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We propose and test a novel approach for direct parametric image reconstruction of dynamic PETdata. We present a theoretical
description of the problem of PET direct parametric maps estimation as an inference problem, from a probabilistic point of
view, and we derive a simple iterative algorithm, based on the Iterated Conditional Mode (ICM) framework, which exploits the
simplicity of a two-step optimization and the efficiency of an analytic method for estimating kinetic parameters from a nonlinear
compartmental model.'e resultingmethod is general enough to be flexible to an arbitrary choice of the kinetic model, and unlike
many other solutions, it is capable to deal with nonlinear compartmental models without the need for linearization. We tested its
performance on a two-tissue compartment model, including an analytical solution to the kinetic parameters evaluation, based on
an auxiliary parameter set, with the aim of reducing computation errors and approximations. 'e new method is tested on
simulated and clinical data. Simulation analysis led to the conclusion that the proposed algorithm gives a good estimation of the
kinetic parameters in any noise condition. Furthermore, the application of the proposed method to clinical data gave promising
results for further studies.

1. Introduction

Dynamic positron emission tomography (PET) consists of the
acquisition of a sequence of 3D images over time to follow the
uptake and washout of an injected radiotracer in the imaged
object. Hence, dynamic PET provides additional temporal
information about tracer kinetics compared to static PET.'e
pharmacokinetic analysis allows, then, to estimate biologically
relevant kinetic parameters from the measured concentration
in tissue over time, that is, the tissue’s time activity curve
(TAC). 'ese parameters can provide a greater insight into
the diagnosis of several diseases, helping clinicians in dif-
ferentiating among different kind of lesions, and can assist
during the follow-up of treatment response in a more specific
way than the simple evaluation of the standard uptake value at
a single time point [1].

'ere are two main approaches to characterize tracer ki-
netics from dynamic PETdata: region-of-interest (ROI) kinetic
modeling and parametric imaging [2, 3]. 'e ROI-based ap-
proach fits a kinetic model to the average TAC of a selected
ROI. On the contrary, parametric imaging aims at estimating
kinetic parameters for every voxel, thus providing a repre-
sentation of their spatial distribution as parametric maps.

Parametric images have been found useful to enhance
characterization of the regional heterogeneity. However, this
technique is more computationally demanding, and more
sensitive to noise in dynamic PET data than the ROI-based
kinetic modeling [4]. 'e main difficulties related to esti-
mating thesemaps are that a single voxel’s TAC is noisier than
the average TAC used for ROI-based modeling and that the
voxel-wise estimate needs to be performed in a sequential
way, without the possibility to exploit information about
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spatial proximity as regularization constraint during the fit-
ting of complex kinetic models. 'is can lead to different
optimal parameter sets even for voxels belonging to the same
tissue and supposedly sharing the same kinetic behavior; this
produces potentially noisy and biased parametric maps.'ere
is some research about the effects of spatial regularization on
kinetic parameter estimation [5], but this approach is not
commonly used because it requires huge parallelization
power to process all the voxel in the 3D volume at the same
time and because it could easily lead to biased maps, if the
spatial smoothing is too strong.

'e standard approach to process dynamic PETscans (4D
PET) starts from the independent reconstructions of series
PET images, acquired in a certain number of consecutive time
frames. 'is can potentially lead to low count statistics,
according to the chosen time scheme, which determines the
length of each time frame [6]. Due to the ill-conditioning of
the tomographic problem, iterative reconstruction algo-
rithms, such as the maximum likelihood expectation maxi-
mization (MLEM) method, are a common choice, even if the
filtered backprojection (FBP) method is sometimes preferred.
'e pharmacokinetic modeling is typically applied later, and
thus, it is sensitive to noise in the previously reconstructed
PET images. An efficient and unbiased estimate of the kinetic
parameters of the chosen model requires properly taking into
account the noise distribution of the reconstructed activity
images [7] or a parametric images denoising by means of
a spatial regularization [5]. However, for the frequently used
iterative image reconstruction algorithms, this noise distri-
bution is rarely known precisely and very hard to model with
a known mathematical form because it is related to the
number of iterations employed and other features of the
reconstruction algorithm [8–10].

Postprocessing techniques such as filtering or ROI-based
analysis (that, e.g., clusters voxel with similar kinetics) exist.
However, all postreconstruction modeling approaches are
fundamentally limited as they operate only indirectly on the
reconstructed images so that the noise statistics cannot be
accurately modeled. Inaccurate modeling of noise statistics
may result in unreliable estimation of voxel-wise kinetic
parameters, particularly if there are high levels of noise in the
acquired data.

Given these considerations, the growing interest in fully
4D image reconstruction techniques can be easily un-
derstood. 4D reconstruction methods try to address the
problems of noise characterization and limited counts in
dynamic emission tomography by incorporating a theoret-
ical model of the temporal behavior of the radiotracer di-
rectly into the image reconstruction algorithm [7, 11, 12].
'is approach allows for adding physiologically meaningful
constraints to the reconstruction process itself, and it pro-
vides reliable estimations of voxel-wise kinetic parameters
directly from raw data by exploiting the same mathematical
models normally used on a postreconstruction basis [2, 3].

It is well known that PET projection data can be de-
scribed as independent Poisson realizations. Directly esti-
mating kinetic parameters from sinogram data facilitates
accurate modeling of noise distribution which follows
Poisson statistics and gives an accurate compensation of the

noise propagation, from projection measurement to kinetic
fitting. 'is peculiar property has been shown [13–15] to
provide a better bias-variance characteristic with respect to
the conventional indirect approaches, both using linear and
nonlinear kinetic models.

In this work, we propose a theoretical description of the
problem of PET direct parametric maps estimation as an
inference problem, from a probabilistic point of view. 'is
assumption allows us to derive a simple two-step iterative
optimization algorithm, based on the Iterated Conditional
Mode (ICM) framework [16].'e resulting method is general
enough to be flexible to an arbitrary choice of the kinetic
model, and unlike many other solutions [17–19], it is natively
capable to deal with nonlinear compartmental models
without the need for linearization. For the testing purpose, we
chose to couple the proposed optimization method with
a two-tissue compartment model [2, 3], including an ana-
lytical solution to the kinetic parameters evaluation problem,
based on an auxiliary parameter set, with the aim of reducing
computational errors and approximations.'e newmethod is
tested on simulated and clinical data.

2. Materials and Methods

2.1. PET Data Model. Let us approximate the radiotracer
activity within the region-of-interest of the subject’s body
using a set of point sources x � xj􏽮 􏽯, j ∈ 1, . . . , J{ }, displaced
on a regular voxel grid. Since emission events in the same
voxel are not time correlated, their rate can be described as
a Poisson distribution, with the expected value xj. 'e
geometry of the acquisition system and attenuation de-
termines the probability pij of a photon emitted by voxel j

being detected by line of response (LOR) i. From the sum
property of Poisson distribution, counts yi recorded in i are,
again, Poisson distributed, with the expected value 􏽐jpijxj,
and measurements in each detector bin i are independent,
conditionally to activity [20, 21]. Keeping in mind that in
dynamic PET imaging both activity image and sinogram
counts are functions of time, we can express the probability
to observe y � yi􏼈 􏼉, i ∈ 1, . . . , I{ } given x as

p(y ∣ x) � 􏽙
I

i�1
Poisson 􏽘

j

pijxj, yi
⎛⎝ ⎞⎠. (1)

'e aim of direct parametric PET reconstruction is to
generate parametric images θp

􏼈 􏼉, p � 1, . . . , P, withP number
of model parameters, directly from themeasured raw dynamic
data and to use them to guide the image reconstruction
process [7, 12, 13, 15, 22, 23]. If we define a vector θj ∈ RP,
which contains the P parameters related to voxel j, and we
identify with f(t, θj) a generic kinetic model, which provides
a theoretical representation of the time activity curve (TAC)
for voxel j over time, the relationship between the model and
the reconstructed voxel TAC can be expressed as follows:

xjm θj􏼐 􏼑 � f tm, θj􏼐 􏼑 + ε. (2)

Irrespectively of the chosen kinetic model f(·), (2)
encodes the assumption that voxel intensities can be
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modeled as noisy realizations of a hidden dynamic process,
and each voxel’s TAC can be parameterized using a kinetic
model, defined on a set ofP parameters. Given (2), we decided
to model the uncertainty ε using a probability distribution: for
each time point tm, the corresponding value of xjm has
a Gaussian distribution with a mean equal to value f(tm, θj)

of the model curve and standard deviation σ. 'us, we have

p xj ∣ θj􏼐 􏼑 � 􏽙
M

m�1
N xjm ∣f tm, θj􏼐 􏼑, σ􏼐 􏼑

∝􏽙
M

m�1
exp
−1
2σ2

xjm −f tm, θj􏼐 􏼑
�����

�����
2

􏼒 􏼓.

(3)

Given (1) and (2), we can explicit the connection be-
tween measured sinogram counts and model parameters
through the following reinterpretation of the standard affine
model of PET data:

yim(θ) � 􏽘

J

j�1
pijxjm θj􏼐 􏼑 + rim, (4)

where rim is the estimate of random and scattered events
occurring in the same LOR i, during time framem.'is allows
us to directly express the Poisson likelihood in (1) as a p(y ∣ θ),
function of model parameters θ, instead of activity values x.

2.2. ICM-Based 4D Reconstruction. Instead of directly de-
riving an optimization algorithm to maximize the likelihood
p(y ∣ θ), as done in other works about direct PET maps
estimation [7, 12, 13, 15, 22, 23], we made use of the Iterated
Conditional Modes (ICM) framework, introduced by Besag
[16]. ICM consists of splitting the optimization problem by
maximizing, in turn, each conditional probability, given the
provisional estimates of the other variable: this procedure
defines a single cycle of an iterative algorithm to estimate all
the variables.

Considering the Poisson likelihood in (1) and the
Gaussian likelihood in (3), we alternatively estimate (i) the
parameters of the kinetic model with the highest probability
given the activity and (ii) the activity with highest probability
given the parameters and the PET projection data.

(i) Given the provisional estimate of activity 􏽢x, we can
adopt a maximum likelihood approach to maximize
the logarithm of the likelihood function, which has
arisen from the assumption of Gaussian noise dis-
tribution in (3). It is easy to see how maximizing the
Gaussian log-likelihood is equivalent to minimizing
the sum of squares error function between model and
voxel’s TAC:

θ̂
(n+1)

j � argminθj
􏽘

M

m�1
􏽢x

(n)
jm −f tm, θj􏼐 􏼑􏽨 􏽩

2
, (5)

which can be done using any conventional nonlinear least-
squares (NLS) method (e.g., the Levenberg–Marquardt al-
gorithm [23]).

(ii) Given the updated parametric maps (i.e., parameter
vector θj for each voxel of the volume of interest), we
now want to maximize p(y ∣ x, θ) of (1) incorpo-
rating the result from the previous step. Inspired
by the approach proposed by Wang and Qi [24, 25]
(in their optimization transfer expectation maxi-
mization (OT-EM) algorithm for PET direct re-
construction) for transferring optimization of the
Poisson likelihood from the image to parameters
domain, we chose to maximize this conditional pdf
as follows:

􏽢x
(n+1)
jm �

x
(n+1)
jm

􏽐
I
i�1 pij

􏽘

I

i�1
pij

yim

􏽐
J

j′�1 pij′x
(n+1)
jm

, (6)

where x
(n+1)
jm � f(tm, θ̂

(n+1)

j ) is the mean value of activity in
voxel j at time frame m, given the updated estimate of model
parameters performed in the previous step.

For the rest of this work, we will denote this concurrent
optimization algorithm as Iterated Conditional Modes based
Expectation Maximization (ICM-EM) reconstruction.

2.3. Kinetic Modeling with a Two-Tissue Compartmental
Model. 'e proposed inference framework was described in
the previous section as independent of the choice of the
kinetic model. However, we now need a proper expression for
the theoretical model f(tm, θj) in (2) and (5), able to describe
the behavior of the tracer in tissue. While linear models are
often the preferred choice because of their computational
efficiency and robustness, nonlinear ones could provide
a greater insight into the biochemical properties of the
various tissues [2, 3]. Most of these nonlinear models are
based on compartments to describe the behavior of the
tracer: each compartment identifies either a distinct
physical location or a different chemical state of the tracer.
'e unknown parameters of the model are constant transfer
rates, which describe the flow of the tracer among different
compartments.

Following the compartmental model theory [3], the total
tracer concentration in a tissue region can be modeled as
follows:

􏽢CT (t) � 1−fv( 􏼁 Cp(t)⊗ 􏽘
C

c�1
cc(t)⎡⎣ ⎤⎦e−dkt + fvCwb(t), (7)

where fv is the fractional volume of blood in tissue, dk is
the radioactive decay constant of the chosen tracer (e.g., for
[18F]FDG, dk � ln(2)/109.8min−1), Cp is the measured
tracer concentration in plasma, Cwb is the concentration in
the whole blood, and cc(t) represents the expected impulse
response function (IRF) in the cth compartment. 'e re-
lationship between compartment concentrations is usually
described by a set of ordinary differential equations
(ODEs):

d

dt
c � Kc + Lu, (8)
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where c � [c1, . . . , cC]T, K and L are the model constant
parameters matrices, and u denotes the system’s input
function. In the common case of a two-tissue compartment
model, we have

c �
Cf

Cb
􏼢 􏼣,

u � Cp,

K �
− k2 + k3( 􏼁 k4

k3 −k4
􏼢 􏼣,

L �
K1

0
􏼢 􏼣,

(9)

where with Cf and Cb we distinguish between the con-
centration of the free and bound compartments of a two-
tissue model. 'e system of ODE in (8) can be solved an-
alytically in case of an impulsive input u, and the impulse
response function (IRF) is

c tm( 􏼁 �
K1

β2 − β1( 􏼁

k4 − β1 β2 − k4

k3 −k3

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
e−β1tm

e−β2tm

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (10)

where β1,2 � 1/2􏼔(k2 + k3 + k4) ±
������������������

(k2 + k3 + k4)
2 − 4k2k4

􏽱

􏼕.
As shown by Gunn et al. [3], this solution can be further
simplified introducing a set of auxiliary parameters
Φaux � [fv, α1, α2, β1, β2]

T:

α1 � K1
k3 + k4 − β1
β2 − β1

,

α2 � K1
β2 − k3 − k4

β2 − β1
,

(11)

so that we can express the tissue IRF as a sum of two ex-
ponential functions:

c tm( 􏼁 � α1e
−β1tm + α2e

−β2tm � 􏽘
2

c�1
αce
−βctm . (12)

2.4. Modeling of the Input Function. Once we have the tissue
IRF, from system theory we know that the output of our
dynamic system with respect to a generic input can be
computed by convolving (12) with the system input func-
tion, Cp. Combining (7) with (12), we obtain

􏽢CT (t) � 1−fv( 􏼁 Cp(t)⊗ 􏽘
2

c�1
αce
−βct⎡⎣ ⎤⎦e−dkt + fvCwb(t).

(13)

'is means that tracer kinetic modeling with PET re-
quires to measure the tracer time activity curves in both
plasma and tissue to estimate physiological parameters.

In the present work, we decided to adopt a theoretical
representation also for the input function, using a combi-
nation of exponential terms, that for [18F]FDG tracer is
given by the following equation [26]:

􏽢Cp tm( 􏼁 �

A1 tm − t0( 􏼁−A2 −A3􏼂 􏼃e−λ1 tm−t0( )

+ A2e
−λ2 tm−t0( ) + A3e

−λ3 tm−t0( ),

for tm ≥ t0,

0, for tm < t0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

2.5. Analytical Tissue Compartment Modeling. 'e convo-
lution operation in (13) is usually performed numerically,
for each voxel in our volume, and this operation can be
computationally and time expensive, given the size of the 4D
volumes we are dealing with. It is interesting to note how this
operation can be computed more efficiently when dis-
cretization is avoided [27].

Using Feng’s input function model (14), with an am-
plitude vector A � [A1, A2, A3]

T, and inverse time constant
vector λ � [λ1, λ2, λ3]

T, we can derive an analytical solution
to the convolution operation, so to avoid entirely the nu-
merical convolution and temporal sampling of the input
function. Expanding the convolution operator in the output
function (13), substituting the input function model (14),
and performing a series of algebraic manipulations, the
output function can be expressed analytically as follows:

􏽢CT tm( 􏼁 � 􏽘
2

c�1

A1tmαc

βc − λ1( 􏼁
e
−λ1tm

+ 􏽘
2

c�1
􏽘

3

j�1

􏽢Ajtmαc

βc − λj􏼐 􏼑
e
−λjtm − e

−βctm􏼐 􏼑,

(15)

where 􏽢A � [−A2 −A3 − (A1/(βc − λ1)),−A2,−A3].
Adding to equation (15), the correction factors for ra-

dioactive decay and blood fraction in tissue, as in (7), we
obtain the final version of our two-tissue analytic com-
partment model:

􏽢CT tm( 􏼁 � 1−fv( 􏼁⎡⎣ 􏽘

2

c�1

A1tmαc

βc − λ1( 􏼁
e
−λ1t

+ 􏽘
2

c�1
􏽘

3

j�1

􏽢Ajtmαc

βc − λj􏼐 􏼑

× e
−λjtm − e

−βctm􏼐 􏼑⎤⎦e
−dktm + fv

􏽢Cp tm( 􏼁.

(16)

2.6. Algorithm Implementation. 'e ICM-EM algorithm
here proposed was implemented in Matlab ('e Math-
Works, Inc., Natick, Massachusetts, United States).

For the first step of the algorithm (5), we used the
lsqcurvefit function, provided by Matlab with the Optimi-
zation Toolbox, for nonlinear least-squares fitting with
a Levenberg–Marquardt algorithm [23]: we chose to con-
strain the search space for the kinetic constants between
0 and 10, and for the fv parameter, between 0 and 1. Default
stopping conditions were used.

We, then, used the Image Reconstruction Toolbox (IRT),
provided by Fessler [28], to implement the second step (6) of
updating the activity estimate given the new estimate of
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parametric maps and sinogram data. We exploited this tool
for system matrix generation, based on a square pixel basis
and strip-integral detector model, and we applied the re-
quired modification to the IRT’s MLEM algorithm in order
to correctly implement (6) for 2D single-slice dynamic PET
data. Before reconstructing, images were initialized by set-
ting all voxels inside the field of view (FOV) to 1.0 and all k

parameters to 0.1.

2.7. Simulation. A numerical PET phantom was created
starting from the Zubal brain phantom [29] image of
111× 111 points, which includes white matter and gray
matter. 'e field of view was 70 cm. We simulated an ideal
measurement system with ideal detectors with equal sen-
sitivity, efficiency, and detection cross section.

Dynamic data were generated by applying on each pixel
the TAC curve that follows the kinetic parameter behavior
according to the two-compartment model. 'e kinetic pa-
rameter values used for the simulation of both gray matter and
white matter are shown in Table 1. 'e blood input function
was modeled according to (14), with the following parameter
values:A1 � 10,A2 � 0.5, andA3 � 2, and λ1 � 0.5, λ2 � 0.05,
and λ3 � 0.005.

In Figure 1(a), the TACs relevant to input function, gray
matter, and white matter are shown; in Figure 1(b), the
geometric arrangement in the brain of the kinetic param-
eters are shown.

A time series of Poisson-distributed sinograms was
generated by projecting the simulated dynamic activity. Each
sinogram consisted of 367 × 315 points (number of
bins× number of angles): we denote as mSin, the mean value
of each sinogram’s counts.

A simplified model of attenuation was applied: the at-
tenuation map was modeled as a 111× 111 matrix, with the
attenuation coefficient equal to 0.098 cm−1 [10]. 'e scat-
tering effect was implemented according to the single-scatter
simulation (SSS) algorithm [30], while the random co-
incidences were modeled as a uniform value. Both these
effects were proportional to the mean count rate of the
simulated sinograms, mSin; several noise levels (from 10% to
80% of mSin) were simulated to evaluate their influence on
the kinetic parameters estimation. Scattering and random
counts effect was applied to each sinogram according to (4).
Also, the radioactive decay effect was included, considering
the [18F]FDG half-life of 109.8 minutes.

'e resulting dynamic projections were then considered
as raw input for the ICM-EM algorithm and the parametric
maps, one for each kinetic parameter, were generated. 'e
number of iterations for the EM part of the algorithm (6) was
fixed to 2, while the iterations number of the whole alternate
direct optimization (i.e., n in (5) and (6)) ranged from 2 to

50, in order to evaluate which is the optimal number of
iterations to apply, also in presence of noise.

'e simulation described above was repeated 20 times, in
a Monte Carlo framework, giving a much more compre-
hensive view of the results.

All the resulting maps were quantitatively analyzed by
calculating themean squared error (MSE) index, which gives
information about the goodness of the estimation. 'e MSE
index allows comparing the estimated kinetic maps with the
relevant true values given as input to the simulation; it is
computed as follows:

MSE �
1
J

􏽘

J

j�1
kj − 􏽢kj􏼐 􏼑

2
, (17)

where J is the number of pixels in the map, kj is the true
value of the jth pixel in the simulatedmap, and 􏽢kj is the value
of the jth pixel in the estimated map.'eMSE was evaluated
for different noisy conditions and number of iterations.

'e normalized log-likelihood normLn was calculated at
each direct iteration n, to evaluate the convergence rate of
the ICM-EM algorithm. It is given by

normLn �
Ln −Lmin

Lmax − Lmin
, (18)

where Lmax and Lmin are, respectively, the maximum and
minimum log-likelihood values.

2.8. Clinical Data. Six [18F]FDG dynamic PET data sets
were acquired by using a PET/CT Discovery RX VCT 64-
slice (GE Healthcare, Milwaukee, WI) scanner, on subjects
without cerebral pathologies. 'e study complied with the
Declaration of Helsinki. All subjects gave written informed
consent to the protocol. 'e project was approved by the
institutional ethics committee.

'e acquisition protocol started few seconds after the
injection of [18F]FDG (5MBq/kg body weight). 'e scan
protocol consisted of 24 frames (12 × 10 s, 2 × 30 s, 3×

60 s, 2 × 120 s, 4 × 300 s, and 1 × 600 s for a total of 40 min) of
3D data (47 slices each one). 'e single sinogram slice was of
367 × 315 values, for a field of view (FOV) of 70 cm.

For each subject’s data, the input function was derived by
properly selecting a region-of-interest from a vascular region
(i.e., carotid) on a preliminary reconstruction of the dynamic
series with an ordered subset EM (OSEM) algorithm (21 subsets;
3 iterations). 'is experimental input function was then fitted
using the Feng model in (14), using the NLS fitting algorithm.

'e acquired raw data, attenuation maps, random and
scatter correction matrices, and the input functions were
transferred from the scanner to an external workstation, to
generate kinetic maps. 'e kinetic behavior of [18F]FDG was
modeled using a two-tissue compartment. 'e kinetic pa-
rameters estimated were K1, . . . , k4, fv, and the uptake rate of
[18F]FDG, Ki, was Ki � K1k3/(k2 + k3). 'e parametric
maps were reconstructed using the same proposed ICM-EM
direct reconstruction algorithm used in the simulation.

For each subject’s data, PET images were generated by
applying the ICM-EM algorithm using 10 iterations, and

Table 1: Kinetic parameter values used for the simulation.

K1
(ml·min−1·g)

k2
(min−1)

k3
(min−1)

k4
(min−1) fv (%)

Gray matter 0.6805 0.3945 0.0533 0.0031 0.0985
White matter 0.4091 0.3276 0.0451 0.0015 0.1160
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from these images, two anatomical regions of interest (ROIs)
were selected, covering, respectively, gray and white matter
region of the brain. 'en, the kinetic parameter values
relevant to the two different ROIs were evaluated for several
different numbers of direct reconstruction iterations.

3. Results

3.1. Simulated Data. In Figure 2, it is shown the mean and
standard deviation of the MSE index, evaluated on the
parametric maps K1, . . . , k4, fv, and Ki by ICM-EM algo-
rithms as a function of the reconstruction iterations number,
#iter. Results are relevant to four different noisy conditions:
total noise � [10%, 20%, 40%, 80%] of the dynamic data
sinograms mean value, mSin.

Results obtained by evaluating the normalized log-
likelihood normLn are shown in Figure 3. Four different
noise conditions are shown from 10% to 80% of mSin. In

Figure 3 also zooms of the graphs are shown, to better dis-
tinguish the behavior of the n in different noisy conditions.

Figure 4 shows an example of the resulting parametric
maps obtained from simulated data with 40% of noise and
reconstructed with 10 direct iterations.

Figure 5 shows the dynamic reconstructed images, ob-
tained with the same conditions as in Figure 4. Figure 5(a)
shows the TACs reconstructed from the images obtained
applying the ICM-EM algorithm; they are relevant to a white
and a gray matter region. Figure 5(b) shows image frames
relevant to six different time intervals.

3.2. Clinical Data. Figure 6 shows results related to clinical
data. 'e mean and standard deviation of the estimated
kinetic parameters for a different number of iterations,
#iter, are shown; the standard deviation is relevant to the
subjects’ kinetic parameters variability. Parameters are
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Figure 2: MSE evaluated on the parametric maps K1, . . . , k4, fv, and Ki as function of the direct reconstruction iterations number (#iter), in
four different noisy conditions: (a) gray matter; (b) white matter.
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evaluated from two ROIs covering the gray matter (results in
Figure 6(a)) and white matter (results in Figure 6(b)).

In Figure 7, the mean and standard deviation of the
normLn values are shown, as a function of the number of
direct iterations; the standard deviation is relevant to the
subjects’ kinetic parameters variability. A zoom of the graph
is also shown.

In Figure 8, as an example, the parametric maps obtained
from a subject data and reconstructed with 10 direct iter-
ations are shown. 'e reconstructed dynamic images are
shown in Figure 9. Similarly to what shown in Figure 5 for
simulation results, Figure 9(a) shows the TACs recon-
structed from the images and Figure 9(b) shows six images
relevant to six different time intervals.

4. Discussion

In the last few years, many groups have proposed different
methods for estimating the parametric maps directly from
the measured data [7, 11–15]. Some of them focused on the
usage of linear kinetic models [17–19], whereas others de-
veloped methods tailored for nonlinear compartmental
models [13, 22, 24]. Wang and Qi [25] proposed a gener-
alized reconstruction method, which utilizes surrogate
functions for optimization transfer expectation maximiza-
tion (OTEM). 'is approach decouples the reconstruction
problem from the nonlinear kinetic fitting, at each iteration;
this allows using well-established least-squares optimization
procedures.
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In this paper, we present a new approach, based on
a probabilistic modeling of the direct reconstruction problem
and partly inspired by the OTEM method. Moreover, the
proposed method exploits an analytical approach to NLS
fitting of complex compartmental kinetic models, bymeans of
a set of auxiliary parameters, reducing computational errors
and approximations, and computing time.

Apart from the theoretical basis of its derivation, the
present work has two main differences, compared with the
original OTEM. One is the change from a kinetic model
defined as a system of ordinary differential equations in
terms of the kinetic constants [K1, k2, k3, k4] to an expo-
nential form described with respect to a set of auxiliary
variables [α1, α2, β1, β2] (12). 'e other one is the derivation
of an analytical expression for the convolution operation
between the blood input function and the tissue impulse
response function, avoiding the need for time-consuming
numerical approximations, giving the final model de-
scribed in (16). 'ese should lead to acceleration of the
convergence rate; moreover, the combination of the Feng
model with the exponential model resulted to bring com-
putational benefits.

As mentioned in Section 2.1, our ICM-based re-
construction approach is transparent to the choice of the
kinetic model used in (5), both in terms of its theoretical
formulation and its actual implementation. For this reason,
we thought it was out of the scope of the current work to in-
depth investigation of the speed-up factor provided by the
analytic formulation presented in (16); a separate work is
planned for evaluating how it could lead, by itself, to a speed-
up of about 100x when compared to conventional numeric
implementation.

'e use of the exponential formulation of the kinetic
model is not new in the field of PET kinetic models, and
its derivation is well described both in [3, 13]. However, its
use in the context of direct reconstruction is not well
documented. Kamasak et al. [13] used this convention in
the definition of their direct reconstruction method, but

the final model was restricted to work just for a specific
class of the kinetic model, while both the OTEM algorithm
and the proposed ICM-EM algorithm are designed to be
flexible and adaptable to a wide range of different appli-
cations (i.e., different tracers, anatomic region, or kinetic
model).

Simulation results allowed us to analyze the behavior of
the proposed method in different noisy conditions to test its
reliability even on noisy data. Moreover, by using simulation
data, we can try to determine the optimal number of iter-
ations to assess the kinetic parameter values.

'e results shown in Figure 2 regarding simulated data
analysis demonstrate that the ICM-EM algorithm gives
a good estimation of the kinetic parameters at any noisy
condition, for both the gray and the white matters; in fact,
the MSE values are rather low: MSE is <10−2 for all the
estimated parameters. From the comparison between Fig-
ure 2(a) and Figure 2(b) graphs, it results that the MSE from
the white matter region is quite similar to the one from the
gray matter. As far as the different noisy conditions, as
expected, the MSE value is lower for lower noise conditions
and it increases as the noise increases.

For what concerns the analysis of the minimum number
of iterations to execute to obtain a good parameters esti-
mation, from Figure 2 we can see that after a first transition
phase, that ends at about 10 #iter, the MSE value does not
undergo major changes.

Since we are using a nonlinear model with a high number
of parameters to be estimated, it should be possible that the
optimization ends up converging to local minima.We tried to
remove this uncertainty by repeating simulations for different
initial values of the parameters; the results obtained were each
time very similar to the ones shown in Figure 2.

'e normalized log-likelihood normLn evaluated on the
simulated data, as it is shown in Figure 3, demonstrates that
the ICM-EM algorithm has a good convergence rate at any
noisy condition. Moreover, as it is better shown in the
zoomed part of the graph, the convergence rate is lower in
noisier conditions; it was an expected result. From Figure 3,
we can deduce that about ten direct iterations can be suf-
ficient for guaranteeing the convergence.

As an example of parametric maps and images re-
construction results, Figures 4 and 5 show the results ob-
tained with ten direct iterations; from the resulting
parametric and reconstructed images, it is evident that ten
iterations seem to be enough for obtaining a good estimation
of parameters and images reconstruction. Only the k4
parametric map appears quite noisy, not allowing to discern
well the gray matter from the white matter; it is mainly due
to the low values of the real k4, and to the small difference
between the gray and white matter real k4 (Table 1).
However, we need to take into account how, with a limited
observation duration (40 minutes in the present study),
parameters with very low values, as k4, are not actually
observable. Our choice for the acquisition length was meant
to mimic the protocol used in common clinic brain dynamic
scans, while the choice of a very low but nonzero k4 value
had the intention to model some uncertainty around the
hypothesis of irreversible tracer conventionally used for the
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brain [18F]FDG kinetic modeling. Given a simulated dataset
generated with a 4-k compartmental model, we decided to
use the same model also in data fitting, being aware of the
unreliability of the k4 map estimate.

In this work, we applied the ICM-EM algorithm on
clinical data, coming from six normal subjects; it allowed us
to perform a preliminary and simple statistics on resulting
data for evaluating the goodness of the method.

'e results shown in Figure 6 are relevant to the esti-
mated kinetic parameters evaluated on clinical data for gray
and white matter regions. From the figures, we can conclude
that the estimated parameters values are quite consistent
especially for the number of iterations greater than ten.

'e standard deviation in the figures shows the kinetic
parameters variability; the subjects enrolled in the study

were diagnosed without brain pathologies, so we could
suppose that the variability obtained was mainly due to the
‘biological’ variability as well as to the estimation method.

As it was demonstrated on simulated data, also on
clinical data (Figure 7), the normalized log-likelihood
normLn at about ten iterations seems to have reached
convergence.

'e parametric maps shown in Figure 8 are obtained
from a subject’s data, reconstructed with 10 direct iterations.
Differently from the ROIs analysis, the maps allow high-
lighting the geometric distribution of each kinetic param-
eter, giving an overall spatial vision of the tissue metabolic
behavior; however, due to the point-to-point analysis of the
kinetic curves, the maps result very noisy, especially for the
microparameters (K1, . . . , k4, fv).
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As previously discussed, k4 maps appear very noisy and
with values very close to zero, for any anatomic region. 'is
supports the assumption that a kinetic model with three rate
parameters is more suitable to describe the behavior of the
[18F]FDG tracer in the brain, and the nonobservability of
too-low-valued parameters with a 40-minute scan. To be
consistent with the simulation study and to be as general as
possible in our testing, we decided to keep using a 4-kmodel
for the clinical data sets, too: in this case, the negligible value
of k4 should not be considered in the evaluation of metabolic
behavior.

'e focus of this work was to propose and test a 4D
reconstruction method for direct parametric maps estima-
tion, and its test on a small number clinical cases has to be
seen just as a showcase of its behavior. A proper study of the
quality of the estimated maps in a clinical setting, which is
indeedmore dependent on the correct choice of themodel to
which our method is transparent, should be the focus of
a future work, based on a wider number of clinical cases.

'e results shown in Figure 9 are relevant to the tem-
poral behavior of the reconstructed images from a single
subject data. 'e example reconstructed PET images shown
for simulated (Figure 5(b)) and clinical data (Figure 9(b)) are
obtained after ten iterations, as from the previous analysis it
seems that 10 should be a sufficient number of iterations for
estimating kinetic parameters with the ICM-EM algorithm.
However, it is worth to note that a characteristic of the direct
reconstruction algorithms, and in particular the ICM-EM
algorithm just as it is conceived, is that the reconstruction
noise no longer increases with the number of iterations, as it
happens on conventional iterative reconstruction algo-
rithms. So, increasing the number of iterations should not
worsen the images quality and the only downside should be
the computation time.

For [18F]FDG, the clinically relevant parameter is nor-
mally the macroparameter Ki; this is usually estimated using
linearized Patlak-based graphical methods [18, 19, 31, 32].
'is is done especially because using linear models is much
easier and robust. However, only macroparameter estimation
may not be sufficient to describe all the details of the met-
abolic process under investigation.

On the other hand, microparameter estimate gives ad-
ditional and detailed information about the phenomenon
that is being studied. Our proposed method allows the es-
timation of microparameters and the derivation, from them,
of the macroparameter Ki. In this work, we did not perform
the comparison of the Ki parameter estimated with our
method and the Patlak-based methods because, in our view,
it goes beyond the main purpose of this work.

5. Conclusion

In this work, we proposed and tested a direct parametric
image reconstruction algorithm from dynamic PET data.
'is proposed method was tested on simulated and clinical
data.

Working with simulations, we analyzed the behavior of
the proposed method under different noisy conditions, to
test its reliability even on noisy data; this analysis led to the

conclusion that the ICM-EM algorithm gives a good esti-
mation of the parametric maps in any noisy condition.

By analyzing simulation results, we also tried to de-
termine the optimal number of iterations needed to assess
the kinetic parameter values properly, and we ended up
verifying that the algorithm can deal with almost every noisy
condition in just about ten iterations.

We applied the ICM-EM algorithm to clinical data,
coming from six normal subjects; the results obtained seem
promising for further studies.
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