipeline classifiers. Since cause-specific mortality data

is lacking in our study, individual patient survival outcome was defined as either 0 or 1 to rep-

resent dead or alive status at 5-years, respectively (events occurred after 5-years were cen-

sored). Five-year survival was chosen as it is an important survival time-point for breast cancer

survivors due to the increasing causes of death unrelated to breast cancer in subsequent survi-

vorship years. At the end of 5 years, 1193 were censored while 371 cancer-related events

occurred for patients profiled on the HG-U133A platform. For patients profiled on the

HG-U133 Plus 2.0 platform, 352 were censored while 227 events occurred.

The 24 dichotomized risk profiles determined from each hypoxia signature were combined

to develop a preprocessing ensemble classifier using random forest (randomForest package

v4.6.10) to stratify patients within the HG-U133A and HG-U133A Plus 2.0 datasets, respec-

tively, as good or poor prognosis. The HG-U133A and HG-U133A Plus 2.0 datasets were inde-

pendently separated into training and testing sets by a sample size ratio of 1:1. Random

sampling was employed to determine the training and testing set, maintaining a balanced ratio

between mortality and survival events in subsequent datasets. Random forest classifier was
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trained on the training set of HG-U133A and HG-U133A Plus 2.0, respectively, to prognosti-

cate survival. Parameter was set at the upper limit of the total number of events in the training

set to maintain equal sampling from patients who survived and those who experienced an

event at 5 years. Tuning of random forest classifier parameters mtry (values 1, 2, 4, 6, 8, 10, 12,

14, 16, 18, 20, 22, 24) and ntree (values 500, 1000, 2000, 5000) was done using grid. The best

tuning parameters for the final classifier were selected based on the performance measure

accuracy, as specified below.

The test dataset was evaluated using each of the tuned models to produce 0 or 1 to predict

whether each patient died by 5 years. To calculate performance, patients alive at 5 years were

considered to be true negatives (TNs) if the classifier correctly assigned them to good progno-

sis group, whereas they were considered as false negatives (FNs) if they died within 5 years.

Similarly, patients who died within 5 years were considered to be true positives (TPs) if the

classifier correctly assigned them to poor prognosis group, whereas they were considered as

false positives (FPs) if they were alive at 5 years. Subsequently, sensitivity, specificity, and accu-

racy were calculated accordingly. The area under the receiver operator curve (AUC) was calcu-

lated based on the receiver operator characteristic (ROC) analysis using the random forest

classification probability (pROC v1.8). The final tuning parameters selected were those that

yielded the highest accuracy.

Ensemble classifier: Engineered variables

Following random forest classification using only the risk classification votes from different

pipeline variants, classifiers were constructed using summary statistics as additional features.

The engineered summary variables capture the total number of poor prognosis votes based on

the variable aspects of preprocessing pipelines as follows: total number votes overall, total

number of votes for pipelines using separate preprocessing, total number of votes for pipelines

using merged preprocessing, total number of votes for RMA pipelines, total number of votes

for GCRMA pipelines, total number of votes for MBEI pipelines, total number of votes for

MAS5 pipelines, total number of votes for log2 MBEI pipelines, total number of votes for log2

MAS5 pipelines, total number of votes for RMA and MAS5 pipelines, total number of votes

for pipelines using default annotation, and total number of votes for pipelines using alternative

annotation. The derivation of engineered variables is summarized in S4 Table.

Random forest models were built upon the following feature combinations: ensemble of

preprocessing pipeline variants and the engineered variables, ensemble of engineered vari-

ables, and ensemble of only feature variables selected by the Boruta algorithm (Boruta v4.0.0).

Random forest models were tuned based on performance similar to above. For the HG-U133A

dataset, models were constructed by incorporating all patients in the cohort or only the subset

of patients with unanimous agreement across the preprocessing pipelines. For the HG-U133A

Plus 2.0 dataset, given the smaller sample size, models were constructed by incorporating all

patients in the cohort to maintain sufficient statistical power.

Classifier evaluation

The prognostic performance of the tuned classifiers was evaluated on the test set Kaplan-Meier

estimates with the log-rank test and unadjusted Cox proportional hazard ratio model used to

compare between the two groups (survival v2.38.0). In order to assess the performance of ran-

dom forest-based ensemble classifiers, we compared the random forest classifier hazard ratio

(HR), the HR in the subset of patients with unanimous agreement across 24 preprocessing

pipelines, as well as the HR of individual preprocessing pipelines. Similarly, binary classifica-

tion measure accuracy was compared. To compare between the random forest classifiers
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derived for each hypoxia signature, we assessed prognostic performance using the AUC. The

ROC analysis was conducted for each signature using the random forest classification proba-

bility (pROC v1.8).

Statistical comparison analysis

We compared the HR performance in the array of random forest classifier models for each

hypoxia signature. The classifier HRs were split based on the features used to build the classi-

fier: preprocessing pipelines, engineered variables, and feature variable selection. A paired t-

test was used to assess statistical differences in the log2-transformed Hazard Ratios.

New signature creation using preprocessing ensembles

Using the HG-U133A platform datasets, we sought to elucidate the ability of preprocessing

ensemble classifiers to improve upon performance of novel signatures. To this end, we gener-

ated a 100-top-ranked-gene novel signature for individual preprocessing pipelines. This was

done for preprocessing pipelines where all HG-U133A datasets were preprocessed together,

yielding 12 individual signatures. To ascertain the signatures, each preprocessing normaliza-

tion method was used to median-dichotomize the patient cohort by low or high abundance for

each gene. The unadjusted Cox proportional hazard model was used to determine the univari-

ate performance of individual genes to prognostic outcome. Statistical significance was

assessed using the Wald test and p-values were false-discovery rate (FDR) adjusted to correct

for multiple-testing. The 100 top-ranked genes with adjusted p-values < 0.05 were selected to

constitute the signature. The individual signatures from the 12 preprocessing pipelines were

validated using random forest classifiers using 10-fold cross-validation, where the random for-

est classifiers were trained on a training set and internally validated on a separate test set. The

12 good versus poor prognosis classifications were subsequently combined in a meta-random

forest to evaluate its ability to predict prognosis compared to individual signature classifiers.

The random forest model parameters were tuned as described above. Classification accuracy

for each breast cancer subtype was calculated by subsetting to patients with known subtype

information before dividing the number of correctly classified patients by the total number of

patients with the subtype. The ensemble classification accuracy was calculated using all

patients in this comparison.

The method outlined to generate an ensemble classifier was also applied to a previously

published prostate cancer methylation preprocessing dataset to further test the generalizability

of this method.

Program usage

All statistical analyses and plotting were performed in R statistical environment (v3.2.1). The

following packages were used for statistical analyses: randomForest v4.6.10, Boruta v4.0.0, sur-

vival v2.38.0, and pROC v1.8. All plots were generated in R using custom scripts for lattice

(v0.2.31) and latticeExtra (v0.6.26).

Results

Study design: Ensembles of preprocessing pipelines

Our overall approach to evaluate non-linear preprocessing ensembles is outlined in Fig 1. Our

goal was to determine how multiple pre-processing methods might best be combined to

improve biomarkers predictive of patient prognosis. The datasets used were separated based

on the microarray platform–HG-U133A and HG-U133 Plus 2.0 –because of previously
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reported differences in their noise characteristics [19]. The union of all HG-U133A datasets

contains 1,564 patients while that of the HG-U133 Plus 2.0 datasets contains 579. Each individ-

ual dataset was preprocessed using 24 pipeline variants, and then each hypoxia signature was

scored for each pre-processing variant. This resulted in 24 predictions for each combination of

patient and signature. Additionally, we derived several engineered variables from counting the

total number of votes based on various preprocessing pipeline characteristics (S4 Table). Ran-

dom forest classifiers were constructed to predict prognosis for individual patients using com-

binations of the ensemble of 24 preprocessing pipeline predictions and the engineered

features. We evaluated the performance of these classifiers using Kaplan-Meier analysis, Cox

proportional hazard model, and the binary classification accuracy.

Different preprocessing ensembles perform best for different biomarkers

We compared the performance of the individual preprocessing pipelines with to those of

ensemble approaches. This process was conducted for each of the four hypoxia signatures and

both microarray platforms. S5 Table (HG-U133A) and S6 Table (HG-U133 Plus 2.0) comprise

the hazard ratios (HRs) and 95% confidence intervals (CIs) determined for each of the 24 pre-

processing pipelines, the random forest classifiers evaluated, and the simple preprocessing

unanimous classifier, for each signature. Note that in this design each classifier is evaluated on

a fully-independent validation cohort, to mitigate over-fitting.

Fig 2A shows a representative forest plot of the prognostic ability of various classifiers mea-

sured in HRs for the Winter metagene signature, using the HG-133A microarray platform.

The best prediction of prognosis was observed in the subset of patients with unanimous agree-

ment across the pipelines [HR 3.48, 95% confidence interval (CI) 2.44–4.95, p = 4.99 x 10−12].

However, the unanimous classification method only makes predictions for 41% (642) of

patients while the remainder are unclassified. With incorporation of all patients in the

HG-U133A dataset, the random forest classifier using engineered variables derived from votes

of preprocessing pipeline features appeared to be a better predictor of prognosis than any

Fig 1. Summary of the study design for ensemble classification for evaluation of a biomarker. Microarray data are obtained from specific platforms and

preprocessing using 24 different pipelines to normalize the mRNA gene expression. Risk groups are then assigned based on the biomarker of interest, resulting in a

collection of either good or poor prognosis stratification based on the expression obtained from various preprocessing methods. Stratification into either good or poor

prognosis represents a vote for that group, resulting in a score between 0 and 24. The ensemble of classifications is combined as features for random forest based

machine learning. Random forest classifiers learning on a selected training set and evaluated on the test set. The robustness of the classifier derived for the biomarker of

interest is evaluated with Cox proportional hazard ratio modeling and Kaplan-Meier survival estimates.

https://doi.org/10.1371/journal.pone.0204123.g001
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individual pipelines (HR 2.39, 95% CI 1.94–2.93, p = 9.89 x 10−17). Similarly, the prognostic

ability of two other ensemble random forest classifiers (preprocessing pipeline in combination

with engineered variables, and preprocessing pipelines ensemble) also performed better than

any individual pipelines (HR 2.25, 95% CI 1.83–2.76, p = 9.59 x 10−15 and HR 2.24, 95% CI

1.82–2.75, p = 1.41 x 10−14).

Surprisingly, though, this improved performance of random forest classifier of pre-process-

ing methods was not a general feature of signatures. Rather, the performance of the ensemble

classifier in comparison to individual pipeline variants was highly variable for the Buffa (S1

Fig) Hu (S2 Fig) and Sorensen signatures (S3 Fig). Further, the combination of features result-

ing in the best classifier was not consistent across the four signatures: engineered variables

were important for the Buffa and Winter signatures (Buffa: HR 2.15, 95% CI 1.75–2.64,

p = 4.03 x 10−13; Winter: HR 2.39, 95% CI 1.94–2.93, p = 9.89x 10−17), but feature selection

using the Boruta algorithm yielded the highest performing classifier for Hu (HR 1.63, 95% CI

1.32–2.00, p = 3.87 x 10−6) and Sorensen signatures (HR 2.28, 95% CI 1.87–2.78, p = 2.51 x

10−16).

These findings of strong divergence in the best way to merge pre-processing algorithms

held when we considered other metrics of classification accuracy besides HRs. For example,

classification accuracy and evaluation of the area under the receiver operating characteristics

curve (AUC) again show the benefits of specific pre-processing ensembles for the Winter

Fig 2. Representative hazard ratio forest plot and accuracy for Winter metagene signature using the HG-U133A microarray platform. (A) Forest plot of log2

hazard ratios with 95% confidence intervals obtained for each of the 24 preprocessing (PP) methods, the random forest classifiers evaluated, and the simple unanimous

vote classifier (total number of votes for poor prognosis either 0 or 24). The forest plot is ordered as decreasing hazard ratio. The dotted line represents a hazard ratio of

1. The blue hazard ratio with its 95% confidence interval represents the hazard ratio for the simple unanimous vote classifier. (B) Bar plot of accuracy obtained for each

of the 24 preprocessing methods, the random forest classifiers evaluated, and the simple unanimous vote classifier. The bars are ordered by preprocessing pipelines, the

unanimous classifier, and the best performing random forest classifier, from left to right.

https://doi.org/10.1371/journal.pone.0204123.g002
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signature (Fig 2B) matching those in the HR analysis, and analogously for the Buffa (S1 Fig),

Hu (S2 Fig), and Sorensen signatures (S3 Fig).

These trends were also independent of the specific microarray platform used: results were

comparable in patients analyzed using the HG-U133 Plus 2.0 microarray platform (S4–S7

Figs). The preprocessing unanimous classifier based on simple risk voting resulted in superior

prognostication compared to individual preprocessing variants for all signatures except for

Sorensen. Furthermore, the random forest classifiers evaluated did not improve upon unani-

mous classification, except for the Sorensen signature. The best performing random forest

classifier was also inconsistent and variable across the biomarkers evaluated. The Kaplan-

Meier plots for the HG-U133A dataset are shown in S8–S11 Figs. The Kaplan-Meier plots for

the HG-U133 Plus 2.0 dataset are shown in S12–S15 Figs.

Comparison of patient prognosis prediction between signature classifiers

Taken together, our results show that it is possible to improve upon individual pre-processing

pipelines using ensemble techniques, but that the best way to assemble these ensembles varies

with the biomarker signature, and not the microarray platform. Fig 3A compares the best

ensemble of pre-processing methods to the best individual preprocessing method for each sig-

nature and microarray platform. Consistent with our previous results, the random forest clas-

sifier outperformed the preprocessing method for Winter and Sorensen signatures, but not for

Buffa and Hu signatures. The ROC curve and corresponding AUC obtained for the best

ensemble of preprocessing strategies is shown in Fig 3B and Fig 3C. The Buffa, Winter, and

Sorensen signature classifiers demonstrated similar AUCs for mortality risk stratification

between the two microarray platforms. Conversely, the Hu signature classifier showed better

risk stratification using the HG-U133 Plus 2.0 platform compared to the HG-U133A platform.

To determine if there are general properties of an ensemble of preprocessing methods that

contribute to its performance, we compared each classifier feature to the ultimate performance

of the classifier. This was done separately for both microarray platforms. For the HG-U133A

platform, patients where all preprocessing methods gave a consistent results (unanimous

preprocessing agreement) were statistically easier to classify than those where there was diver-

gence amongst the pre-processing methods. These patients are thus more difficult to prognose,

even though ensembles do improve upon the best individual pre-processing method. Similarly

for the HG-U133 Plus 2.0 platform, patients with unanimous preprocessing agreement were

statistically significantly or trend significantly easier to classify than those with divergence

across classifiers. This trend was consistent across all four signatures evaluated, and across

both platforms, suggesting that there is a patient sub-group that is fundamentally easier to

classify, and that on the agreement of pre-processing methods on this sub-group can give

increased confidence to the accuracy of molecular biomarkers.

Generalization to non-hypoxia signatures

To assess the generality of these observations, we trained independent prognostic signatures

on each pre-processing method (Fig 4). Thus the same training dataset was pre-processed in

12 distinct ways, and then a learner was applied to each of these, leading to 12 distinct prog-

nostic biomarkers. We focused on the HG-U133A data for this experiment, given its larger

sample-size. We selected a standard straight-forward machine-learning approach, involving

feature-selection with a univariate statistical text (Cox proportional hazards modeling) and

modeling using the non-metric random forest approach. We then evaluated whether these 12

separate classifiers gave similar predictions for each individual patient, and attempted to create

an ensemble of them. Finally the twelve separate and one ensemble classifiers were validated
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on the independent validation dataset using the AUC and Cox proportional hazards

modeling.

The signatures trained with each of the 12 preprocessing pipelines had remarkably similar

accuracy and HRs (Fig 5A), and a subset of genes overlapped across multiple signatures (S7

Table). An ensemble of these 12 classifiers resulted in marginally, but not statistically signifi-

cant, improved predictions, suggesting that the signatures are not providing complementary

information. To verify this, we compared the agreement of the per-patient predictions across

all signatures. Fig 5B illustrates the predictions of individual signature classifiers across all

patients stratified by the true survival outcome. The signature showed highly concordant clas-

sification, with patients with mortality events were similarly classified as having poor prognosis

across the signatures and patients with continued survival were similarly classified as having

good prognosis across the signatures. Similarly, inaccurate predictions of survival and mortal-

ity occurred in a comparable subset of patients across the signatures. To determine if the

Fig 3. Summary hazard ratio forest plot and receiver operator curves. (A) Forest plot of log2 hazard ratios with 95% confidence intervals obtained for the best

performing preprocessing method, best performing random forest classifier, and the unanimous vote classifier. Plot is ordered by decreasing hazard ratio within each

signature and microarray platform evaluated. Colors correspond to the specific signature evaluated. (B and C) Receiver operator curves and area under the curve (AUC)

obtained from the best performing random forest classifier for each biomarker, as determined by the highest hazard ratio. HG-U133A ROC curves shown in A, and

HG-U133 Plus 2.0 ROC curves shown in B.

https://doi.org/10.1371/journal.pone.0204123.g003
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Fig 4. Summary of the study design for development of novel signature classifiers for each preprocessing pipeline and evaluating its performance in a meta-

ensemble classifier. Microarray data are obtained from specific platforms and preprocessing using 24 different pipelines to normalize the mRNA gene expression. The

gene expression is median dichotomized into two expression groups. Novel signatures are determined as the top 100 genes that reached significant after adjustment for

false discovery rate, for each preprocessing pipeline (total 12). The training of a random forest classifier based on the individual novel signatures result in individual risk

classifications of survival prognosis. These risk stratification are subsequently combined in a meta-random forest classifier to evaluate the robustness of the signature

with Cox proportional hazard ratio modeling and Kaplan-Meier survival estimates.

https://doi.org/10.1371/journal.pone.0204123.g004

Fig 5. Hazard ratio forest plots of classifier performance and heatmap of individual classifier predictions of survival prognosis. (A) Forest plot with 95%

confidence intervals of novel signature classifiers. The forest plot is ordered as decreasing hazard ratio. The dotted line represents a hazard ratio of 1. (B) Heatmap

of classifier predictions of 5-year survival status. The classifiers (by row) from signatures are ordered by decreasing performance of patient outcome prediction.

Patients (by column) are ordered by the degree of agreement of predictions across the array of novel signatures identified from 12 different preprocessing variant

pipelines. The true outcome of patients is shown as either 5-year survival status or overall survival status up to the end of study follow-up. Blue represents true

positives with correct prediction of poor prognosis. Purple represents true negatives with correct prediction of good prognosis. The white part of the heatmap

represents incorrect predictions of good or poor prognosis. (C) Classification accuracy of ensemble model stratified by known subtype of the tumours and of the

model itself when subsetted to samples with subtype information in the literature.

https://doi.org/10.1371/journal.pone.0204123.g005

Ensembles of hypoxia signatures

PLOS ONE | https://doi.org/10.1371/journal.pone.0204123 September 14, 2018 11 / 19

https://doi.org/10.1371/journal.pone.0204123.g004
https://doi.org/10.1371/journal.pone.0204123.g005
https://doi.org/10.1371/journal.pone.0204123


signature’s accuracy differed between subtypes, we subsetted the patients with known subtype

information from the literature and calculated classification accuracy (Fig 5C). We find that

accuracy was highest for normal-like and lowest for Luminal B, and these values can be further

improved during the model training process.

To further evaluate the generalizability of this ensemble method, we executed the workflow

on a prostate cancer methylation preprocessing dataset [33]. This set consists of the raw meth-

ylation values along with data from 11 preprocessing methods. Following the method previ-

ously outlined (Fig 4), individual classifiers were trained before training the ensemble

classifier. Similar to the results from the breast cancer data (Fig 5), the results from the prostate

cancer dataset showed that the ensemble classifier outperformed the majority of individual

classifiers at predicting biochemical recurrence (S16 Fig), but not all.

Taken together, it appears that all signatures predict either good or poor survival for a simi-

lar cohort of patients, and that there remains a group of patients whose prognosis is difficult to

predict and that leveraging orthogonal information from multiple pre-processing schemes will

not help in making more accurate predictions for these.

Discussion

Some groups have suggested that different preprocessing methods have minor effect on pre-

dictive signatures [42, 43]. Other work has suggested that this is incorrect, and that different

preprocessing algorithms results in substantial differences in outcomes [18, 19]. Indeed we

previously showed that ensemble classification combining preprocessing techniques using a

unanimous voting method could identify high-confidence predictions, thereby giving

increased confidence to risk stratification tools. We sought here to extend this approach and to

discover if the predictions from multiple pre-processing algorithms might be combined into

more accurate ensemble calls.

Our results demonstrate that there is indeed value to leveraging multiple pre-processing

techniques. However, they yield the surprising result that the optimal way to do so is depen-

dent on the characteristics of an individual signature. That is, one must consider all pre-pro-

cessing methodologies for each new biomarker to determine if and to what extent combining

them will improve predictions: there is no apparent universal approach to optimize this prob-

lem, even holding the dataset constant. Further, ensembles appear to be limited in the extent

to which they can improve signatures–there remains a subset of hard-to-classify patients for

whom varying characteristics of the pre-processing do not help in classification. Large inter-

individual differences exist in a plethora of extrinsic factors that play an equally imperative

role in driving survival outcomes. These include environmental exposure factors, socioeco-

nomic factors, patient compliance concerns, patient preferences, and social habits [44]. Treat-

ment factors include success of surgery such as extent of margins, factors involved in the

delivery of adjuvant treatments, as well as variability in the decision-making process between

the patient and the treating physician. Currently, much of this information is not considered

in the evaluation of intrinsic biological pattern on prognosis. Optimal prediction of outcomes

will likely necessitate the integration of both intrinsic and extrinsic information in the bio-

marker development process. These findings are thus highly consistent with that demonstrated

by Tofigh et al., whereby the prognosis for a subset of breast cancer patients was intrinsically

more difficult to predict [45].

Our results are not without limitations. First, the datasets included in the analyses herein

represent only therapy-naïve early breast cancer tumors. It is well known that cancer is a dis-

ease of many, given the inter-tumor and intra-tumor heterogeneity observed. This precludes

generalizations of these results to other tumor types. Second, we used random forests to derive
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classifiers, but potentially other machine learning algorithms may yield different results.

Third, our study focused on four previously published hypoxia signatures and it would be dif-

ficult to extrapolate our findings to other microarray-based signatures. Studies are needed to

elucidate the findings herein for other clinically promising signatures. Lastly, we only used

microarray datasets to assess the utility of random forest classifiers for risk stratification. It

may be that preprocessing ensemble classifications will be of greater benefit in fields where

existing preprocessing methods are less robust [46].

Taken together, our data further highlights the need to incorporate extrinsic factors not

accounted for by intrinsic biological signals, in the pursuit of integrative signatures that will

allow for the realization of precision oncology.
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