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Abstract
Pairs of active neurons frequently fire action potentials or “spikes” nearly synchronously

(i.e., within 5 ms of each other). This spike synchrony may occur by chance, based solely

on the neurons’ fluctuating firing patterns, or it may occur too frequently to be explicable by

chance alone. When spike synchrony above chances levels is present, it may subserve

computation for a specific cognitive process, or it could be an irrelevant byproduct of such

computation. Either way, spike synchrony is a feature of neural data that should be

explained. A point process regression framework has been developed previously for this

purpose, using generalized linear models (GLMs). In this framework, the observed number

of synchronous spikes is compared to the number predicted by chance under varying

assumptions about the factors that affect each of the individual neuron’s firing-rate func-

tions. An important possible source of spike synchrony is network-wide oscillations, which

may provide an essential mechanism of network information flow. To establish the statistical

link between spike synchrony and network-wide oscillations, we have integrated oscillatory

field potentials into our point process regression framework. We first extended a previously-

published model of spike-field association and showed that we could recover phase rela-

tionships between oscillatory field potentials and firing rates. We then used this new frame-

work to demonstrate the statistical relationship between oscillatory field potentials and

spike synchrony in: 1) simulated neurons, 2) in vitro recordings of hippocampal CA1 pyrami-

dal cells, and 3) in vivo recordings of neocortical V4 neurons. Our results provide a rigorous

method for establishing a statistical link between network oscillations and neural synchrony.
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Author Summary

Spike synchrony, which is widely reported in neural systems, may contribute to informa-
tion transmission within and across brain regions. Critical to this theory is the potential
link between oscillatory activity and synchronous spiking. In this article we provide a
method for establishing the statistical association of spike synchrony with an oscillatory
local field potential. We demonstrate the value of this technique by numerical simulation
together with application to both in vitro and in vivo neural recordings.

Introduction
A leading theory of current neuroscience is that synchronous firing of neurons driven by net-
work-wide oscillations may encode and transmit information within and across brain regions
[1–9]. Supporting this theory, a number of studies have suggested that synchronous firing of
action potentials or “spikes”may indeed occur in conjunction with oscillations in local field
potential (LFP) [10–14]. However, a missing link in this theory has been the ability to dissoci-
ate enhanced spike synchrony due to network-wide oscillations from enhanced spike syn-
chrony that may be due to other measured or unmeasured sources. Recently, we developed a
statistical framework in which the association between spike synchrony and measured covari-
ates may be assessed [15, 16]. Here we show how this approach may be applied to describe the
relationship between spike synchrony and oscillatory activity.

Using point process regression models, which take the form of generalized linear models
(GLMs), our statistical framework compares the observed number of synchronous spikes
within a small time window (here, 5 ms) to the number predicted by chance, under varying
assumptions about the factors that affect the firing of each individual neuron [15, 16]. The
number of synchronous spikes predicted “by chance” refers here to the number predicted
under conditional independence after conditioning on the various measured factors that have
been hypothesized to affect individual-neuron spiking. For example, two neurons having fluc-
tuating stimulus-driven firing rates will produce some number of synchronous spikes even if
they are acting independently. The point process regression method fits fluctuating firing rate
functions for each neuron separately, then predicts the number of synchronous spikes under
conditional independence (i.e., after conditioning on these fluctuating firing rates), and com-
pares the prediction to the observed number of synchronous spikes. In this way, a single factor
may be either included or excluded from the regression model in order to quantify that factor’s
ability to explain the observed spike synchrony.

In this article, we consider the contribution of network-wide oscillations by comparing
observed and predicted spike synchrony after conditioning on the phase of an LFP represent-
ing a network-wide oscillation. Thus, we predict spike synchrony with and without inclusion
of LFP phase as an explanatory variable for each neuron separately. To demonstrate that
increased spike synchrony is associated with a network-wide oscillation, we would begin by
establishing that, without considering LFP phase, the observed number of synchronous spikes
is greater than the predicted number by a statistically significant magnitude, after conditioning
on both stimulus-driven firing rates and recent post-spike history effects. This would indicate a
failure of the phase-free model to accurately account for spike synchrony. We would then
include the LFP phase in the model, and if it succeeded in predicting spike synchrony, then we
would conclude that LFP phase can explain the remaining spike synchrony. Furthermore, we
could estimate the proportion of excess synchronous spikes accounted for by the LFP phase.
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The same procedure could be used, instead to demonstrate the role of network-wide oscilla-
tions in suppressing spike synchrony.

In order to carry out this general procedure, we first need to model an individual neuron’s
spiking probability in terms of LFP phase. We follow [17], which recently described and
assessed point process regression models that include a sinusoidal phase term. We enhance
their approach by weakening the sinusoidal assumption, allowing the phase relationship to be
nonparametric as in [18], and we add to the favorable results of [17] by showing that, in esti-
mating phase relationships, the point process regression model can reduce bias and mean-
squared error in comparison with the more familiar spike phase histogram approach. Using
this point process regression model, we are then able to quantify the dependence of synchro-
nous spiking on an oscillatory modulation. We illustrate the method using simulated neurons,
in vitro recordings of hippocampal CA1 pyramidal cells, and in vivo recordings of neocortical
V4 neurons from a behaving monkey.

Results

Point Process Model for Spike Trains
We assume that the spiking of each neuron follows a point process and, following [19] (page
592), we write its conditional intensity function as λ(tjHt,Xt), whereHt represents the spike his-
tory (auto-history), and the covariate Xt represents other external factors. In this work, we let
Xt include the stimulus and the LFP phase, denoted by Xt = (St,Ft). We assume the conditional
intensity takes a multiplicative form, which becomes additive on the log scale:

log lðtjHt;XtÞ ¼ f1ðStÞ þ f2ðHtÞ þ f3ðFtÞ
¼ log l1ðtÞ þ log l2ðt � t�Þ þ log l3ðFtÞ

ð1Þ

where t� is the last spike time preceding t (see Materials and Methods).
We use splines to capture stimulus and auto-history effects, and circular splines to capture

LFP phase effects. Our point process model thus takes the form of a standard generalized linear
model (GLM). We also ensure identifiability by imposing a set of restrictions (Eqs (20) and
(21)), which are implemented within a maximum likelihood estimation (MLE) algorithm. The
parametric bootstrap is used for acquiring 95% confidence bands.

To illustrate the ability of the MLE algorithm to recover the model in Eq (1), we simulated
100 spike trains (Fig 1A) with known functions λ1(t), λ2(t − t�) and λ3(ϕ). Using the simulated
spike trains and phase of the oscillatory drive (representing a network-wide oscillation), the
MLE algorithm accurately fit the underlying spike history (Fig 1B), stimulus (Fig 1C) and
phase modulation (Fig 1D) effects. Our approach can thus accurately recover the statistical
relationships between firing rate and various external factors.

The model in Eq (1) is a “full”model including stimulus, auto-history, and an oscillatory
factor. Importantly, we can remove selected factors from the full model (e.g., the LFP phase
modulation) and still fit the spike trains using the same procedure. Indeed, in the following
results, we also fit a simplified model lacking the oscillatory factor,

log lðtjHt;XtÞ ¼ log l1ðtÞ þ log l2ðt � t�Þ: ð2Þ

Estimation of LFP Phase Modulation
Many researchers have reported that firing rate is modulated by the phase of specific network-
wide oscillations in different brain areas, such as monkey V1 [20], rat hippocampus [21], rat
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prefrontal cortex [22], mouse olfactory bulb [23], human pedunculopontine nucleus [24], lam-
prey reticulospinal neuron [25], and so on. Almost all of these results [20–22, 24, 25] used
spike phase histograms to show how firing rate is modulated by the oscillation. The signifi-
cance of phase locking can be evaluated using Rayleigh’s Z statistic [22]. The model in Eq (1)
offers an alternative method of computing LFP phase modulation.

We simulated N spike trains and estimated LFP phase modulation using two different meth-
ods: 1) the classical spike phase histogram, and 2) by fitting λ3(ϕ) with the point process regres-
sion of model (1). The true LFP phase modulation function is defined as λ3(ϕ). The

discrepancy between the estimated l̂3ð�Þ and λ3(ϕ) is measured by the integrated squared

Fig 1. Simulated spike trains and results of model fitting. (A) Simulated spike trains in response to a fluctuating stimulus and oscillatory drive. (B,C,D)
Ground truth (red) and fitted results (blue) for different terms in the firing-rate probability model. For each fitted result, we used a parametric bootstrap to
determine the 95% confidence band (cyan). (B) Effect of auto-history λ2(t − t*) on output firing rate. (C) Effect of stimulus λ1(t) on output firing rate. (D) Phase
modulation curve λ3(ϕ) of firing rate.

doi:10.1371/journal.pcbi.1004549.g001
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error (ISE):

ISE ¼
Z p

�p
½l̂3ð�Þ � l3ð�Þ�2d�

Using each method, we can derive point-by-point standard errors and 95% confidence bands
for the LFP phase modulation. The mean integrated squared error (MISE) is then defined as:

MISE ¼ 1

n

Xn
i¼1

ISEi

¼ 1

n

Xn
i¼1

Z p

�p
½l̂ i

3ð�Þ � l3ð�Þ�2d�;

where n is the total number of data sets and i is the index of ith data set. l̂ i
3ð�Þ is computed

given N repeated trials of spike train in ith data set. We can decompose MISE in terms of the

sample mean �l3ð�Þ in the form of:

Z p

�p

1

n

Xn
i¼1
½l̂ i

3ð�Þ � �l3ð�Þ�2 þ ½�l3ð�Þ � l3ð�Þ�2
( )

d�

which provides an estimator of variance plus bias squared.
The histogram method is highly dependent on the bin size for smoothing. We picked the

optimal bin size that minimizes the MISE. Fig 2C illustrates how the MISEs of the two methods
are dependent on number of trials N. Both methods achieve smaller MISEs when more data
are used, but the spike phase histogram method consistently exhibits a much larger MISE than
the GLMmethod. Indeed, the spike phase histogramMISE reaches an asymptote for high N
that is much larger than the MISE of the GLMmethod. In Fig 2F we show the variance and
bias separately for the two methods. These results show that the spike phase histogram method
retains a large bias, explaining the MISE asymptote in Fig 2C. The LFP phase modulation esti-
mated by the spike phase histogram method additionally exhibits significantly larger variance
than the GLMmethod for small sample sizes (< 17 trials).

Two additional comments can be made about the results shown above (Fig 2). First, when
few trials or samples are available, only the GLMmethod can provide an accurate estimation of
the LFP phase modulation of a neuron’s firing. Second, for moderately large samples, the error
in the estimation of the LFP phase modulation by the spike phase histogram method arises pri-
marily from estimation bias. We can explain this second point by considering the definitions of
the two methods. The term λ3(ϕ) describes how an oscillation changes the firing rate and is
independent of other factors (stimulus, auto-history, etc.). In contrast, the spike phase histo-
gram method provides the distribution of phases when a spike occurs, denoted as Pdata(ϕ).
Since the generation of a spike train is influenced by factors other than the oscillation, espe-
cially for a non-Poisson process, Pdata(ϕ) is conceptually different than λ3(ϕ). Below, we
explore this conceptual difference further.

Bias in the estimation of the LFP phase modulation using the spike phase histogram
method. To simplify our GLM, let us assume that the stimulus effect is a constant λ1(t) = C
and f is the frequency of the oscillation. Now the firing probability model is:

lðtjHt; �tÞ ¼ C � l2ðt � t�Þ � l3ð�tÞ:

Suppose we observed a spike train {uk}. The spike phase histogram method provides an
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estimate of the distribution of {ϕuk},

Pdatað�Þ ¼ Pdatað�uk
¼ �Þ

¼
Z

Pdatað�uk�1 ¼ �0Þ � Pdatað�uk
¼ �j�uk�1 ¼ �0Þd�0

¼
Z

Pdatað�0Þ � Pdatað�uk
¼ �j�uk�1 ¼ �0Þd�0

ð3Þ

where Pdata(ϕuk = ϕjϕuk − 1
= ϕ0) is the conditional probability of ϕuk = ϕ given the phase of its

previous spike is ϕ0. This conditional probability can be computed using the distribution of the
waiting times [19] (page 602),

f ðtjHt; �tÞ ¼ lðtjHt; �tÞexp �
Z t

uk�1
lðujHu; �uÞdu

� �
:

If we have a spike at phase ϕ, while its previous spike is at phase ϕ0, then the waiting time

Fig 2. Estimation of LFP phasemodulation by spike phase histogram and GLMmethods. (A,B,D,E) Point process regression using the GLM (B,E)
yields estimates of the LFP phase modulation with comparable variance but substantially lower bias than estimates made using the spike phase histogram
method (A,D). (C) Comparison of the MISE between the estimated and true LFP phase modulation using the spike phase histogram and GLMmethods,
across different sample sizes. (F) Comparison of the variance and bias in the LFP phase modulation estimated by the two methods.

doi:10.1371/journal.pcbi.1004549.g002
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should be within the setW ¼ fDu : Du ¼ ���0
w
þ k

f
;Du > 0; k ¼ 0; 1; 2; � � � ;w ¼ 2pf g. Thus

Pdatað�uk
¼ �j�uk�1 ¼ �0Þ ¼

1

w

X
�t¼�;t>uk�1

f ðtjHt; �tÞ

¼ 1

w

X
Du2W

f ðt ¼ uk�1 þ DujHt; �tÞ
ð4Þ

Eq (3) shows that Pdata(ϕ) is an eigenfunction of Pdata(ϕuk = ϕjϕuk − 1
= ϕuk − 1

). This is very hard
to compute analytically, but we can get its numerical solution instead. When we discretize ϕ
and write Pdata(ϕ) as a vector P, Eq (3) can be rewritten as

P ¼ A � P
where P 2 Rm × 1,m is the number of bins to discretize ϕ 2 [−π,π), and A2Rm × m is the transi-
tion probability

Aij ¼ Pdatað�uk
¼ Pij�uk�1 ¼ PjÞ:

Thus P is the eigenvector of A and its corresponding eigenvalue is 1. Numerical tools were used
to compute P, which is the discrete version of Pdata(ϕ). In this way we can theoretically deter-
mine the LFP phase modulation given by the spike phase histogram. This theoretical prediction
accurately predicts the LFP phase modulation estimated from simulated spike trains using the
spike phase histogram method (Fig 3B, 3C, 3E and 3F).

Using this theoretical prediction, we examined how bias emerges in spike phase histogram
estimates of the LFP modulation. We considered Poisson and non-Poisson firing across differ-
ent mean firing rates. When a neuron’s firing approximates a Poisson process (i.e., λ2(t) = 1)
(Fig 3A), the results of the spike phase histogram match λ3(ϕ) independent of the mean firing

rate C (Fig 3B and 3C). Indeed, it can be shown that Pdatað�Þ ¼ l3ð�Þ
2p is a solution to Eq (3). Spe-

cifically, Eq (4) inserted into Eq (3) with some basic substitutions yields:

2pPdatað�Þ ¼ l3ð�Þ
Z 1

0

C � l2ðtÞ � 2pPdatað�� 2pftÞ

� exp �
Z t

0

C � l2ðt � uÞ � l3ð�� 2pfuÞdu
� �

dt

ð5Þ

When λ2(t) = 1, we replace Pdata(ϕ) with
l3ð�Þ
2p in Eq (5). Then the integrand in the right side is

C � l3ð�� 2pftÞ � exp � R t

0
C � l3ð�� 2pfuÞdu� �

, which is a probability density function and

hence has the integral of 1, making the right side λ3(ϕ). Thus, λ3(ϕ) is one solution of Eq (3).
These results show that the spike phase histogram estimate of the LFP phase modulation is
accurate for Poisson firing. In contrast, for non-Poisson firing (in which the neuron’s firing
rate is influenced by its firing history) λ2(t) is no longer a constant (Fig 3D). As a result, esti-
mates of the LFP phase modulation curve diverge from λ3(ϕ) in a firing rate-dependent man-
ner (Fig 3E and 3F). Thus, the GLMmethod for estimating a neuron’s LFP phase modulation
is more accurate than the spike phase histogram method for smaller sample sizes (Fig 2) and
for non-Poisson firing (Fig 3).

Comparison with Spike Field Coherence
Spike field coherence (SFC) is commonly used to report interactions between spikes and spe-
cific oscillations in LFP. Lepage et al. [17, 26] showed that SFC is dependent on the expected
rate of spiking, and they proposed to use intensity field coherence, which is a rate-independent
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measure, for inference of spike field synchrony. They also used GLMs to estimate spike field
association [17]. In their work, they assumed that the LFP phase modulation is a sinusoidal
function with period of 2π, which might not be accurate enough in some cases [22, 23]. In our
model, to approximate this periodic function we use circular splines [18], which remain easy to
fit while being more flexible than a sinusoidal function.

Here, we provide two examples showing that when estimating spike field relationships, the
SFC can be misleading. First, we simulated spike trains with three different mean firing rates,
then computed SFCs with GNU software Chronux [27]. Fig 4A shows that the three SFCs are
different even though they were generated by the same λ3(ϕ) = 1 + 0.4cos(ϕ + π). On the other
hand, when we use our model to fit the LFP phase modulation functions, Fig 4C shows that
there is no difference in phase modulation strength in these three cases. Second, we show that
two neurons exhibiting different LFP phase modulations can have the same SFC (Fig 4B)
because they have different firing rates. Again, we can use our model to distinguish these two
conditions by their respective LFP phase modulation curves (Fig 4D).

Synchrony and Oscillatory Phase
We now use point process regression of our GLMs Eqs (1) and (2) to analyze the contribution
of network-wide oscillations to the synchronous spiking of two neurons. We first present
numerical simulation results where ground truth is known and then apply the same technique
to experimental neural recordings.

Fig 3. LFP phasemodulation estimated by the spike phase histogrammethod is inherently biased for non-Poisson firing. (A,D) Auto-history effects
for Poisson (A) and non-Poisson (D) firing. (B,C,E,F) Theoretical and simulated estimations of the LFP phase modulation for Poisson (B,C) and non-Poisson
(E,F) firing at low (B,E) and high (C,F) mean firing rates. Note that, for non-Poisson firing, the spike phase histogram estimation of the LFP phase modulation
introduces a firing rate-dependent bias.

doi:10.1371/journal.pcbi.1004549.g003
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Simulation results. In the Introduction, we described how GLMs can be used to assess the
role of some potentially relevant factors in modulating spike synchrony. We designed a sce-
nario in which we tested the contribution of a network-wide oscillation (i.e., an oscillatory
LFP) to the number of synchronous spikes observed. This scenario is illustrated schematically
in Fig 5 for two neurons. The stimulus effects (i.e., the tuning) of the two neurons are different,
and both neurons’ spiking activities are influenced by their own recent spike histories. Criti-
cally, these two neurons also receive a common oscillatory signal with phase Ft that modulates
their firing rate, but their individual phase modulation curves are shifted (i.e., they have differ-
ent preferred phases Fpref). Because the preferred phase modulates the average timing of each
spike in one oscillatory cycle (in this example,* 10 ms), differences in preferred phase lead to

Fig 4. LFP phasemodulation estimated by the GLMmethod does not depend on firing rate. (A,C), In three simulations, we keep λ3(ϕ) = 1 + 0.4cos(ϕ
+π) while varying mean firing rates. The SFCmethod (A) reports three distinct results, while the GLMmethod (C) showed that the LFP phase modulations
are the same. (B, D), Different combinations of firing rate and LFP phase modulation λ3(ϕ) = 1 + a � cos(ϕ + π) can yield the same SFC (B), while the GLM
method can distinguish the differences in LFP phase modulation (D). For each parameter set (a,firing rate), we had 200 runs. The shaded area is the 95%
confidence band.

doi:10.1371/journal.pcbi.1004549.g004
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a relative shift in spike timing between the two neurons. The larger this shift, the less synchro-
nized are their spikes. As a result, the observed number of synchronized spikes is dependent on
the difference of preferred phase ΔFpref.

This simple scenario was used to demonstrate the effectiveness of the procedure, in princi-
ple, and to investigate its statistical power. The assumption that two neurons have different
phase modulation curves has been reported both experimentally [20, 28] and theoretically [29].
Jia et al. [20] have shown that neurons in area V1 have various preferred phases and the distri-
bution of the preferred phase can change in response to different stimuli. Richardson [29] com-
puted analytically the modulation of the oscillatory signal for an exponential integrated-and-
fire neuron. He showed that the modulation is influenced by biophysical properties of the neu-
ron. He also showed that there is a phase lag between the peak firing rate and the peak of the
oscillatory signal, which corresponds to the preferred phase in λ3(ϕ), and this phase lag is
dependent on properties of the neuron. Usually the oscillations near two neurons in a small
area are very similar; thus the assumption that two neurons receive a common modulation is
reasonable. For two neurons located far apart (e.g., two brain areas), this assumption should be
useful as long as the two oscillations are coherent. This more general case is relevant to hypoth-
eses about mechanisms of neural communication [4, 20].

To demonstrate directly the relationship between an oscillatory LFP and spike synchrony,
we simulated spike trains from two neurons, then fitted models (1) and (2). For each model we

Fig 5. Schematic illustration of the contribution of a network-wide oscillation to synchronous spiking between two neurons. The firing probability of
each neuron is influenced by three factors: stimulus, auto-history and an oscillatory drive. The oscillatory drive is shared by the two neurons, but each neuron
exhibits a unique phase modulation curve. Spike trains of the two neurons are observed and synchronized spikes are counted (red circles).

doi:10.1371/journal.pcbi.1004549.g005
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used the estimator

ẑ12 ¼
Observed number of synchronized spikes
Predicted number of synchronized spikes

of its theoretical counterpart z12 defined in [16]. Under conditional independence, we have
log z12 = 0, while conditional dependence yields either excess synchrony (log z12 > 0) or sup-
pressed synchrony (log z12 < 0). We tested H0: logz12 = 0 using a parametric bootstrap (see
Materials and Methods). Results are shown in Fig 6. Using model (2) (i.e., without the oscil-

latory factor) we found that log ẑ12 is dependent on ΔFpref. This is because the relative phase
preference of the two neurons changed the observed number of synchronized spikes, while the
predicted number is almost the same when the contribution of the oscillatory LFP is disre-
garded. In contrast, when we included the oscillatory factor according to Eq (1), we found

log ẑ12 to be close to 0 and independent of ΔFpref. Thus, including the oscillatory factor in our
model removes the apparent conditional dependence of the predicted spike synchrony on the

Fig 6. Network-wide oscillations can enhance or suppress the predicted levels of spike synchrony. (A) Dependence of log ẑ 12 on the difference in
preferred phases between two neurons, as computed using models with and without an oscillatory factor. Purple and cyan arrows indicate two different Δ
(Φpref)s. (B) Bootstrap-generated distribution of log ẑ 12 values under the null hypothesis of log ζ12 = 0. Arrowhead shows the value of log ẑ 12 computed by the
simplified model. Thus, a significantly larger number of synchronous spikes is observed than predicted by the model lacking an oscillatory factor
(logðẑ 12Þ ¼ 0:057� 0:013, p value = 0.0025). (C) Including an oscillatory factor in the model yields an accurate prediction of the observed number of
synchronous spikes (logðẑ 12Þ ¼ �0:006� 0:014, p value = 0.6775). (D, E) Same as (B,C) for different preferred phases that lead to significantly lower
synchrony than predicted when an oscillatory factor is not included in the model (D: logðẑ 12Þ ¼ �0:082� 0:013, p value = 0.0025; E:
logðẑ 12Þ ¼ �0:009� 0:015, p value = 0.2700). (F) Dependence of the power on number of trials and ζ. The mean firing rate is 25 Hz. The red and green lines
indicate choices of ζ andN for which the power equals 0.8, based on simulation and theory respectively. (G) Same as (F), but the mean firing rate is 10 Hz.

doi:10.1371/journal.pcbi.1004549.g006
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relative phase preference of the two neurons, and we can conclude that spike synchrony is asso-
ciated with the oscillatory phase.

We picked two different values of ΔFpref (purple and cyan arrows in the Fig 6A) to demon-
strate the described hypothesis test. In the first example, we obtained evidence against the null
hypothesis of log z12 = 0 using the simplified model (Fig 6B). That is, there is evidence that the
two neurons are not conditionally independent given only the stimulus effects and spike his-
tory effects: they exhibit significant levels of excess spike synchrony. Fig 6C shows that includ-
ing the oscillatory factor accounts for this excess synchrony. In other words, consideration of
the oscillatory LFP can explain the higher than expected levels of spike synchrony predicted by
the stimulus and spike history effects alone. In turn, lower than expected levels of spike syn-
chrony predicted by the stimulus and spike history effects alone can be explained by consider-
ation of the oscillatory LFP in the second example, in which the oscillatory LFP suppresses
spike synchrony (Fig 6D and 6E).

We also investigated the amount of data needed to reliably detect excess synchrony by gen-
erating spike trains with varying numbers of trials, varying values of z, and two levels of firing
rate, and then computing the probability of rejecting the null hypothesis (i.e., the statistical
power). Fig 6F displays the power when we used the same simulation parameters (apart from z
and number of trials) as in Fig 6A–6E. A standard target for power in the statistics literature is
0.8, and we have indicated this level of power with a red line in Fig 6F. Thus, to attain this high
level of power when z = 1.125 we need 70 trials, but when z = 1.4 we need only 5 trials. This
number is also highly dependent on the mean firing rate. When we change the firing rate from
25 Hz to 10 Hz, we need much more data to detect excess synchrony (Fig 6G). The simulation
procedure is computationally slow, but a fast approximation is given by

N ¼ 1

Tl1l2d
F�1ð0:95Þ � F�1ð0:2Þ= ffiffiffi

z
p

log z

� �2
& ’

where T is the length of one trial, λ1 and λ2 are mean firing rates of two neurons, and δ is the
bin size for detecting synchronized spikes. The approximate power from this formula is given
by the green curves in Fig 6F and 6G. The formula is derived inMaterials and Methods.

Applications to Experimental Neural Recordings
To further demonstrate the value of our approach, we next examined the relationship between
an oscillatory signal and spike synchrony in experimental neural recordings from two distinct
preparations: hippocampal CA1 pyramidal cells recorded in vitro and V4 neurons recorded in
vivo.

Hippocampal CA1 pyramidal cells. We first designed an experiment to resemble the sce-
nario proposed in Fig 5 using whole-cell patch clamp recordings in a controllable acute slice
preparation. In this experiment, we recorded the spiking response of, and spike synchrony
between, two CA1 pyramidal cells (Fig 7A and 7B) in response to an arbitrary stimulus with
and without a shared oscillatory signal. Critically, to directly test the relationship between the
oscillatory signal and the resulting spike synchrony, we limited potential confounding influ-
ences on spike synchrony (e.g., common neuromodulatory influences, coupling between two
neurons) by recording these neurons sequentially in two separate slices. Each neuron was
injected with 100 trials of a 2 s-long 150 pA step current overlaid with a slow sinusoidal current
(2 Hz frequency, 25 pA amplitude) and white noise (σ = 10 pA) to evoke physiological spike
trains with low trial-to-trial reliability. The slow 2 Hz component was the same for all trials,
and it generated visible time-varying fluctuations that are visible in the raster plots in Fig 7A
and 7B, which led to a time-varying PSTH that was captured by the λ1(t) term in Eq (1). On 50
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random trials (“Exp. 2”), an additional sinusoidal current (40 Hz frequency, 15 pA amplitude)
with random initial phase (but identical between the two neurons) was also injected to simulate
a gamma frequency network-wide oscillation. The 40 Hz component was not consistent over
trials due to varying initial phases (S1A Fig), and its effect is, therefore, not captured by λ1(t).
Instead, this 40 Hz modulatory effect was captured through the term λ3(Ft) in Eq (1).

Thus, in the 50 trials without the simulated network-wide oscillation (“Exp. 1”), each neu-
ron fired according to the its own stimulus and auto-history effects, generating a certain level
of largely spontaneous spike synchrony reflecting the neurons’ fluctuating stimulus-driven fir-
ing rates. Using our simplified model (Eq (2)), we fit the spike trains from “Exp. 1” and pre-
dicted the number of synchronous spikes. As expected, the observed and predicted number of
synchronous spikes closely matched (Fig 7D), consistent with the two neurons being condi-
tionally independent given the arbitrary stimulus waveform and their own recent spiking histo-
ries. That is, no other factors were necessary to explain the observed number of synchronous
spikes. However, using our simplified model to fit the spike trains from “Exp. 2” (Fig 7A and
7B), we observed a significantly greater number of synchronous spikes than could be explained
by the stimulus and the neurons’ spike histories alone (Fig 7E). This conditional dependence
between the two neurons arose because the firing of the two neurons was modulated by the
simulated network-wide oscillation (Fig 7C). Indeed, using our full model (Eq (1)) to fit the
spike trains from “Exp. 2” (S1B, S1C and S1D Fig), the number of synchronous spikes observed
closely matched the number of synchronous spikes predicted (Fig 7F).

Fig 7. Shared oscillations contribute to spike synchrony between hippocampal CA1 pyramidal cells in vitro. (A, B) Reconstructed morphologies (left)
and raster plots of spike trains (right) evoked in two CA1 pyramidal cells by an arbitrary stimulus waveform with a shared oscillatory signal (“Exp. 2”). Red
circles show synchronized spikes between the two neurons. (C) Estimated phase modulation of the two recorded neurons in response to a shared oscillatory
signal simulating a network-wide oscillation. (D) In the absence of a shared oscillatory signal, the simplified model (stimulus, or PSTH effects [P] + spike or
auto-history effects [H]) lacking an oscillatory factor accurately predicts the observed number of synchronous spikes between the two neurons. (E,F) In the
presence of a shared oscillatory signal, the simplified model (P + H) fails to explain the observed number of synchronous spikes (E) while the full model
(stimulus, or PSTH effects [P] + spike or auto-history effects [H] + an oscillatory factor [O]) containing an oscillatory factor accurately predicts the observed
number of synchronous spikes (F).

doi:10.1371/journal.pcbi.1004549.g007
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This experiment demonstrates that when two experimentally recorded neurons are not
modulated by a shared oscillatory signal, then the simplified model (Eq (2)) can account for
the observed number of synchronous spikes. However, when two neurons are modulated by a
shared oscillatory signal (such as an oscillatory LFP, reflecting a network-wide oscillation),
then a model including this oscillatory factor (Eq (1)) is necessary to account for the observed
number of synchronous spikes. In contrast with our simulation above, the firing of these CA1
neurons is not described by the GLM in Eq (1) exactly. This model mismatch did not restrict
the application of our method.

V4 neurons. In this experiment, spike trains from a pair of neural units in V4 were simul-
taneously recorded (Fig 8A and 8D) with a multi-electrode array during a fixation task in
which spontaneous activity was measured. These data have been analyzed in another paper
[28], which examined the relationship between individual neuron’s activity and large-scale net-
work state. Here we wanted to test whether network-wide oscillations contribute to the excess
pairwise synchrony. For each neuron, we defined its surrounding LFP as the average of LFPs
recorded at its adjacent electrodes (see Materials and Methods). The spike-triggered average of
the LFP for two neurons showed that the two neurons are phase locked to their surrounding
field potential (S2C and S2D Fig and [28]). We also found that the LFP showed a prominent
slow oscillation (Fig 8B and 8E). The LFP is thought to be the integrated effect of synaptic and
spiking activity [30] near the recording sites. We filtered the LFP on each electrode within the
4–25 Hz band and extracted its phase to fit our full model (Eq (1)). Using the same procedure

Fig 8. Shared oscillations contribute to spike synchrony between V4 neurons in vivo. (A,D) Raster plot of spike trains from two neurons recorded
simultaneously. Red circles show synchronized spikes between the two neurons. (B,E) Raw (blue) and 4–25 Hz filtered (red) surrounding LFP related with
each neuron for a single trial. (C,F) The simplified model failed to explain the observed number of synchronous spikes (C), while the full model containing an
oscillatory factor fully accounts for the observed number of synchronous spikes.

doi:10.1371/journal.pcbi.1004549.g008
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as in the case of the hippocampal CA1 pyramidal cells, we found that a significantly larger
number of synchronous spikes were observed than could be explained by the simplified model
(Fig 8C), while the full model fully explained the spike synchronization observed between the
two neurons (Fig 8F). These results show that for these two neurons in vivo, spike synchroniza-
tion is associated with the network-wide oscillation.

Discussion
In this paper, we have shown how the GLMmethods of [15–17, 26] may be combined in order
to assess the potential contribution of network-wide oscillations to neural synchrony. The
novel approach presented in this study complements existing alternatives [31–33] by: introduc-
ing models of single neuron firing based on stimulus-related fluctuations as well as a network-
wide oscillatory signal; using those models to make predictions about spike synchronization;
and quantifying departures from those predictions in the observed data. We demonstrated the
advantages of this novel approach using both neural simulations and experimental neural
recordings in vitro and in vivo.

In our analyses, we have utilized a repeated-trial structure, which allowed us to estimate the
stimulus effects as a function of time, λ1(t). We note, however, that the same approach could be
applied using a linear response filter [34–36] or analogous nonlinear methods. Previous work
has shown the close relationship between GLM neurons and integrate-and-fire neurons [37–
39]. We only considered one band of oscillation in simulation and experimental examples, but it
is straightforward to extend this method to the case of multiple oscillations by including addi-
tional terms in the model of Eq (1). Sometimes the firing probability may be related to the
amplitude of the oscillation At, or the magnitude of an LFP Bt (cf. [17]). If so, we can change
f3(Ft) to f3(At) or f3(Bt). Overall, the key step of this method is to build an approximately correct
GLM. The specific form of GLM depends on the data and we can check model performance
using time rescaling [40]. We have also included a simulation to show that even when the model
is mis-specified, and therefore less sensitive, it can detect spike-LFP relationships (S3 Fig). We
have also defined spike synchrony to involve the firing of two neurons within a few milliseconds
of each other (i.e., with zero lag on average). In other contexts, however, interest may focus on
two neurons firing in procession with a consistent positive or negative lag of many milliseconds.
Our approach could be easily applied to such lagged-synchrony cases as well.

In this paper, we consider only pairwise synchrony. By combining our approach with the pro-
cedure proposed by [16], we can also test the role of oscillations in three-way synchrony. Briefly,
we fit all single neuron firing probabilities and then compute the pairwise synchrony coefficients

ẑ ij; we can then use an iterative algorithm to estimate the three-way synchrony coefficient ẑ ijk,
and to test the null hypothesis of two-way interactions, instead of three-way interaction. In prin-
ciple the same steps may be followed for more than three neurons, but simulations in [16] show
that very large data sets would be needed in order to demonstrate higher-order interactions con-
vincingly in the absence of stronger assumptions about the nature of those interactions.

It has been argued that synchronous firing resulting from network-wide oscillations could
provide an essential mechanism of network information flow, and further serve as a a marker
distinguishing normal from diseased states (e.g., see [41–48]). On the other hand, there has
been considerable debate on this subject (see [49] and references therein). We remain agnostic
on this, and importantly, the value of our methods does not depend on the ultimate outcome
of this debate. Instead, we view synchrony, more descriptively, as a feature of spike train data
that needs to be explained. To this end, the framework that we have introduced here is useful
for quantifying the extent to which oscillations, as a feature of neural activity, are associated
with synchronous spiking among neurons. Armed with this method, future experiments can
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measure oscillations and synchrony in a statistical framework in which their contributions to
cognitive and behavioral processes can be accurately quantified.

Materials and Methods

Point-Process Framework
In a continuous time interval (0,T], a neuron can fire a spike at any discrete time point ui. A
series of spikes {ui} for 1� i� N forms the spike train, where 0� u1 < � � �< uN� T. We take
the spike train to be a point process, which is characterized by its conditional intensity function

lðtjHt;XtÞ ¼ lim
D!0

P½Nðt þ DÞ � NðtÞ ¼ 1jHt;Xt�
D

ð6Þ

where N(t) is the total number of spikes prior to time t,Ht is neuron’s own spiking history
prior to time t, and Xt includes all other relevant covariates. When Δ is small, λ(tjHt,Xt) � Δ
approximates to the firing probability in the time interval (t,t + Δ). To determine how different
factors contribute to firing rate we write λ(tjHt,Xt) as a function of (Ht,Xt)

lðtjHt;XtÞ ¼ f ðHt;XtÞ: ð7Þ
We can include different factors into this model and study their effects. Usually the stimulus S(t) is
included when neurons show selectivity to stimuli. In this work, because we are interested in phase
modulation by an oscillatory signal, the phase of the specific oscillationF(t) is also included.

Generalized Linear Model and Maximum Likelihood Estimation
To take advantage of the generalized linear model (GLM) framework we divide T into K
equally spaced bins, thus taking the bin width to be Δ = T/K. Δ is small enough that no more
than one spike event in each bin, e.g. Δ = 1 ms. Therefore the probability of observing one
spike in kth bin is

pk ¼ lðtkjHtk
;Xtk
Þ � D; k ¼ 1; 2; � � � ;K ð8Þ

Using the vector Y� R
K × 1 to represent the spike train {ui}, yk is the number of spikes in kth

bin. Since we choose small bin width Δ, yk is not bigger than 1, i.e. yk 2 {0,1} and, from the Pois-
son approximation to the binomial for small p we take the probability of observing yk givenHtk

and Xtk to be

pðykjHtk
;Xtk
Þ ¼ pykk

yk!
e�pk ð9Þ

where tk = kΔ. The loglikelihood function is

L ¼
XK
k¼1
½yk � log ðpkÞ � pk� ¼

XK
k¼1
½yk � log ðlðtkjHtk

;Xtk
ÞDÞ � lðtkjHtk

;Xtk
ÞD� ð10Þ

and this is maximized to determine the MLE fit.
We assume that log[λ(tjHt,Xt)] can be written as a sum of specific functions of each covari-

ate. Here we are studying three factors, stimulus, recent post-spike auto-history, and oscillatory
phase, and we write

log ½lðtjHt;XtÞ� ¼ f1ðstimulusÞ þ f2ðauto� historyÞ þ f3ðoscillationÞ ð11Þ

¼ f1ðStÞ þ f2ðHtÞ þ f3ðFtÞ: ð12Þ
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Here, S(t) is a possibly time-varying stimulus and f1(stimulus) determines the trial-indepen-
dent time-varying firing rate, i.e., the effect that is usually associated with the peri-stimulus
time histogram (the PSTH), which may be estimated due to the repeated trial structure of the
experiment. The recent post-spike auto-history effect is assumed here to be dominated by
effects subsequent to the most recent spike t� prior to time t, as in [50], so we assume f2(auto-
history) has the form f2(t − t�). The oscillatory term f3(oscillation) is defined as f3(Ft), where
Ft is the phase of specific oscillation. In summary, our spike train model has the form

log ðlðtjHt;XtÞÞ ¼ f1ðtÞ þ f2ðt � t�Þ þ f3ðFtÞ ð13Þ

¼ log l1ðtÞ þ log l2ðt � t�Þ þ log l3ðFtÞ ð14Þ

and we will assume f1(�), f2(�)and f3(�) are smooth functions.

Approximate Function with Spline Basis
To fit the smooth functions f1(�), f2(�)and f3(�) we use cubic splines of the form

log ðlðtjHt;XtÞÞ ¼
X

i

aiðtÞai þ
X

j

bjðt � t�Þ � bj þ
X
k

rkðFtÞ � gk ð15Þ

where {ai(t)} is a B-spline basis set for f1(t) within the range t 2 (0,T], fbjðt � u�t Þg is a B-spline
basis set for f2(t − t�), and {rk(ϕ)} is circular spline basis set for f3(Ft). Thus, we use maximum
likelihood to fit the coefficientsΘ = {α,β,γ}. We used open source software FDAfuns [51] to
create each B-spline basis sets after manually selecting knots. For the circular spline we pick
knots equally spaced in [−π,π]. Once we get all knots {ϕi}, acquiring the related basis function
is straightforward [18] using

rkð�Þ ¼
X1
m¼1

2

ð2pmÞ4 cos ð2pmð�� �kÞÞ: ð16Þ

In numerical implementations, we usually cut the summation fromm = 1 tom = 4 because
amplitude of each term decreases quickly.

Maximum Likelihood via Iteratively Re-weighted Least Squares
Because L in Eq (10) is a concave function, we can use iteratively reweighted least squares
(IRLS), as in typical GLM implementations. From Eqs (8), (10), and (15), we can rewrite logli-
kelihood in matrix form

L ¼ YT � logm� I1	K � m ð17Þ

logm ¼ ½A � aþ B � bþ R � g�D ð18Þ
Here we have three parameter sets to fit {α,β,γ}. If we fit all three parameter sets together, the
dimension space of this GLMmodel is relative large. To make model fitting efficient, we prefer
back-fitting, i.e., fitting each parameter set separately, and iterating cyclically. For example,
when we fit the parameters {α}, we hold the parameters {β,γ} constant and rewrite Eq (18) as

logm ¼ V � yþ logm0
t ð19Þ

where θ 2 {α,β,γ} and V is the corresponding covariate matrix. We fit {α,β,γ} in a sequence and
then iterate the loop until convergence. We also must place identifiability restrictions on {β,γ}
because both the auto-history and oscillatory effects modulate the spike trains and the
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parameters must be constrained to provide unique solutions. We use the constraintsR T

0
exp

P
jbjðtÞ � bj

h i
dt

T
¼ 1 ð20Þ

R p

�p exp
P

krkðFÞgk
	 


dF
2p

¼ 1: ð21Þ

To avoid over-fitting of the model, we also add an l2 penalty into the objective function.
Now the problem becomes minimizing objective function

Q ¼ �Lþ l
2
jYj2 ¼ �YT � ðV �Yþ logm0

t Þ þ I1	K � exp ðV �Yþ logm0
t Þ þ

l
2
�YTY: ð22Þ

Because the objective function Q is convex, we can iteratively maximize Θ by following the
updating rule

Yiþ1 ¼ Yi � H�1 � rQ ð23Þ

whereH is the Hessian of Q andrQ is the gradient of the function, which are obtained as

rQ ¼ VT ½ exp ðV �Yþ logm0
t Þ � Y � þ lY ð24Þ

H ¼ VT �W � V þ l ð25Þ
whereW is a diagonal matrix

Wi;j ¼

exp ðV �Yþ logm0
t Þi if i ¼ j

0 otherwise:

8>>><
>>>:

ð26Þ

The algorithm is summarized as Algorithm 1, shown below.

Algorithm 1: IRLS method for finding argminΘ Q(Θ)
Data: Y ;V ;Y0;logm

0
t; l

Result: Θ� = argminΘ Q(Θ)
begin
Q1 Q(Θ0);
repeat

Q0 Q1;

rQ  VT expðV �Y0 þ logm0
tÞ � Y

	 
þ lY0;

W  diag expðV �Y0 þ logm0
tÞ

� �
;

H VT � W � V+λ;
Θ1 Θ0 − H−1 � rQ;
Q1 Q(Θ1);
Θ0 Θ1;

until jQ1 − Q0j � δ;
return Θ1;

end

Spike Synchronization

For a pair of neurons labeled 1 and 2, we fit conditional firing rate for each of them to get l̂1ðt j
Ht;XtÞ and l̂2ðt j Ht;XtÞ. Then we can predict the number of synchronized spikes given
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temporal bins with Δ = 5ms, as in [15], using

Npred ¼
Z

l̂1ðtjHt;XtÞ � l̂2ðtjHt;XtÞdt: ð27Þ

Given spike trains from these two neurons, we can also get the observed number of synchro-
nized spikes Nobs by counting. If a pair of spikes from two neurons has an time interval less
than 5ms, then this pair is counted as a synchronized spike. Synchrony is measured by taking

the ratio of these two numbers ẑ or log ẑ

ẑ ¼ Nobs

Npred

: ð28Þ

When two neurons are conditional independent, Eq (27) can make relative good predictions

and ẑ 
 1 (or log ẑ 
 0).

Bootstrap Method

Once we have log ẑ, we also need to determine its standard error and confidence interval. Fur-

thermore, a p value is required to test the hypothesis log ẑ ¼ 0. We use a parametric bootstrap

method for these purposes, as in [16]. For example, given l̂1ðt j Ht;XtÞ and l̂2ðt j Ht;XtÞ we
can obtain the p value as follows:

• For i in 1: G do

1. Simulate each of the two sets of spike trains, across the same number of trials as in the

data, using the respective spike train models with l̂1 and l̂2.

2. Compute log zi from the spike trains generated in step 1.

• Compute the number of values {log zi} (out of a total of G such values) for which j log zif g j
>j loĝz j and divide by G. This is the p value.

Power Analysis
Statistical power is the probability of correctly rejecting the null hypothesis when it is false. We
used the GLMmodel in Eq (1) to study power as a function of z and N (N being the number of
trials). We simulated N trials of spike train data for each of two neurons, independently, using
Eq (1) with intensity functions λ(1)(tjHt,Xt) for the first neuron and λ(2)(tjHt,Xt) for the second.
The synchronous spikes in the resulting spike trains occur with probability corresponding to z
= 1 (independence). In order to obtain sets of spike trains for other values of z we removed all
the synchronous spikes from the N simulated spike trains and replaced them with synchronous
spikes generated from an intensity function z � λ1(tjHt,Xt) � λ2(tjHt,Xt), i.e., for each time bin of
width δ, synchronous spikes occurred with probability z � λ1(tjHt,Xt) � λ2(tjHt,Xt)δ

2. However,
while this is the desired probability of synchronous spikes, it leaves the wrong marginal proba-
bility of spiking for each neuron. To adjust these we consider the spike trains made up of only
the non-synchronous spikes, and we thin these with probabilities p(j)(t) given by

pðjÞðtÞ ¼ lðjÞðtjHt;XtÞ � z � lð1ÞðtjHt;XtÞ � lð2ÞðtjHt;XtÞd
lðjÞðtjHt;XtÞ � lð1ÞðtjHt;XtÞ � lð2ÞðtjHt;XtÞd

for j = 1,2. Note that when we multiply the numerator and denominator of this expression by δ
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we have the ratio of the desired probability of a non-synchronous spike to the probability of a
non-synchronous spike under independence (the latter probability corresponding to the pro-
cess we are thinning). After obtaining all N trials we then fitted the model to these simulated

spike trains, found the estimate ẑ, and applied the hypothesis test using the bootstrap method.
This procedure was carried out for each z and N in our simulation.

Because the simulation is computationally time-consuming, for the benefit of any future
efforts along these lines, we also derived a formula to approximate the number of trials needed
to get 0.8 power. Suppose we have N trials, each trial is T seconds, the bin size for synchrony

detection is δ. Denote the instantaneous firing rates for two neurons on trial i by lð1Þt;i and l
ð2Þ
t;i .

The number of synchronized spikes within the tth bin is yð12Þt;i and

yð12Þt;i � Poisson z � lð1Þt;i l
ð2Þ
t;i � d2

� �
, where z is the synchrony coefficient. The total number of

observed synchronized spikes given lð1Þt;i and l
ð2Þ
t;i is Nobs j lð1Þt;i ; l

ð2Þ
t;i ¼

PN
i¼1
PT=d

t¼1 y
ð12Þ
t;i . Then we

compute ẑ conditioned on lð1Þt;i and l
ð2Þ
t;i ,

ẑjlð1Þt;i ; l
ð2Þ
t;i ¼

Nobsjlð1Þt;i ; l
ð2Þ
t;i

Npred

¼
PN

i¼1
PT=d

t¼1 y
ð12Þ
t;iPN

i¼1
PT=d

t¼1 l
ð1Þ
t;i l

ð2Þ
t;i � d2

:

Since yð12Þt;i � Poisson z � lð1Þt;i � lð2Þt;i d
2

� �
, we can easily get

E½ẑjlð1Þt;i ; l
ð2Þ
t;i � ¼

E½PN
i¼1
PT=d

t¼1 y
ð12Þ
t;i �PN

i¼1
PT=d

t¼1 l
ð1Þ
t;i l

ð2Þ
t;i � d2

¼
PN

i¼1
PT=d

t¼1 z � lð1Þt;i l
ð2Þ
t;i d

2PN
i¼1
PT=d

t¼1 l
ð1Þ
t;i l

ð2Þ
t;i � d2

¼ z

Varðẑjlð1Þt;i ; l
ð2Þ
t;i Þ ¼

VarðPN
i¼1
PT=d

t¼1 y
ð12Þ
t;i Þ

ðPN
i¼1
PT=d

t¼1 l
ð1Þ
t;i l

ð2Þ
t;i d

2Þ2 ¼
PN

i¼1
PT=d

t¼1 z � lð1Þt;i l
ð2Þ
t;i d

2
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:

Assuming lð1Þt;i and l
ð2Þ
t;i are independent, we have

E
XN
i¼1

XT=d
t¼1

lð1Þt;i l
ð2Þ
t;i d

2

" #
¼
XN
i¼1

XT=d
t¼1

E½lð1Þt;i �E½lð2Þt;i �d2 ¼ NTl1l2d;

where λ1 and λ2 are the mean firing rates of two neurons. Then we have

E½ẑ� ¼ E½E½ẑjlð1Þt;i ; l
ð2Þ
t;i �� ¼ z

VarðẑÞ ¼ VarðE½ẑjlð1Þt;i ; l
ð2Þ
t;i �Þ þ E Varðẑjlð1Þt;i ; l

ð2Þ
t;i Þ

h i

¼ z
NTl1l2d

þ O
z

ðNTl1l2dÞ3
 !

E½ log ẑ� 
 log z� 1

z2
Var ẑ
� �
¼ log zþ O

1

NTl1l2dz

� �

Varð log ẑÞ 
 1

z2
VarðẑÞ � 1

4z2
VarðẑÞ2 ¼ 1

z
1

NTl1l2d
þ O

1

ðNTl1l2dÞ2
 !

:

We next assume that the distribution of log ẑ is (approximately) normal, i.e.,
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log ẑ 2 N log z; 1z
1

NTl1l2d

� �
, so that to get the power to equal 0.8 with type I error.05 we need

F
x � log zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

z
1

NTl1l2d

r
0
BB@

1
CCA ¼ 0:2

F
x � log 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

NTl1l2d

r
0
BB@

1
CCA ¼ 0:95;

where x is the threshold of rejecting null hypothesis log z = 0. We can then solve for N as the
number of needed trials for detecting excess synchony:

N ¼ 1

Tl1l2d
F�1ð0:95Þ � F�1ð0:2Þ= ffiffiffi

z
p

log z

� �2
& ’

:

Experiment
Acute slice electrophysiology. Experiments were completed in compliance with the

guidelines established by the Institutional Animal Care and Use Committee of Carnegie Mellon
University. Whole-cell patch clamp recordings of hippocampal CA1 pyramidal cells were per-
formed similar to previously described methods [52]. Briefly, a postnatal day 16 Thy1-YFP-G
mouse [53] was anesthetized with isoflurane and decapitated into ice-cold oxygenated dissec-
tion solution containing (inmM): 125 NaCl, 25 glucose, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4,
3 MgCl2 and 1 CaCl2. Brains were rapidly isolated and sagittal slices (310 μm thick) containing
the hippocampus were cut using a vibratome (5000 mz-2; Campden, Lafayette, IN, USA). Slices
recovered for* 30 min in* 37C oxygenated Ringer solution that was identical to the dissec-
tion solution except for lower Mg2+ concentrations (1 mMMgCl2) and higher Ca

2+ concentra-
tions (2 mM CaCl2). Slices were then stored in room temperature oxygenated Ringer solution
until recording. During recording, slices were continuously superfused with warmed oxygen-
ated Ringer’s solution (temperature measured in bath: 32°C). CA1 pyramidal cells were identi-
fied by morphology and laminar position using infrared differential interference contrast
microscopy. Whole-cell recordings were made using electrodes (final electrode resistance: 5–7
MO) filled with (in mM): 120 potassium gluconate, 2 KCl, 10 Hepes, 10 sodium phosphocrea-
tine, 4 Mg-ATP, 0.3 Na3GTP, 0.2 EGTA, 0.25 Alexa Fluor 594 (Life Technologies, Carlsbad,
CA, USA) and 0.2% Neurobiotin (Vector Labs, Burlingame, CA, USA). The liquid junction
potential was 12–14 mV and was not corrected for. Pipette capacitance was carefully neutral-
ized and series resistance was compensated using the MultiClamp Bridge Balance operation.
Data were low-pass filtered at 4 kHz and digitized at 10 kHz using a MultiClamp 700A ampli-
fier (Molecular Devices, Sunnyvale, CA, USA) and an ITC-18 acquisition board (Instrutech,
Mineola, NY, USA) controlled by custom software written in Igor Pro (WaveMetrics, Lake
Oswego, OR, USA). Cell morphology was reconstructed under a 100X oil-immersion objective
and analyzed with Neurolucida (MicroBrightField, Inc., Williston, VT, USA).

V4 neurons. Experimental procedures were approved by the Institutional Animal Care
and Use Committee of the University of Pittsburgh. A separate analysis of these data has been
previously reported ([28, 54]).

Subjects: We implanted one, 100-electrode “Utah” array (Blackrock Microsystems) in right
V4 in one adult male rhesus macaque (Macaca mulatta). The basic surgical procedures have
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been described previously [55], and were conducted in aseptic conditions under isoflurane
anesthesia. In addition to the microelectrode arrays, the animal was implanted with a titanium
head post to immobilize the head during experiments. We recorded neurons with receptive
fields centered* 4° from the fovea in the lower-left visual field.

Behavioral task: We trained the subject to maintain fixation on a 0.6° blue dot at the center of
a flat-screen cathode ray tube monitor positioned 36 cm from its eyes. The background of the dis-
play was 50% gray. We measured the monitor luminance gamma functions using a photometer
and linearized the relationship between input voltage and output luminance using lookup tables.
The subject was trained to maintain fixation on the central dot for 2 seconds while no other visual
stimulus was presented, at which time the fixation point was moved 11.6° in a random direction
and the animal received a liquid reinforcement for making a saccade to the new location.

Microelectrode array recordings: Signals from the microelectrode arrays were band-pass fil-
tered (0.3–7500 Hz), digitized at 30 kHz and amplified by a Grapevine system (Ripple). Signals
crossing a threshold (periodically adjusted using a multiple of the root-mean-squared [RMS]
noise for each channel) were stored for offline analysis. These waveform segments were sorted
using an automated clustering algorithm [56] followed by manual refinement using custom
MATLAB software [57] (available at http://www.smithlab.net/spikesort.html), taking into
account the waveform shapes and interspike interval distributions. After sorting, we calculated
the signal-to-noise (SNR) ratio of each candidate unit as the ratio of the average waveform
amplitude to the standard deviation of the waveform noise [57]. Candidates with an SNR
below 2.5 were discarded. Signals were also filtered from 0.3–250 Hz with a digital Butterworth
filter and sampled at 1 kHz to provide LFPs.

LFP preprocessing: We assume that the oscillation modulating spiking activity is explicitly
within the surrounding LFP. The naive way of selecting LFP is using the one recorded at the
same electrode for each neuron. Since spike waveforms might contaminate the LFP spectrum
[30, 58], we computed LFP related to each neuron as the average of LFPs recorded on its neigh-
boring electrodes. Another way of avoiding spike bleed-through is to choose the LFP on any
electrodes adjacent to the neuron. In S2A and S2B Fig, we show that LFPs selected by all three
methods are very similar. We also computed the spike-triggered average (STA) field potential
using these three different methods. Their shapes are almost the same (S2C ad S2D Fig). We
then bandpass filtered the LFP using Chebyshev type II filter design with passband 4–25 Hz.
After we got the filtered oscillatory signal (Fig 8B–8E), we applied the Hilbert transform to esti-
mate the instantaneous phase for further model fitting [20].

Supporting Information
S1 Fig. GLM fitting of one CA1 neuron. (A) Input currents for two differnt trials. The slow 2
Hz components are the same, but the fast 40 Hz oscillatory signals are different due to the vary-
ing initial phases. Both input currents have white noise. (B) Effect of stimulus λ1(t). (C) Effect
of auto-history λ2(t − t�). (D) Effect of phase modulation λ3(ϕ) from the oscillatory signal.
(EPS)

S2 Fig. Spike triggered average of two V4 neuron. (A)(B) Three different ways of selecting
the LFP for each neuron: LFP on the same electrode as the neuron detected (red), LFP on one
of the neighboring electrodes (blue), averaged LFP on all neighboring electrodes (green); (C)
(D) spike-triggered average for three different field potentials shown in (A)(B).
(EPS)

S3 Fig. Explaining synchrony when firing rate is modulated by the amplitude of the oscilla-
tion. In this example, the firing rate is modulated by the magnitude of the oscillation Bt = At
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cos(Ft), where the amplitude At is time varying and the modulation curve is 1 + Bt = 1 + Atcos
(Ft). We want to show that even though the phase-modulation assumption is violated, our
method can still explain partly the role of oscillation in synchrony. (A) Amplitude and magni-
tude of the oscillatory signal; (B) Bootstrap-generated distribution of log z12 values under the
null hypothesis of log z12. Arrowhead shows the value of log z12 predicted by the simplified
model. A significantly larger number of synchronous spikes is observed than predicted by the
model lacking an oscillatory factor. (C) Including an oscillatory factor in the model yields an
accurate prediction of the observed number of synchronous spikes.
(EPS)

S1 Dataset. Experimental dataset used in this paper. Two datasets used for Fig 7 and Fig 8
were included in S1_Dataset. They were named as CA1_data and V4_data respectively. Details
of data format were described in README file of each dataset.
(ZIP)
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