
Analysis of demographic data revealed a significantly 
higher median age for patients with GII.P17_GII.17 infec-
tions (55 [SD 49.8] months) than for patients with GII.4 
infections (24 [SD 13.6] months)  (p<0.005; 2-tailed Mann 
U-test, p = 0.00433 [95% CI 0.4–6.5]). These observations 
are consistent with a lack of specific herd immunity in the 
population, meaning that the GII.17 virus can infect older 
patients more easily than GII.4 viruses can, as observed in 
Hong Kong (4).

Our analysis indicates that, in Italy in winter 2015–
16, the epidemiologic pattern of norovirus GII.17 viruses 
markedly changed, suggesting increased circulation of the 
variant Kawasaki 2014 among children, although GII.4 
variants (the capsid variant Sydney 2012 with the GII.Pe 
or GII.P4 polymerase) were still predominant. The mecha-
nisms driving the global spread of norovirus GII.17 could 
include the broad range of co-receptors used by these virus-
es (10) or the limited cross-antigenic relationships with the 
predominant GII.4 strains that could trigger mechanisms of 
antigenic escape. Norovirus GII.17 could present a chal-
lenge for the development of norovirus vaccines because 
it is not clear whether, and to what extent, there is cross-
protection between vaccine antigens and GII.17 viruses (6).
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We report a case of disseminated Mycobacterium ge-
navense infection resulting from neutralizing anti–interferon-γ 
autoantibodies in the patient. We identified M. genavense 
targeting the hsp65 gene in an aspiration specimen of the 
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lymph node. Adult-onset immunodeficiency caused by neu-
tralizing anti–interferon-γ autoantibodies, in addition to HIV  
infection, can lead to disseminated nontuberculous myco-
bacterial infection.

Mycobacterium genavense is a ubiquitous nontuber-
culous mycobacteria (NTM), first described as a 

human infection in the 1990s as a primary cause of fatal 
disseminated infection in HIV-infected patients with low 
CD4 counts (1). M. genavense also is recognized as an 
opportunistic pathogen in patients without HIV who have 
severe immunodeficiency, such as that after solid-organ or 
hematopoietic stem cell transplantation or immunosuppres-
sive therapy (2,3). The diagnosis of M. genavense infec-
tion is clinically challenging because of the difficulties in 
routinely culturing the organism and the absence of spe-
cific symptoms, even in fatal infections. Therefore, diag-
nosing M. genavense infection in patients without known 
evidence of immunodeficiency is particularly difficult. We 
report a previously healthy 66-year-old man with multiple 
lymphadenopathies in whom disseminated M. genavense 
infection resulting from the presence of neutralizing anti–
interferon-γ (anti–IFN-γ) autoantibodies was diagnosed.

In November 2015, the patient sought care at Asahi 
General Hospital (Chiba, Japan) for a 2-week history of 
right-side neck swelling and abdominal pain. His vital 
signs were within reference ranges. Except for right cer-
vical lymphadenopathy, findings on physical examination 
were unremarkable. HIV antibodies were undetectable, and 
CD4/CD8 lymphocyte counts were within reference rang-
es. No mediastinal or lung involvement was detected on 
chest computed tomography (CT) scan. Gallium-67 single-
photon emission CT/CT revealed high-intensity accumula-
tion of the right cervical and ileocolic lymph nodes (on-
line Technical Appendix Figure, https://wwwnc.cdc.gov/
EID/article/23/7/16-1677-Techapp1.pdf). Acid-fast bacilli 
(AFB) staining of the lymph-node aspiration specimen 
yielded positive results; however, findings on solid media 
culture and PCR for detecting M. tuberculosis, M. avium, 
and M. intracellulare were negative. After a 6-week outpa-
tient follow-up, the patient returned with newly developed 
right axillary lymphadenopathy. An aspiration specimen 
of the lymph node showed positive AFB staining and was 
submitted for molecular biologic analysis. M. genavense 
was identified on amplification and sequencing analysis 
targeting the hsp65 gene (4). We strongly suspected neu-
tralizing anti–IFN-γ autoantibodies as the cause because 
the whole blood IFN-γ level with mitogen stimulation was 
low, as determined using an IFN-γ–releasing assay (Quan-
tiFERON TB 3G; Cellestis, Carnagie, VIC, Australia). A 
high serum-neutralizing anti–IFN-γ autoantibody titer and 
inhibited STAT1 (signal transducer and activator of tran-
scription 1) phosphorylation through IFN-γ stimulation 

in the leukocytes were confirmed, leading to a diagnosis 
of disseminated M. genavense infection. Clarithromycin, 
ethambutol, rifampin, and amikacin were administered. 
Lymphadenopathy improved after 6 weeks, and amikacin 
was discontinued. No relapse occurred during 16 months 
of treatment.

Recent studies have described disseminated NTM 
infection in patients in Asia with adult-onset immunode-
ficiency resulting from neutralizing anti–IFN-γ autoanti-
bodies (5–7). Disseminated infection mainly involves the 
lymph nodes, followed by the osteoarticular system, bone, 
lungs, and skin (6,7). The pathogen comprises rapidly and 
slowly growing mycobacteria; M. avium complex and M. 
abscessus are the most frequently detected. Although the 
long-term outcome is unclear, most patients need long-term 
antimicrobial therapy, and some relapses occur after treat-
ment discontinuation (6,7). Adjuvant rituximab therapy has 
been used for refractory disease (8).

Although disseminated M. genavense infections for-
merly only were known to occur in HIV-infected patients, 
the epidemiologic shift to infections in patients without 
HIV reflects the introduction of combination antiretroviral 
therapy and increasing use of immunosuppressive agents 
(2). In 2 previous series comprising 14 HIV-negative pa-
tients with M. genavense infection, most patients had 
known evidence of immunodeficiency; of the 12 patients 
treated with immunosuppressive agents, 5 had sarcoidosis, 
5 were solid-organ transplantation recipients, 1 had non-
Hodgkin lymphoma, and 1 had rheumatoid arthritis. Only 2 
patients were identified with adult-onset innate immunode-
ficiency (2,3); 1 patient had innate interleukin-12 receptor 
deficiency and 1 had idiopathic CD4 lymphocytopenia.

Needle aspirates and tissue biopsy provide higher NTM 
diagnostic yields than does swab sampling but are insuf-
ficiently sensitive. Therefore, less frequently encountered 
mycobacterial species are identified by gene sequencing, 
reverse hybridization, and high-performance liquid chroma-
tography (9). Moreover, the identification of M. genavense 
infection using standard mycobacterial culture methods is 
difficult. Acidified solid media testing with blood and char-
coal is probably the most suitable method (10); however, 
accurate diagnosis requires additional molecular biologic 
analysis, such as amplification and sequencing of the 16S 
ribosomal RNA, hsp65, or rpoB genes. In this case, we 
identified M. genavense using a direct molecular biologic 
method for aspiration specimens from the lymph node.

Little is known about death among HIV-negative pa-
tients with M. genavense infection, although some patients 
reportedly have died (2,3). Although their conditions even-
tually improve, despite a lack of early identification of M. 
genavense, delayed diagnosis might influence death. Direct 
molecular biologic methods could better identify M. ge-
navense infection and improve prognosis.
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We report a case of disseminated M. genavense infec-
tion resulting from neutralizing anti–IFN-γ autoantibodies 
in the patient. M. genavense infection should be considered 
in the differential diagnosis of mycobacteria detected with 
AFB staining but not with culture, even in patients without 
known evidence of immunodeficiency. Adult-onset immu-
nodeficiency acquired by neutralizing anti–IFN-γ autoanti-
bodies, in addition to HIV infection, can lead to dissemi-
nated NTM infection.
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During an outbreak of Q fever in Germany, we identified 
an infected sheep flock from which animals were routinely 
used as a source for life cell therapy (LCT), the injection of 
fetal cells or cell extracts from sheep into humans. Q fever 
developed in 7 LCT recipients from Canada, Germany, and 
the United States.

Gram-negative intracellular bacteria (Coxiella burnetii) 
cause Q fever, a zoonotic disease usually subclinical 

in livestock and humans. Typically, human patients show 
signs and symptoms, such as fever, severe headache, nau-
sea, pneumonia, or hepatitis, 2-3 weeks after infection. 
Chronic Q fever develops in ≈1%–5% of patients (1).

On August 5, 2014, a local health department in the 
Federal State of the Rhineland Palatinate in southern 
Germany alerted the Federal State Agency for Consumer 
and Health Protection (FSACHP) (Landau, Germany) 
after detecting a cluster of 8 patients with pneumonia 
in a rural community during a 6-week period. The local 
health department and FSACHP started a joint outbreak  
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