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Massive and complex unstructured fault text data will be generated during the operation of subway trains. A named entity
recognition model of subway on-board equipment based on Multiheaded Self-attention mechanism and CNN-BiLSTM-CRF is
proposed to address the issue of low recognition accuracy and incomplete recognition features of unstructured fault data named
entity recognition task of subway on-board equipment: BiLSTM-CNN parallel network extracts context feature information and
local attention information, respectively; In the MHA layer, the features learned from different dimensions are fused through the
Multiheaded Self-attention mechanism, and the dependencies of various ranges in the sequence are captured to yield the internal
structure information of the features. )e conditional random field CRF is used to learn the internal relationship between tags to
ensure their sequence. )is model is tested with other named entity recognition models on the marked subway on-board fault
data. )e experimental results demonstrate that this model is able to recognize 10 kinds of labels in the dataset. Moreover, the
recognition effect of each label has a good performance in the three evaluation indexes of P, R, and F1 score. Moreover, the
weighted average evaluation indexes Avg − P, Avg − R, and Avg − F1 of 10 labels in this model reach the highest 95.39%, 95.48%,
and 95.37%, which has high evaluation indexes and can be applied to the named entity recognition of Metro on-board equipment.

1. Introduction

Subway on-board equipment is the basic piece of equipment
guaranteeing the safe operation of the subway train. On-
board equipment is also constantly upgraded owing to the
rapid development of China’s urban rail transit. With the
accumulation of subway operation mileage and operation
time, a consequential amount of fault data about on-board
equipment has been generated. )ese data record the de-
tailed fault information in the form of text, containing useful
knowledge of fault diagnosis and processing. However, given
that it is stored in the form of unstructured text, it is not
conducive for computer processing and understanding. It
has long been delved into by field engineers and technicians
who suggest that the fault knowledge cannot be reused ef-
ficiently. )erefore, for these large amounts of unstructured

subway fault knowledge, knowledge entities should be ef-
ficiently identified and integrated, the fault cases and
treatment methods in the fault knowledge should be
identified, the subway knowledge map should be built, and
field personnel should be provided with accurate subway
fault information. )e human-computer interaction plat-
form provides field personnel with three kinds of infor-
mation: subway fault information, fault causes, and other
knowledge information. Moreover, the named entity rec-
ognition task related to subway on-board equipment also
establishes a knowledge base to serve subway fault diagnosis,
subway train information service, and subway information
intelligent recommendation [1].

Named entity recognition (NER) [2] is an essential
component of natural language processing (NLP) [3]. It aims
to identify various named entities from the original text,

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 6374988, 13 pages
https://doi.org/10.1155/2022/6374988

mailto:linjt@lzjtu.edu.cn
https://orcid.org/0000-0002-5763-5256
https://orcid.org/0000-0001-8786-487X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6374988


such as name, location, and organization. It can subse-
quently extract the concerned information in the fault text
data as named entities [4]. )e extracted entities can sub-
sequently pave the way for other NLP tasks. )e methods of
named entity recognition mainly include rule-based
methods, statistics-based methods, and deep learning-based
methods: Pan [5, 6] constructed the rule base of named
entity recognition and used the method of rule matching to
identify named entities. However, the rule writing based on
rules and dictionary methods requires the involvement of
domain experts, thereby requiring high language knowledge
and poor portability. )erefore, statistical machine learning
was employed to deal with the NER problem. In statistical
machine learning, the main algorithms suitable for sequence
annotation tasks are: Hidden Markov models (HMM) [7, 8],
Maximum Entropy Markov models (MEMM) [9], condi-
tional random field (CRF) [10], etc. However, the method
based on machine learning requires a substantial amount of
labeled data to train the model, requiring significant man-
power, thereby leaving much room for improvement in
recognition accuracy. In recent years, deep neural network
has been used to realize the key tasks in the knowledge map
due to the advent of deep learning technology [11], gar-
nering extensive attention. )e use of named entity rec-
ognition technology to identify entities in subway operation
and maintenance logs is a basic step in the conversion of
subway fault text into structured data, thereby laying a
foundation for mining and developing the rich knowledge
contained in a large amount of fault data recorded during
subway operation [12]. )e current mainstream deep
learning solutions tend to embed layer and Bidirectional
long short-term memory (BiLSTM) layer, allowing the
machine to directly learn the features. It subsequently di-
rectly inputs the learned features into CRF, thereby cir-
cumventing the tedious task of manually formulating the
feature function [13]. Literature [14, 15] uses the neural
network model to learn the internal representation of text on
a large number of unmarked datasets, which does not re-
quire the setting of artificial features. Literature [16] adopts
the long short-termmemory (LSTM) neural network model,
boosting the performance of word segmentation. However,
this method cannot yield the semantic information behind
the sentence. Literature [17, 18] proposes that CRF is used as
the processing mode of output processing layer on the basis
of bidirectional LSTM, effectively improving the perfor-
mance of the model. Furthermore, convolutional neural
network (CNN) [19] has also achieved desirable results in
solving NER problems; literature [20] uses CNN to obtain
multilevel features, thereby yielding local attention infor-
mation and improving the sensitivity of entity boundary
information; literature [21] adopts the serial strategy of CNN
and LSTM-CRF to recognize the named entity of the
conll2003 English dataset, and obtains a higher F1 value.
However, LSTM network cannot capture text information in
both directions. Document [22] uses the Bidirectional gate
recurrent unit (BiGRU) and CRF combined with CNN for
named entity recognition, and uses the connection vector
including affix vector, part of speech vector, and word vector
as input. It ultimately outputs through the CRF layer, which

can address the issue of automatic named entity recognition
and exert a desirable effect on entity recognition. Document
[18] proposed a method to fuse character and word vectors.
It adopted the Chinese named entity recognition method of
BiLSTM-CRF to effectively extract two features at character
and word level, thereby effectively improving the accuracy of
named entity recognition. Literature [23] adopts the BERT-
CRFmodel, extracts the global features of the input sequence
through the Bert pretraining model, adds the CRF layer at
the end of the model, introduces hard constraints, and
constructs the model framework of named entity recogni-
tion. However, the Bert model has a lengthy pretraining
time, and it is only used as a transfer learning model, which
is hindered by insufficient information recognition ability
for small areas. Much research has been conducted in the
field of railway text data analysis. In terms of named entity
recognition, Yang [24] used word2vec to represent the
characteristics of railway accident faults, and used BiLSTM-
CRF to realize the named entity recognition of railway
electrical service accident faults. Literature [17] uses
BiLSTM-CRF to realize the named entity recognition of
high-speed railway signal equipment and puts forward the
entity relationship representation method of multidimen-
sional word segmentation features, thereby achieving high
evaluation indexes for the task of named entity recognition
of high-speed railway signal equipment.

Based on the above literature research, this paper proposes
a named entity recognition method for Metro on-board
equipment based on multiheaded self-attention (MHA) and
BiLSTM-CNN- CRF.)e core idea of the method is as follows:

(1) YMDAA is used to complete the sequence annota-
tion [25], and the location, phenomenon, and
measure of the fault in the subway on-board fault
text are marked and exported in an Ann format file.
)e file is subsequently read through Python and
added to the BMEO label to complete the pre-
annotation of fault text data.

(2) )e tag and word sequence of the prelabeled fault
text are input into the word2vec model and trans-
formed into feature vectors.)e strategy of CNN and
BiLSTM working in parallel is adopted, whereby
CNN and BiLSTM work simultaneously, extract the
context and local attention features in the fault text,
respectively, and ultimately fuse the two kinds of
information.

(3) )e multihead self-attention mechanism is adopted
to give higher weight to the more important infor-
mation in the input word sequence and label se-
quence. )is mechanism can boost the sensitivity of
the machine towards important information, mining
the association between different input features to
extract the feature vector containing other word
information. )e recognition ability of the machine
to feature information can be more comprehensive
by defining the number of heads of multiple groups
of attention mechanisms, extracting important fea-
tures from different dimensions, and splicing and
linear processing these features [26].
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2. Design of Named Entity Recognition Model
Based on Multihead Self-Attention
Mechanism and BiLSTM-CNN-CRF

Based on the multiheaded self-attention mechanism and
BiLSTM-CNN-CRF, the named entity recognition model
architecture of Metro on-board equipment is illustrated in
Figure 1. It includes four main layers: word embedding layer,
BiLSTM-CNN layer, MHA layer, and CRF layer.

In the word embedding layer, the subway on-board fault
database is first loaded, the fault text records in the database
aremarkedwith BMEO through YMMDA, the word vector of
large-scale marked text is subsequently trained in the same
field as word2vec. )e generated word vector is then input
into the BiLSTM module and CNN module in the BiLSTM-
CNN layer, respectively. )e BiLSTMmodule is used to learn
the time characteristics and context information of the text
sequence, )e CNN module is used to extract the local
features in the text.)e outputs of BiLSTM and CNN are then
spliced and fed to theMHA layer to yield the global features of
the text sequence and the correlation strength between words.
Finally, the CRF layer marks the output sequence from the
MHA layer according to the importance of the features and
outputs the entity prediction label.

2.1. Word Embedding Layer. Data preprocessing is first
performed on the prelabeled subway on-board fault text,
which is subsequently segmented. Stop words and low-
frequency words are then discarded. )e accuracy of word
segmentation exerts a direct impact on the training effect of
the model, while the Jieba word segmentation tool may fail
to identify some proper nouns in this field. )erefore, a
dictionary of proper nouns in the subway on-board field
should be defined according to relevant data and existing
knowledge, to improve the reliability of word segmentation
task and lay a foundation for the vectorization of text [27].

In this paper, word2vec model is used to train word
vectors, transforming large-scale subway vehicle fault text
and label data into low dimensional and dense word vectors.
)is model can reflect the relationship between words but
does not necessarily ensure sufficient training of proper
nouns. To address this issue, word2vec is used to train word
vectors on the training set data and other corpora in the field.
Word2vec trains the word vector through the skip gram
model, whereby the central word predicts the words around
it and solves the context word vector through the conditional
probability value of the intermediate word vector, to fully
learn the semantic vector representation [28]. Suppose the
sample S is composed of n sentences, input the text sequence
S � [s1, s2, · · · , sn], the i sentence in the text sequence is
represented as si � [wi1, wi2, · · · , wik], whereby k represents
the number of words contained in the sentence si, and wik
represents the k word in the i sentence. )e skip grammodel
converts the input text sequence into word vector, and
further generates the corresponding word vector matrix.Wij

represents the j word vector in the i sentence, and the word
vector matrix of the sentence si with the length of k is
represented as Wi1: im � [Wi1,Wi2,Wi3, · · · ,Wik]. Finally,

E � [W11: 2k,W21: 2k,W31: 3k, · · · ,Wn1: nk], the word vector
matrix spliced by n sentences in the sample S, is used as the
output of the word embedding layer.

2.2. BiLSTM-CNN Layer. )is layer adopts the strategy of
BiLSTM and CNN working in parallel, whereby the feature
vectors generated by word2vec are input to BiLSTM and
CNN networks, respectively; the context features and local
attention features are extracted respectively; and the two
fusion features are subsequently input to the MHA layer.

2.2.1. BiLSTM. LSTM effectively calculates and controls the
input and output of information by designing gating units in
neurons. )e design of this gating unit addresses the
problem of text sequence length dependence. Its structure is
illustrated in Figure 2.

)e information of cell state Ct−1 is transmitted through
the top straight line. )e hidden layer state ht and input xt at
t time will modify Ct appropriately and then output to the
next time. Moreover, Ct−1 will participate in the calculation
of ht output at t time, and alter the cell state through the gate
structure of LSTM. After connecting ht−1 and xt, calculate
with different weight matrices (Wf,Wi,Wi) and offset
(bf, bi, bo) through the sigmoid function, and output ft, it,
and ot respectively. )e calculation formula is shown in
(1)–(3). )e amount of information needed to be forgotten
from the previous hidden layer ht−1 is controlled by mul-
tiplying ft and Ct−1; the content is planned to (−1, 1)
through the function, so that the updated cell 􏽥Ct is multi-
plied with it to control which information needs to be
retained. )e calculation is shown in formula (4), whereWC

denotes the weight matrix. When the information in the cell
state Ct is completely updated, as shown in formula (5), it is
scaled by tanh and multiplied by ot to output ht as the next
LSTM hidden layer state. )e calculation is shown in for-
mula (6).

ft � σ Wf · ht−1, xt􏼂 􏼃 + bf􏼐 􏼑, (1)

it � σ Wi · ht−1, xt􏼂 􏼃 + bi( 􏼁, (2)

ot � σ Wo · ht−1, xt􏼂 􏼃 + bo( 􏼁, (3)

􏽥Ct � tanh WC · ht−1, xt􏼂 􏼃 + bC( 􏼁, (4)

Ct � ft ∗Ct−1 + it ∗ 􏽥Ct, (5)

ht � ot ∗ tanh Ct( 􏼁. (6)

However, given that the unidirectional LSTMmodel can
only capture the information before the sequence and
cannot capture the context semantics, Li et al. [27] improved
the RNN model to yield the LSTM, which can solve the
problems of gradient disappearance and gradient explosion
that could occur in the process of long sequence training.
BiLSTM is composed of forward propagating LSTM and
back propagating LSTM. It captures the above and below

Computational Intelligence and Neuroscience 3



information of the current text, respectively, and then
combines the feature information extracted from the two
directions to yield the text features of remembering the past
and the future. )e word vector matrix E obtained through
the word embedding layer is input to the BiLSTM part in the
BiLSTM CNN layer as illustrated in Figure 1. )e LSTM

forward propagation generates the forward hidden layer
state sequence: H1 � [h1

→
, h2
→

, . . . , hm

�→
], and the reverse hid-

den layer state sequence: H2 � [h1

←
, h2

←
, . . . , hm

←
]. )e for-

ward hidden layer state sequence H1 is spliced with the
reverse hidden layer state sequence H2 to obtain the com-

plete hidden layer state sequence Ht � [hm

�→
, hm

←
], where m

represents the dimension of the BiLSTM input word vector.
)is combination of forward and reverse states gives full play
to the advantages of BiLSTM and addresses the issue
whereby the traditional one-way LSTM model fails to
capture the context information. It fully combines the
context and extracts the features through the overall envi-
ronment, which can substantially mitigate feature loss. )e
hidden layer state sequence Ht � [h1, h2, . . . , hm] is the final
output of the BiLSTM layer and is input to the MHA layer.

2.2.2. CNN. )e word vector matrix set generated by the
word embedding layer is input to the CNN layer. )e CNN
layer includes two steps: convolution and max pooling. Its
working process is depicted in Figure 3. Convolution is the
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Figure 1: )e overall model architecture of NER.
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use of different sizes of convolution to check the input ei-
genvector matrix for feature calculation, and then extracting
the local feature information of the text. )e operation
process of convolution can be expressed as follows:

ci � f F · Wi:j + b􏼐 􏼑, (7)

where ci denotes the ith eigenvalue of the text output
through convolution operation; F represents the matrix
corresponding to the convolution kernel; f is a nonlinear
activation function; · indicates that the two matrices are
multiplied by points;Wi: j represents the word vector matrix
from i word to j word; and b is the offset term. Convolution
operation on the characteristic matrix of each word vector is
carried out in the input, and the characteristic graph c is
calculated through formula (8).

c � c1, c2, · · · , cn( 􏼁. (8)

)e pooling layer samples the text features by setting a
fixed step stripe. In this paper, the maximum pooling
strategy max pooling is used for pooling processing. )is
process aims to effectively extract the local key information
in the sequence, compress the input feature map, reduce the
size of the feature map c, to simplify the network calculation,
and finally calculate the output fixed length vector Ct
through formula (9).

Ct � Max − pooling(c). (9)

2.3.MHALayer. )e outputHt of BiLSTM network and the
output Ct of CNN network are spliced into a feature vector
Xt with a dimension of 320 (the dimension of feature vector
Ht is 256 and the dimension of feature vector Ct is 64).
However, this feature vector cannot display the importance
of key information in the context, which could entail the loss
of important information in the named entity recognition
task. )erefore, the introduction of the multiheaded self-
attention mechanism is essential to learn the dependence
between any two words in the sentence, obtain the internal
structure information, and distinguish the significance of

each word. )e calculation principle of self-attention
mechanism is illustrated in Figure 4.

Taking the feature x1 in Xt as an instance, the self-at-
tention mechanism initializes the WQ, WK, and WV ma-
trices, and obtains Qn, Kn, and Vn matrices, respectively, by
multiplying with the input feature x1 points, as shown in
formula (10). It then calculates the attention a1n from for-
mula (12) to represent the correlation degree between the
feature x1 and the feature xn.

x1 · WQ
� Qnx1 · WK

� Knx1 · WV
� Vn, (10)

a1n � softmax
Q1K

T
n��

dk

􏽰􏼠 􏼡. (11)

Among them, Qn represents the query matrix, Kn rep-
resents the key value matrix, Vn represents the score matrix,
and n is the serial number corresponding to other input
features. )rough the combination of a1n and Vn, the as-
sociation head1n between x1 and other different features is
obtained. )e calculation is shown in formula (12). All the
feature vectors head1n are added and the Z11 vector is
calculated and can represent the connection between the first
word and other words through formula (12).

head1n � a1nVn, (12)

Z11 � Concat head11, head12, . . . , head1n( 􏼁. (13)

)e MHA calculation principle is depicted in Figure 5,
whereby the multiple groups of WQ, WK, and WV matrices
are initialized, multiple groups of Q, K, and V characteristic
matrices are generated through point multiplication, thereby
yielding multiple groups of Z1t. After completing the
splicing of multiple groups of Z1t, the dimension is reduced
through linear transformation, whereby t denotes the
number of self-attention heads, to obtain Z1 containing
other feature information. MHA linearly maps the input
features to different information subspaces through different
weight matrices, and calculates the same attention function

Kernel

Convolution

Max-Pooling

E

C

Ct

Figure 3: Working principle of the CNN layer.
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in each subspace, thereby expanding the ability of the model
to consider different positions, to fully understand the
structure and semantics of sentences. )e output x1′ of the
final MHA is calculated by the tanh function fromZ1 and the
input characteristic x1, as shown in formula (14). )e MHA
value of other features xn in Xt is calculated as above.

Z1 � tanh x1⊕Z1( 􏼁. (14)

2.4. CRF Layer. BiLSTM only considers the long-term de-
pendency information of sentences but overlooks the de-
pendency between tags. For instance, in the entity tags
defined in this paper, b-phenomenon cannot appear after the
m-phenomenon. )erefore, CRF needs to be introduced to
learn the internal relationship between tags to ensure the
sequence of tags. )e conceptual diagram of CRF condi-
tional random field is depicted in Figure 6.

)e conditional random field model, CRF, is based on the
calculation of a given random variable sequence
X � (x1, x2, · · · , xn).)e conditional probability distribution of
the random variable sequence Y � (y1, y2, · · · , yn) is P(X|Y),
and n denotes the sequence length. )e model assumes that the
random variable sequence satisfies the Markov property:

P yi|X, yi, · · · , yn( 􏼁 � P yi|X, yi−1, yi+1( 􏼁. (15)

P(X|Y) can subsequently represent the linear chain
conditional random field. In the labeling problem, X rep-
resents the input observation sequence, Y represents the
corresponding output mark sequence or state sequence, and
the evaluation score Score(X,Y) can be obtained through
formula (16).

Score(X,Y) � 􏽘
n

i�1
Pi,yi

+ 􏽘
n

i�0
Wyi,yi+1

, (16)

whereby W represents the transition matrix, and Wi,j

represents the state transition score from the i character to
the j character. P denotes the weight matrix output by the
decoding layer, Pi,yi

represents the probability that the ith
word is marked as yi, and exp represents the exponential
function of the natural constant e. Assuming that the input
sentence feature is X, the probability distribution of the
output sequence y′ is P(y′|X). Finally, the maximum
probability is yielded by the maximum likelihood estimation
in the process of fitting the model. )e calculation process is
shown in formula (17).

log P y′|X( 􏼁 � log
exp score X, y′( 􏼁( 􏼁

􏽐
n
i�0 exp(score(X, y))

� score X, y′( 􏼁 − log 􏽘
n

i�0
exp(score(X, y))⎛⎝ ⎞⎠.

(17)
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Figure 4: Calculation schematic diagram of self-attention mechanism.
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3. Data Set and Experimental Evaluation Index

3.1. CRF Layer. )e named entity recognition method of
subway on-board equipment requires the deep learning
method of supervised learning. )erefore, the sample data
labeling is required before training. According to the fault
knowledge structure, the fault text data of each Metro on-
board equipment define three types of named entities: fault
location, fault phenomenon, and fault solution. )e named
entity identification sequence is represented by BMEO,
where B (begin) represents the starting position of the entity,
M (middle) represents the middle part of the entity, and E
(end) represents the end character of the entity, O (other)
represents a nonentity character, and “−” is used to connect
the sequence annotation symbol with the defined entity type.
)erefore, this paper selects the fault text data recorded in
the depot of a subway company from 2016 to 2021 according
to the functions and fault characteristics of each equipment.
After preprocessing these fault text data, the total amount of
data is 51652 marked data, divided into the training set,
development set, and test set; 41526 pieces of data are se-
lected as the training set data as the data samples of model
fitting; 5035 pieces of data are development set data, which
are used to adjust parameters, select features, and make
other decisions on learning algorithms; 5091 pieces of data
are test set data, used in model evaluation. )e knowledge
annotation of some data in this paper and the process of
input to the model in this paper are illustrated in Figure 7.

3.2. Experimental Evaluation Index. In this paper, the Pre-
cision, Recall, and F1 − Score are used as the evaluation
indexes of this experiment, whereby TP represents the
number of samples classified and divided correctly; FP
represents the number of samples classified and divided
incorrectly; FN indicates the number of unclassified samples,
which are wrong.

3.2.1. Precision. )e accuracy rate is only for the positive
samples with correct prediction, as opposed to all samples
with correct prediction. It is calculated by dividing the
number of positive samples with correct prediction by the
ratio of the number of positive samples predicted by the
model. It shows that the predicted positive samples are really
positive, as shown in formula (8):

Precision �
TP

TP + FP
× 100%. (18)

3.2.2. Recall. It is calculated by dividing the predicted
correct number of positive samples by the actual number of
positive samples in the test set; it shows that the number of
samples that are really positive can be recalled by using the
classifier, as shown in formula (9):

Recall �
TP

TP + FN
× 100%. (19)

3.2.3. F1-Score. F1 − Score is the harmonic average of ac-
curacy rate and recall rate. Both Precision and Recall are
expected to be higher; however, both these indicators are
contradictory and cannot both be high. )erefore,
F1 − Score should be introduced as an appropriate threshold
point to maximize the ability of the classifier, as shown in
formula (10):

F1 − Score �
2

1/Precision + 1/Recall
× 100%. (20)

3.2.4. Weighted Average. In this paper, the evaluation in-
dexes Avg − P, Avg − R, and Avg − F1 are defined as the
weighted average values of 10 entity labels’ Precision, Recall,
and ,F1 − Score respectively. )e calculation process is
shown in formula (21).

Avg − P �
􏽐

10
i�1 Ni · Pi

􏽐
10
i�1 Ni

Avg − R �
􏽐

10
i�1 Ni · Ri

􏽐
10
i�1 Ni

Avg − F1 �
􏽐

10
i�1 Ni · Fi

􏽐
10
i�1 Ni

.

(21)

Where i denotes the value corresponding to the entity
category (there are 10 named entity categories in this paper),
Ni represents the number of entities in this category, and Pi,
Ri, and Fi represent Precision, Recall, and F1 − Score cor-
responding to class i entities, respectively.

4. Experimental Verification

4.1. Experimental Environment. )e experimental hardware
includes a i7-6700HQ CPU, a GTX960M graphics card, a
video memory of 8G, a Win10 64bit operating system, a 3.60
python version, a Spider 5.0.5 development tool, and a
1.11.1GPU Pytorch version.

4.2. Experimental Super Parameter Optimization

4.2.1. MHA Attention Heads Number Selection and Other
Parameter Settings. )e number of attention heads is set to t

in the MHA layer. During the operation of the MHA layer,
the input features need to be divided into t parts, and the
dimension of the feature vector Xt input to the MHA layer is
320. It is necessary to ensure that the set number of attention
heads’ t value is divisible by 320.)erefore, this paper selects
MHAwith the number of attention heads of 2, 4, 5, 8, and 10
to test the model in this paper, and the experiment uses all
the parameters in Table 1 except attention_heads, and the
optimizer chosen is Adam.

It can be inferred from Figure 8 that after the addition of
the multihead self-attention mechanism, the prediction
results of the model gradually improves with the increase of
the number of self-attention heads; when the head is 8, the
Avg − P, Avg − R, and Avg − F1 of the model reach the
optimum, and the Avg − F1 of the model is increased by
0.52%, 0.46%, and 0.34%, respectively, compared to the
number of self-attention heads of 2, 4, and 5. By further
increasing the number of heads, the accuracy of the model
decreases.)is finding arises because an excessive number of
attention heads will lead to overfitting of the model. )e
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number of MHA attention heads is set to 8, and the pa-
rameter settings are shown in Table 1.

4.2.2. Optimizer Selection. In the deep learning task, the
optimizer is used to update and calculate the network pa-
rameters affecting the model training and model output, to
approximate or reach the optimal value, and to minimize (or
maximize) the loss function. In this experiment, five com-
monly used optimizers are selected: SGD (stochastic gra-
dient descent), momentum optimization method, adaptive
learning rate optimization algorithm Adagrad, RMSprop,
and Adam. SGD selects a mini batch each time and uses the
gradient descent to update the model parameters; Mo-
mentum optimization method adds the momentum opti-
mization mechanism based on SGD.)e Adagrad algorithm
automatically attenuates the learning rate by using the
number of iterations and cumulative gradient; RMSprop
adds iterative attenuation; )e Adam optimizer dynamically
adjusts the learning rate of each parameter by using the first-
order moment estimation and second-order moment esti-
mation of the gradient [28]. In this experiment, the five
optimizers are applied to the named entity recognition
training task of this model. )e parameter values set in

Table 1 are used as the parameter values of this experiment,
and )e alpha of RMSprop is 0.99 and eps is 1e− 08; the
beta1 of Adam is 0.9, beta2 is 0.999, and eps is 1e− 08, and
the rest of the optimizers are the system default parameters.
In the process of model training, the variation of loss
function value loss with iteration step in the 5th, 10th, 15th,
20th, and 25th epoch rounds is shown in Figures 9(a) to 9(e),
respectively.

Adam and RMSprop have the smallest loss function
value and stable iterative waveform, while Adam showcases
better performance in these two aspects. )erefore, Adam is
selected for subsequent experiments in this paper. Moreover,
it can be inferred that with the increase of training rounds
epoch and training samples in each round, the loss function
value loss constantly declines, and finally tends towards
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Figure 7: Knowledge annotation and input process of fault text of metro on-board equipment.

Table 1: Parameter setting.

Parameter Value
Batch_size 64
Learning rate 8e− 4
Hidden layer dimension 128
Epoch 25
LSTM_dim 128
cnn_size 64
attention_heads 8
kernel_size (3, 4, 5)
Activation function Relu
Max_seq_len 128
Dropout 0.5
Loss function Cross entropy 94.8
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Figure 8: Effects of different attention heads on model
performance.
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Figure 9:)e loss function value of different optimizers varies with the number of iteration steps in different epochs: (a) 5th Epoch; (b) 10th
Epoch; (c) 15th Epoch; (d) 20th Epoch; (e) 25th Epoch.
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stability and 0, indicating that the parameter values in Ta-
ble 1 optimizes the network training of this model.

4.3. Overall Comparison

4.3.1. Experimental Super Parameter Optimization.
Several common named entity recognition models in NLP
field are used to train the dataset in this paper. After 25
rounds of epoch, the recognition results of 10 entity labels in
this paper are generated, as listed in Table 2 respectively. )e
following comparative analysis is carried out:

)e recognition results of phenomenon are shown in
Table 2. )e F1 values of HMM model for BME of phe-
nomenon are 65.52%, 80.33%, and 71.93%, respectively.
Compared with (Table 3) CRF model, the F1 value of HMM
model for entity (Table 4) label b-phenomenon is 4.81%
lower, the F1 value of m-phenomenon is 2.01% lower, and
the F1 value of e-phenomenon label is 4.99% lower. )ese
findings arise as the limitation of HMMmodel is that it uses
the trained local model to make a global prediction. )e
independent BiLSTM model is slightly better than the CRF
model for the recognition of these three named entities, and
the F1 value of Table 5 phenomenon’s BME is increased by
2.61%, 2.87%, and 0.97%, respectively, because the single
CRF model can only capture the internal relationship be-
tween named entities within a certain range. It fails to
capture long-distance previous and subsequent information.
However, the disadvantage of BiLSTM is that it has a general
learning effect on the internal relationship between tags,
which can be compensated by combining it with the CRF
model. )erefore, the F1 value of BiLSTM CRF for entity tag
b-phenomenon and e-phenomenon is increased by 0.33%
and 1.87%, respectively, compared with BiLSTM, and the p

value of entity tag m-phenomenon is increased by 3.75%.
BiLSTM-CNN-CRF adds a CNN network based on
BiLSTM-CRF. )e output results of CNN and BiLSTM are
fused into the CRF network to complete the named entity
work and boost the extraction ability of local features.
)erefore, the F1 value of BME named entities of phe-
nomenon is increased by 1.4%, 1.63%, and 3.45%, respec-
tively, compared with BiLSTM-CRF, and 1.73%, 0.9%, and
5.23%, respectively, compared with BiLSTM. Moreover, the
P and R values are also improved to varying degrees.
BiLSTM-CNN-MHA-CRF adds MHA based on BiLSTM-
CNN-CRF to learn the dependency between any two words
in the sentence and yields the internal structure information.
)e F1 value of BME three named entities has increased by
0.33%, 1.46%, and 0.83%, respectively. Although the p value
has decreased slightly, the R value has increased by about 4–5
percentage points compared with BiLSTM-CNN-CRF, with
a more balanced recognition effect of phenomenon entities.

Most location type named entities correspond to station
names, place names, or section names, with relatively fixed
names. )erefore, the six models have good recognition
effects on location type named entities. )e P, R, and F1 of
BiLSTM-CNN-MHA-CRF have reached over 90%. Com-
pared with the other five models, the p values for BME tag
recognition of location are 97.37%, 94.27%, and 94.87%,

respectively, which are the highest values. Also, the F1 values
have reached the highest at 93.67%, 92.79%, and 92.50%,
respectively. )e recognition effect on the next three BME
entity tags is relatively balanced.

)e recognition effect of three named entity labels of
BME of measure is shown in Table 4. )e F1 value of
b-measure in this paper is only second to BiLSTM-CNN-
CRF and BiLSTM-CRF, at 86.73%. )e recognition effect of
E-MEASURE is general, with P, R, and F1 values of 89.58,
81.69, and 85.45%, respectively. )e reason is that the
number of these two entity labels is the least, resulting in
insufficient learning of these two types of labels in the main
model and the inability to play the role in MHAmechanism.
However, for the largest number of entity tags with a
complex structure, the P recognized by the m-measure is
96.23%, which is 4–19 percentage points higher than other
models. )e F1 value reached 91.07%, which is also the
highest value among the six models, which is 5–13 per-
centage points higher than other models.

)e recognition effect of other nonentity tags o is shown
in Table 5. Tag O indicates a type of the label o, as the largest
number of 10 tag types, the P, R and F1 values of the
proposed six models exceed 94%, while the recognition effect
of this model is slightly better. )e P, R, and F1 values reach
96.37%, 98.87%, and 97.60%, respectively, and the F1 value is
0.6–2 percentage points higher than that of other models.

To sum up, for the identification of the above 10 Tags, the
other five models except the model in this paper have rel-
atively good recognition effects on BME entity tag and
nonentity tag o in location. Also, the model in this paper has
better recognition effects on these types of tags. )e rec-
ognition effect of phenomenon’s BME entity label is rela-
tively poor, as the description of fault phenomenon will be
detailed to each component. Given the numerous compo-
nents of subway on-board equipment, the description of
fault phenomenon is relatively complex, and the model
fitting is more complex. Using the model proposed in this
paper, the F1 value recognized by BME tag and m-measure
tag of phenomenon is substantially improved, and the F1
value recognized by b-phenomenon is about 0.4–10 per-
centage points higher than that of othermodels.)e F1 value
of m-phenomenon increased by about 1.4–7 percentage
points; the F1 value of e-phenomenon increased by about
2–4 percentage points; the F1 value of m-measure increased
by about 5–13 percentage points. Due to the insufficient
number of b-measure and E-MEASURE entity labels, the
recognition effect of this model on b-measure and
E-MEASURE entity labels is general; however, this model
improves the recognition effect of 8 entity labels except for
b-measure and E-MEASURE.

4.3.2. Overall Recognition Effect. Further comparison of the
weighted average evaluation indexes Avg − P, Avg − R, and
Avg − F1 of the six models on the recognition results of 10
labels. As depicted in Figure 10 and Table 6, in terms of
Avg − P, Avg − R, and Avg − F1, the combined model
IV–VIII outperforms I, II, and III. Compared with IV, V,
and VI, Avg − P, Avg − R, and Avg − F1 of V are increased

10 Computational Intelligence and Neuroscience



by 0.3%, 0.25%, and 0.27%, respectively, compared with and
those of VI is increased by 0.53%, 0.46%, and 0.49%, re-
spectively, compared with IV, indicating that adding CNN
can improve the ability of extracting local features. )e
introduction of MHA largely makes up for the lack of
BiLSTM’s ability to capture the association relationship
between words when processing long sequences and can
capture various semantic features and highlight the key
information of characters, the level of words and sentences.
)erefore, the Avg − P, Avg − R, and Avg − F1 of VIII are
0.57%, 0.6%, and 0.66% higher than those of VI, respectively,
and the Avg − P, Avg − R, and Avg − F1 of VIII are the

highest among the six models, 95.39%, 95.48%, and 95.37%,
respectively. Both V and VII models connect BiLSTM and
CNN in series, whereby the word vector generated by

Table 2: Recognition effect of different named entity recognition models on phenomenon.

Models
B-phenomenon M-phenomenon E-phenomenon

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)
HMM 55.58 79.17 65.52 74.90 86.61 80.33 62.12 85.42 71.93
CRF 74.42 66.67 70.33 86.49 78.57 82.34 81.40 72.92 76.92
BiLSTM 83.78 64.58 72.94 84.92 85.49 85.21 78.72 77.08 77.89
BiLSTM-CRF 81.25 66.72 73.27 88.67 80.67 84.48 84.85 75.09 79.67
BiLSTM-CNN-CRF 84.85 66.67 74.67 95.59 78.33 86.11 91.43 76.19 83.12
BiLSTM-CNN-MHA-CRF 78.95 71.43 75.00 93.67 82.22 87.57 87.18 80.95 83.95

Table 3: Recognition effect of different named entity recognition models on location.

Models
B-location M-location E-location

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)
HMM 92.92 91.67 92.29 91.26 92.57 91.91 91.18 86.11 88.57
CRF 96.88 86.11 91.18 95.28 86.43 90.64 93.75 83.33 88.24
BiLSTM 96.43 75.00 84.37 92.81 92.14 92.47 91.43 88.89 90.14
BiLSTM-CRF 94.87 90.24 92.50 91.30 90.74 91.02 92.31 87.80 90.00
BiLSTM-CNN-CRF 97.30 87.80 92.31 92.31 87.80 90.00 93.67 91.36 92.50
BiLSTM-CNN-MHA-CRF 97.37 90.24 93.67 94.27 91.36 92.79 94.87 90.24 92.50

Table 4: Recognition effect of different named entity recognition models on measure.

Models
B-measure M-measure E-measure

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)
HMM 67.14 85.42 75.20 77.99 94.88 85.61 75.71 96.36 84.80
CRF 84.62 80.00 82.24 89.40 76.38 82.38 90.38 85.45 87.85
BiLSTM 86.00 78.18 81.90 92.11 68.90 78.83 91.67 80.00 85.44
BiLSTM-CRF 92.59 84.75 88.50 91.37 82.04 86.46 89.29 84.75 86.96
BiLSTM-CNN-CRF 92.41 84.94 88.52 90.76 79.58 84.80 94.34 84.75 89.29
BiLSTM-CNN-MHA-CRF 90.74 83.50 86.73 96.23 86.44 91.07 89.58 81.69 85.45

Table 5: Recognition effect of different named entity recognition
models on other nonentity tags O.

Models
O

P (%) R (%) F1 (%)
HMM 97.70 92.76 95.17
CRF 94.99 97.91 96.43
BiLSTM 95.20 97.63 96.40
BiLSTM-CRF 95.26 98.64 96.92
BiLSTM-CNN-CRF 96.59 98.79 97.01
BiLSTM-CNN-MHA-CRF 96.37 98.87 97.60
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Figure 10: Weighted average of different named entity recognition
models.
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Word2Vec is first input to BiLSTM.)e output of BiLSTM is
subsequently used as the input of CNN. Compared with V,
VI, VII, and VIII, VI has increased by 0.23%, 0.21%, and
0.22%, respectively, in three indexes compared with V; VIII
compared with VII, the three indexes are increased by 0.26%,
0.33%, and 0.43%, respectively, indicating that the effect of
parallel work of BiLSTM and CNN outperforms serial work.

)erefore, adopting the strategy of BiLSTM and CNN
working in parallel and effectively combining MHA and
BiLSTM-CNN-CRF can improve the recognition effect com-
pared with other named entity recognition models, which is of
great significance to improve the overall performance of the
named entity recognition model of Metro on-board
equipment.

5. Conclusion

Based on unified labeling of Metro on-board equipment
fault text data, aimed at solving the problem of low accuracy
of naming entity recognition task of unstructured Metro on-
board fault data, this paper proposes a Metro on-board
equipment naming entity recognition model based on
multihead self-attention mechanism and CNN BiLSTM
CRF. Compared with the traditional naming entity recog-
nition model BiLSTM CRF, this model adds a CNN network
with parallel processing characteristics with BiLSTM. )e
two extracted features are combined and sent to MHA,
which extract the context information and local feature
information, and mine the internal relationship between
different features through MHA. )is paper defines the
entity tag BME and other nonentity tags o corresponding to
the three types, through the named entity recognition ex-
periment of Metro on-board equipment fault text data with
this model and other common named entity recognition
models, and the experiment results show that:

(1) )e proposed named entity recognition model has
conspicuous advantages in the three indexes of P, R,
and F1 for the recognition results of all tags except
entity tag b-measure and E-MEASURE, which is
higher than HMM, CRF, BiLSTM, BiLSTM-CRF,
and BiLSTM-CNN-CRF.

(2) )e model in this paper has a good performance in
the weighted average evaluation indexes Avg − P,
Avg − R, and Avg − F1, reaching 95.39%, 95.48%,

and 95.37%, respectively. It is the highest value when
compared with the other five named entity recog-
nition models. Moreover, the strategy of parallel
work of BiLSTM and CNN outperforms serial work.

)erefore, it can meet the performance requirements of
high accuracy of subway on-board equipment fault text
named entity recognition, provide theoretical basis and
application value for subway on-board equipment fault
named entity recognition, and establish a good foundation
for the subsequent establishment of subway on-board
knowledge map and the subway on-board knowledge base.
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