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1 | INTRODUCTION

Modern radiation therapy
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Abstract

The purpose of this study was to develop a predictive model for patient-specific
VMAT QA results using multileaf collimator (MLC) effect and texture analysis.
The MLC speed, acceleration and texture analysis features were extracted from
106 VMAT plans as predictors. Gamma passing rate (GPR) was collected as
a response class with gamma criteria of 2%/2 mm and 3%/2 mm. The model
was trained using two machine learning methods: AdaBoost classification and
bagged regression trees model. GPR was classified into the “PASS” and “FAIL”
for the classification model using the institutional warning level. The accuracy of
the model was assessed using sensitivity and specificity. In addition, the accu-
racy of the regression model was determined using the difference between
predicted and measured GPR. For the AdaBoost classification model, the sen-
sitivity/specificity was 94.12%/100% and 63.63%/53.13% at gamma criteria of
2%/2 mm and 3%/2 mm, respectively. For the bagged regression trees model,
the sensitivity/specificity was 94.12%/91.89% and 61.18%/68.75% at gamma
criteria of 2%/2 mm and 3%/2 mm, respectively. The root mean square error
(RMSE) of difference between predicted and measured GPR was found at 2.44
and 1.22 for gamma criteria of 2%/2 mm and 3%/2 mm, respectively. The promis-
ing result was found at tighter gamma criteria 2%/2 mm with 94.12% sensitivity
(both bagged regression trees and AdaBoost classification model) and 100%
specificity (AdaBoost classification model).

KEYWORDS
gamma prediction, machine learning, patient-specific VMAT QA

escalation."® VMAT is performed by varying the dose
rate, gantry speed, and multileaf collimator (MLC) posi-

such as tion during gantry rotation. Before beam delivery, the

volumetric-modulated arc therapy (VMAT), have been
clinically used to achieve radiation therapy goals. VMAT
is one of the most common techniques used to treat
cancer patients given its local control, ability to pre-
vent dosage to normal tissue, and the ability for dose

medical physicist should ensure the linear accelerator
machine (linac) can deliver the dose or beam corre-
sponding to the prescribed plan, namely conducting
patient-specific quality assurance (QA). Patient-specific
QA can be performed with different methods such as
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measurement-based with a phantom, electronic portal
imaging device (EPID)-based dosimetry with or without
a phantom, and log-file analysis where information is
directly retrieved from the linac.

The agreement between beam delivery and dose
calculation in treatment planning system (TPS) can
be determined by using various methods such as
gamma analysis®’ dose difference? distance-to-
agreement (DTA)?'0 and dose—volume histogram
(DVH) analysis''~'® in 3D dose distribution. Gamma
analysis is shown as the widely used method to deter-
mine agreement by setting the criteria of distance and
dose difference together. The results of an agreement
are shown as gamma passing rate (GPR), which is the
ratio between the number of measurements passing
(i.e., meeting the criteria) to the total number of mea-
surements. American Associated Physics in Medicine
Task Group No. 218 (AAPM Task Group No. 218)'*
recommended using gamma analysis to evaluate
patient-specific QA with gamma criteria of 3%/2 mm for
general purpose and tighter criteria for detecting subtle
regional errors. The practical drawbacks of patient-
specific QA have been reported,’>'® such as time-
consuming measurement, resource-intensive, patient
scheduling impact, repeated measurement in case of
fail QA. To solve the drawback of patient-specific QA,
many publications have developed a model-based to
predict GPR results with different purposes; to reduce
the iterative process of patient-specific QA,'%?0 the
possibility of replacing the traditional QA process.’

One of the significant factors that impact the patient-
specific VMAT QA results is the plan complexity. A plan
that contains higher complexity may produce more
uncertainty in beam delivery and result in a lower GPR.
This complexity is caused by the monitor unit (MU),
deviation of the beam intensity, leaf position and tra-
jectory, and aperture area. Many research groups have
proposed a score to determine the plan complexity.
For example, the modulation index (MI) was the first
complexity score introduced by Webb et al?? It was
used to determine the beam complexity based on the
mean and standard deviation (SD) of the beam fluence.
McNiven et al23 introduced the modulation complexity
scores (MCS) calculated from the variability of leaf posi-
tions, aperture area between segments, and segment
weight.

In addition, the correlation between beam complexity
scores and QA results were investigated. Rajasekaran
et al?* evaluated the correlation between beam com-
plexity matrices and GPR using commercial diode
arrays. The global and local gamma indexes showed
a weak correlation to the MCS. However, Park et al?°
modified MI based on the speed and acceleration of
MLC movement, and the correlation between modi-
fied MI and QA results was determined. The resulting
GPR of patient-specific VMAT QA were positive. A
similar finding was demonstrated by Masi et al2%; the

high-intensity modulation involved in the MLC move-
ments and frequent use of small or irregular fields
can affect the beam delivery accuracy. Wang et al?’
evaluated the correlation between GPR and the IMRT
plan’s complexity due to MLC position errors. The
observed susceptibility was independent of the deliv-
ery technique. Park et al?® determined a new metric
of MLC speeds and accelerations to predict the plan
delivery accuracy of VMAT, with strong correlations to
VMAT delivery accuracy. Park et al?? also studied the
correlation between image textures of planned fluences
and GPR measured from MapCHECK2 and ArcCHECK
dosimeters, demonstrating that image textures strongly
correlated with the global GPR. Thus, image textures
from planned fluence can estimate the VMAT deliv-
ery accuracy without processing the patient-specific
QA.

This work proposes a method for predicting patient-
specific VMAT QA results in head and neck patients
based on the features extracted from MLC patterns
and the fluence map from the plan using a machine
learning algorithm. This method improved the treatment
planning process using an additional quick step for plan
quality assessment. The predictive model of patient-
specific VMAT QA results in head and neck patients
were developed using historical GPR of clinical EPID
dosimetry without a phantom. The supervised learning
features were directly extracted from the treatment plan,
including MLC patterns from both banks and the 2D
fluence map generated from each delivery arc. The
ensemble of trees machine learning in classification
and regression models were tested to determine the
optimal predictive model based on sensitivity and speci-
ficity scores in the testing environment. The proposed
method will reduce the risk of the re-optimization
planning process if the plan fails the patient-
specific QA by identifying the failure results prior to
measurement.

2 | MATERIAL AND METHODS

21 | Clinical data collection

One hundred and six VMAT plans (a total of 268 arcs)
of the head and neck were randomly collected over a
time period from 2018 to 2019 from a single center. All
plans were treated with 6 MV photons. Table 1 shows
the plan information. The simultaneous integrated boost
(SIB) technique was used with different dose prescrip-
tions according to the staging and type of tumor. Dose
prescription can be categorized into six prescription
protocols. The first protocol was prescribed with 70 Gy
(2.12 Gy x 33 fractions) for a gross tumor, 59.4 Gy
(1.8 Gy x 33 fractions) for high-risk nodes, and 54 Gy
(1.64 Gy x 33 fractions) for low-risk nodes. The second
protocol was prescribed with 70 Gy (2.12 Gy x 33
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TABLE 1 Summary of the randomly selected VMAT head and
neck plans used

Tumor region (n = plan)

Nasopharynx (n = 84)
Supraglottic (n = 6)

Floor of mouth (n = 2)
Tongue (n = 2)

Base of tongue (n = 2)
Neck nodes (n = 2)
Tonsil (n = 2)

Glottis and thyroid (n = 2)
Thyroid (n = 2)

Buccal (n = 2)

Dose prescription (n = plan)

First protocol (n = 74)
Second protocol (n = 18)
Third protocol (n = 8)
Fourth protocol (n = 2)
Fifth protocol (n = 2)
Sixth protocol (n = 2)
Total (n = 106)

fractions) for a gross tumor and 59.4 Gy (1.8 Gy x 33
fractions) for high-risk nodes. The third protocol was pre-
scribed with 70 Gy (2.12 Gy x 33 fractions) for a gross
tumor, 66 Gy (2 Gy x 33 fractions) for high-risk nodes,
59.4 Gy (1.8 Gy x 33 fractions) for intermediate-risk
nodes, and 54 Gy (1.64 Gy x 33 fractions) for low-risk
nodes. The fourth protocol was prescribed with 70 Gy
(2 Gy x 35 fractions) for a gross tumor and 59.5 Gy
(1.7 Gy x 35 fractions) to high-risk nodes. The fifth pro-
tocol was prescribed with 70 Gy (2 Gy x 35 fractions)
for a gross tumor and 63 Gy (1.8 Gy x 35 fractions) for
high-risk nodes. The sixth protocol was prescribed with
56 Gy (2 Gy x 28 fractions) for a gross tumor. The range
of arc numbers for the VMAT plan was 2—4 arcs per
plan.

2.2 | Linac, treatment planning system,
and EPID-based dosimetry

Patient-specific VMAT QA was performed for all plans
before treatment using an EPID dosimetry technique. All
selected plans were delivered with a TrueBeam linear
accelerator (Varian Medical Systems, Palo Alto, CA). The
planned 2D dose distribution at the EPID level (source—
imager distance = 100 cm) was generated using Portal
Dose Image Prediction (PDIP) from the Eclipse TPS
(Version 13.6, Varian Medical Systems, Palo Alto, CA).
The beam delivery data as an integrated EPID image
per arc was collected from aSi-1000 EPID, a spatial res-
olution of 1024 x 768 pixels with a pixel size spacing of
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0.39 mm. These measured EPID images were then used
to compare the planned EPID images generated from
PDIP in TPS using the 2D gamma evaluation method. In
this study, gamma evaluation was determined using two
sets of criteria based on recommendations of AAPM
Task Group No. 218."* The first criteria was 2%/2 mm
with a 10% global aperture threshold for detecting sub-
tle regional errors, and the second criteria was 3%/2 mm
with a 10% global aperture threshold for general pur-
pose. The outcome of this comparison was GPR.

2.3 | Overall process and feature
extraction

Figure 1 demonstrates the process used in this study.
There were 106 VMAT of head and neck plans ran-
domly retrieved. Eighty percent of the total plans (214
arcs) were used as a training dataset and the remaining
20% of the total plans (54 arcs) were used as the
testing dataset. DICOM-RT plan was used to extract
the features, including leaf speed, leaf acceleration,
and fluence texture. These features were set as the
predictor, and the GPR related to the plan was set
as the response. The input from extracted features
and corresponding GPR were used for generating
the predictive model. The evaluation method was per-
formed to determine the accuracy of the prediction
model using a testing dataset. All processes were
implemented in MATLAB software version 2019b (The
Mathworks, Inc, Natick, MA) with machine learning Tool-
box 11.6 (classification learner and regression learner
application).

Table 2 shows the list of features used for training
the model that can be classified into two main groups:
(1) features of leaf speeds and accelerations and (2)
texture analysis from the fluence map. Leaf speed and
acceleration were calculated according to the study of
Park et al. ° Leaf speed and acceleration can be calcu-
lated using Equations (1) and (2), respectively.

Leaf; + Leaf; 4

Leaf speed; = Time
j

(1)

Leaf; is the position of the leaf at the ith CP, and
Time; is the time between the ith CP and (i+1)th CP In
this study, the time between CP was 0.424 s, which was
calculated from the relation between gantry speed of
4.8 deg/s and the interval CP of 2.0341" (178 CPs/full).

Leaf speed; + Leaf speed;, 1

Leaf acceleration; = -
Time;

2)

The leaf speed and acceleration’s extracted features

were maximum (Max. LS/LA Bank A, Max. LS/LA Bank

B), mean (Mean. LS/LA Bank A, Mean. LS/LA Bank B),

standard deviation (SD LS/LA Bank A, SD. LS/LA Bank
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FIGURE 1 Flow chart diagram for this study
TABLE 2 Summary of the features used for this study more than 200 mm/s? was observed in VMAT plans of

Leaf speed and acceleration (Bank A and B)

1) Max. LS Bank A, Max.LS Bank B

2) Mean LS Bank A, Mean LS Bank B
3) SD.LS Bank A, SD. LS Bank B

4) LSp4 Bank A, LSy4 Bank B

5) LS,.g Bank A, LS4.g Bank B

6) LSg.1» Bank A, LSg.1, Bank B

7) LS45.16 Bank A, LS1,.4¢ Bank B

8) LS16.00 Bank A, LS4g.00 Bank B

9) Max. LA Bank A, Max. LA Bank B
10) Mean LA Bank A, Mean LA Bank B
11) SD. LA Bank A, SD. LA Bank B

12) LAg.40 Bank A, LAg 40 Bank B

13) LA4o.80 Bank A, LA4q.g0 Bank B
14) LAgg.129 Bank A, LAgg.120 Bank B
15) LA120.160 Bank A, LA129.160 Bank B
16) LA1g0-200 Bank A, LA4gg.000 Bank B
Texture analysis

17) Contrast

18) Correlation

19) Energy

20) Entropy

21) Homogeneity

Abbreviations: LA, leaf acceleration; LA, 1_,., leaf acceleration fraction at range
between n1 to n2 mm/s?; LS, leaf speed; LS, 1_,., leaf speed fraction at range
between n1 to n2 mm/s; Max., maximum; SD, standard deviation.

B), and a fraction of leaf speed and acceleration in dif-
ferent ranges. Since no leaf speed more than 20 mm/s
was observed in VMAT plans of this study, the fraction
of leaf speed was counted from 0 to 4 mm/s (LS4 Bank
A, LS4 Bank B), from 4 to 8 mm/s (LS,.g Bank A,LS,.g
Bank B), from 8 to 12 mm/s (LSg_1» Bank A, LSg_1, Bank
B),from 12 to 16 mm/s (LS4,.4¢ Bank A,LS,_15 Bank B),
and from 16 to 20 mm/s (LS4g.20 Bank A, LS50 Bank
B). Similar to leaf speed, since no leaf acceleration

this study, the fraction of leaf acceleration was counted
from 0 to 40 mm/s? (LAg.4o Bank A, LAy, Bank B),
from 40 to 80 mm/s? (LA4g.go Bank A, LA4q g0 Bank B),
from 80 to 120 mm/s? (LAgo.129 Bank A, LAgg.120 Bank
B),from 120 to 160 mm/s2 (LA120_160 Bank A, LA120_160
Bank B), and from 160 to 200 mm/s? (LAgg.200 Bank A,
LA+g0-200 Bank B). Park’s method®' was implemented
to generate a gray-level co-occurrence matrix (GLCM)
for texture analysis. The MLC data and MU for each
control point were reconstructed using the integrated
intensity fluence map by accumulating all control point
fluence maps, then GLCM was generated for each arc.
In this study, the particular displacement distances (d)
of 1 pixel, and four angles (6) of 0°,45°,90°, and 135°
were used to calculate the GLCM. The texture analysis’s
extracted features were contrast, correlation, energy,
entropy, and homogeneity.

Leaf speed and acceleration were collected as the
predictor for this study because a previous study by
Park et al?° showed a strong correlation of leaf speed
and acceleration to GPR with a range between —0.458
to —0.511 for leaf speed fraction and —0.225 to 0.477
for leaf acceleration fraction. Additional features col-
lected in this study were texture analysis parameters
because another study by Park et al?' showed a strong
correlation in the range of —0.475 and 0.213. Only
displacement distances (d) of 1 pixel were used in this
study because a previous study?' showed the best
correlation at 1 pixel.

The average and SD of features used in this study are
shown in Table 3.

2.4 | Predictive model generation

2.4.1 | Data preparation

The training model dataset included 21 features (16 fea-
tures from leaf speed and acceleration parameters and
5 features from texture analysis parameters) used as the
predictors. The class of GPR was used as the response.
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The model was separated into two different gamma cri-
teria; 2%/2 mm with a 10% threshold and 3%/2 mm with
a 10% threshold. Cross-validation with five folds was
used to protect against the overfitting effect.

The model was trained using two machine learning
methods: classification and regression. For the classi-
fication model, GPR was classified into the “PASS” and
“FAIL”using the institutional warning level. Per the AAPM

TABLE 3 Mean and SD of features used for this study

Features Mean + SD

Max. LS Bank A
Mean LS Bank A

19.59 + 0.38 mm/s
10.97 + 1.04 mm/s

SD.LS Bank A 7.18 + 0.20 mm/s
LSq.4 Bank A 0.63 + 0.07
LS,.g Bank A 0.09 + 0.03
LSg.1» Bank A 0.05 + 0.01
LS4, .16 Bank A 0.03 + 0.01
LS+6.00 Bank A 0.19 + 0.05

Max. LS Bank B
Mean LS Bank B

19.59 + 0.38 mm/s
11.36 + 1.03 mm/s

SD.LS Bank B 7.27 + 0.20 mm/s
LSy.4 Bank B 0.60 + 0.07
LS,.g Bank B 0.09 + 0.03
LSg.1» Bank B 0.05 + 0.01
LS4, .4¢ Bank B 0.03 + 0.01
LS46.00 Bank 0.21 £ 0.05

46.94 + 0.87 mm/s?
15.63 + 1.01 mm/s?
13.24 + 1.06 mm/s?

Max. LA Bank A
Mean LA Bank A
SD. LA Bank A

LAgo Bank A 0.56 + 0.09
LA40.50 Bank A 0.10 + 0.04
LAgo.120 Bank A 0.04 + 0.01
LA120 160 Bank A 0.09 + 0.03
LA+60-200 Bank A 0.21 + 0.04

46.90 + 0.87 mm/s?
15.60 + 1.01 mm/s?
13.59 + 0.94 mm/s?

Max. LA Bank B
Mean LA Bank B
SD.LA Bank B

LAg.40 Bank B 0.56 + 0.09

LA40.50 Bank B 0.10 + 0.04

LAgo.120 Bank B 0.04 + 0.01

LA120.160 Bank B 0.08 + 0.03

LA160-200 Bank B 0.21 +0.05

Contrast 27,018.56 + 3,982.25
Correlation —0.01 £ 0.02

Energy 6.08 x 1075 +2.71 x 1075
Entropy 1.50 + 0.31

Homogeneity 0.03 + 0.01

Task Group 218 recommendation, the tolerance levels
of the patient-specific QA results were set to 95% GPR
for the 3%/2 mm criteria® However, in our clinical expe-
rience, most of the patient-specific VMAT QA in the
head and neck seldom exceeded the recommended tol-
erance level. Therefore, we set the institutional warn-
ing level for patient-specific VMAT QA in the head and
neck using average GPR from the previous 657 portal
dosimetry measurements, including 214 portal dosime-
try measurements from training dataset in our institute.
Selecting the average GPR for the institutional warn-
ing level forces the system to have high error detec-
tion sensitivity. In the training process, this warning level
intends to collect the failure population approximately
50%, which can increase the model sensitivity. The insti-
tutional warning level was found at 93.70% and 96.53%
for the 2%/2 mm and 3%/2 mm criteria, respectively. If
the measured GPR exceeds the institutional warning
level, the data will be labeled “1” or “PASS.” On the other
hand, the measured GPR is lower than the institutional
warning level; the data will be labeled “0” or “FAIL.” In
training and testing dataset, the abnormal GPR (out-of-
control) was removed from the dataset using statistical
process control* to improve the model accuracy. The
lower control limit from I-chart was used to determine
the out-of-control GPR, which can be calculated using
Equation (3):

lower control limit = center line — 2.66 - MR, (3)

where the center line is averaged GPR, and mR is mov-
ing range can be calculated using Equation (4):

1 n
D 1% =Xl 4)

n_1i:2

mR =

where n is the measurement total number, and x is indi-
vidual GPR.

From our QA measurements with portal dosimetry, the
lower control limit was calculated, and found at 87.31%
and 92.69% for gamma criteria 2%/2 mm, and 3%/2 mm,
respectively.

Five out-of-control plans were removed from the train-
ing and testing dataset with GPR less than the lower
control limit for both gamma criteria. The population of
the pass and fail the institutional warning level in the
training dataset can be summarized as follows: for the
gamma criteria of 2%/2 mm with a 10% threshold, the
pass and fail the institutional warning level was 49.53%
(106 arcs) and 50.47% (108 arcs), respectively; for the
gamma criteria of 3%/2 mm with a 10% threshold, the
pass and fail the institutional warning level was 57%
(122 arcs) and 43% (92 arcs), respectively. The aver-
age GPR for the training dataset was 96.53% + 1.90%
for gamma criteria of 3%/2 mm, and 93.50%+2.49% for
gamma criteria of 2%/2 mm.
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2.4.2 | The ensemble of trees model

Our study proposes using only feature extracted from
MLC effect and texture analysis for training the predictive
model; the ensemble of the trees model in classification
and regression methods was selected to train the model
because they showed good performance results for the
less feature used. The AdaBoost (adaptive boosting)
was used for the classification method and fine-tune with
the following hyperparameters; learning rate = 0.1, the
number of learners = 500. For the regression method,
the bagged ensemble of regression trees was used and
fine-tune with the following hyperparameters; learning
rate = 0.1, the number of learners = 500, minimum leaf
size = 8.

2.5 | Model accuracy

In this study, model accuracy was investigated using
the testing dataset. The population of the pass and
fail the institutional warning level in the testing dataset
can summarize as follows: for the gamma criteria of
2%/2 mm with a 10% threshold, the pass and fail the
institutional warning level were 68.52% (37 arcs) and
31.48% (17 arcs), respectively; for the gamma criteria
of 3%/2 mm with a 10% threshold, the pass and fail the
institutional warning level was 59.26% (32 arcs) and
40.74% (22 arcs), respectively. The average GPR for
testing dataset was 96.53%+1.30% for gamma criteria
of 3%/2 mm, and 93.76%+3.12% for gamma criteria of
2%/2 mm.

The model accuracy was investigated in terms of
sensitivity and specificity. The sensitivity and specificity
scores were calculated as shown in Equations (5) and
(6), respectively. The agreement of failing the institu-
tional warning level between the prediction and mea-
surement was identified as a true positive (TP), while
the disagreement was identified as a false positive
(FP). The agreement of pass the institutional warning
level between the prediction and measurement were
identified as true negative (TN), while disagreement
were identified as a false negative (FN).

e TP
Sensitivity (%) = m x 100%, (5)
Specitivity (%) = % % 100%. (6)

The sensitivity represents the probability of the
model to detect a failure warning level. Alternatively, the
specificity represents the probability of the model to
detect a pass warning level. The sensitivity and speci-
ficity were also determined for the regression model;
however, the model results were predicted as the GPR
value. Hence, GPR was classified as a pass or fail the

institutional warning level before calculation sensitivity
and specificity using the institutional warning level as
explained in the predictive model generation session.
In addition, the accuracy of the GPR prediction in the
regression model was determined using two metrices;
the difference between prediction and measurement
QA results and root mean square error (RMSE).

3 | Results

The feature importance was also determined as shown
in Table 4. For the AdaBoost classification model, the
five most important features at gamma criteria 3%/2 mm
were energy, LA1g0.200 Bank A,LS45.46 Bank B, Mean LS
Bank A, and Mean LA Bank B; the five most important
features at gamma criteria 2%/2 mm were LS, 4 Bank B,
LAg.49 Bank A, entropy, LS 1546 Bank B, and homogene-
ity.

For the bagged regression tress model, the five most
important features at gamma criteria 3%/2 mm were
LA460-200 Bank A, SD. LA Bank B, LS;.g Bank B, Mean
LS Bank B,and LA4gg_209 Bank B; the five most important
features at gamma criteria 2%/2 mm were LSy 4 Bank B,
Mean LA Bank A, LAg_49 Bank A, entropy, and LA460.200
Bank B.

3.1 | Model accuracy

Table 5 summarizes the results of the sensitivity and
specificity of the testing dataset for the classification
and regression models with different gamma criteria
(2%/2 mm with a 10% threshold and 3%/2 mm with a
10% threshold). For gamma criteria of 2%/2 mm with a
10% threshold, the sensitivity of 94.12% was observed
in both of bagged regression trees and AdaBoost clas-
sification model, while the highest specificity of 100%
was observed with the AdaBoost classification model.
For gamma criteria of 3%/2 mm with a 10% threshold,
the highest sensitivity of 68.18% was observed with
the bagged regression trees model, while the highest
specificity of 68.75% was observed with the bagged
regression trees model. Figures 2 and 3 show the
confusion matrix in a different model for gamma cri-
teria of 2%/2 mm and gamma criteria of 3%/2 mm,
respectively.

In addition, the accuracy of the bagged regres-
sion trees model was evaluated using the difference
between predicted and measured GPR. For gamma
criteria of 2%/2 mm, 85% of prediction is within +
3% differences, and the RMSE was 2.44. For gamma
criteria of 3%/2 mm, 98% of prediction is within + 3%
differences, and the RMSE was 1.22. Figure 4 shows
the relationship between measured and predicted GPR
for gamma criteria of 2%/2 mm and gamma criteria of
3%/2 mm.
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TABLE 4 Ranking of five relative feature importance for different models

AdaBoost classification

Bagged regression trees

Five feature rank

Gamma3%/2 mm

Gamma2%/2 mm

Gamma3%/2 mm

Gamma2%/2 mm

a A W0 N =

Energy

LA160-200 Bank A
LS45.1¢ Bank B
Mean LS Bank A
Mean LA Bank B

LSp4 Bank B
LAg.40 Bank A
Entropy
LS45.1¢ Bank B

Homogeneity

LA160-200 Bank A
SD.LA Bank B
LS4.¢ Bank B
Mean LS Bank B
LA460-200 Bank B

LSp4 Bank B
Mean LA Bank A
LAg.40 Bank A
Entropy
LA460-200 Bank B

TABLE 5 Summary of the sensitivity and specificity in the testing dataset for classification and regression models with two gamma criteria

(2%/2 mm with a 10% threshold, and 3%/2 mm with a 10% threshold)

Model AdaBoost classification

Bagged regression trees

gamma criteria Sensitivity

Specificity

Sensitivity Specificity

(TP/FAIL number)

2%/2 mm with a 94.12% 100%
10% threshold (16/17) (37/37)
3%/2 mm with a 63.63% 53.13%
10% threshold (14/22) (17/32)

(TN/PASS number)

(TP/FAIL number) (TN/PASS number)

94.12% 91.89%
(16/17) (34/37)
68.18% 68.75%
(15/22) (22/32)

4 | DISCUSSION

Most of the feature top-five ranking for both models and
both gamma criteria were found at leaf speed and accel-
eration parameters. Only three features extracted from
texture analysis (energy, entropy, and inhomogeneity)
were top-five ranking, implying that the feature extracted
from leaf parameters was more important than the fea-
ture extracted from texture analysis.

For the tighter gamma criteria of 2%/2 mm, a similar
feature top-five ranking was observed in the different
models; the first ranking was found the same feature
at LSy4 Bank B, while the feature of LAg4q Bank A,
entropy, LS15.1¢ Bank B were found at both models. The
agreement between the AdaBoost classification and
the bagged regression trees model at the first rank-
ing could imply that the LSy 4 Bank B was the strong
correlation between this feature and GPR results. The
feature importance results can demonstrate that feature
extracted from the MLC effect, and texture analysis was
enough to predict the QA results.

Note that the accuracy of the predictive model in
our study was improved by implementing the statistical
process control®? in the pre-training process. In the
pre-training process, the abnormal (out-of-control) GPR
values were removed from the training and testing
dataset using a lower control limit as calculated from
the statistical process control method.

The intention of this system is not to replace the
standard patient-specific QA, but rather to evaluate
robustness in order to minimize the likelihood of re-
optimization at a later phase of the treatment planning

and preparation process. Patient-specific QA measure-
ment should still be performed to confirm accuracy and
deliverability of the final optimized plan.

For the classification model, the setting of pass and
fail tolerance levels influence the model accuracy as
described by Valdes et al.'® and Tomori et al3® A
large number of fail tolerance levels (TP) can increase
the model accuracy to predict the fail tolerance level.
Because of the small data size in our study, the universal
tolerance level recommended by the AAPM Task Group
No. 218" cannot be used to classify the pass and fail
tolerance level. Therefore, our study used the institution
warning level to improve the model accuracy that can
collect more population in failing the institutional warning
level. Our study was compared with Jiaqi et al.'® that had
a large population. They observed the highest sensitiv-
ity using the random forest (RF) classification model with
66.67% sensitivity (4/6) by setting the action limit to 90%
GPR for the gamma criteria of 3%/2 mm, and 100% sen-
sitivity (5/5) by setting the action limit to 80% GPR for the
gamma criteria of 2%/2 mm. The highest specificity was
observed in the Poisson Lasso (PS) regression model
with 100% specificity (42/42) for the gamma criteria of
3%/2 mm, and 43/43 for the gamma criteria of 2%/2 mm.
Unlike in our study, the highest sensitivity of 68.18%
(15/22) was observed in the bagged regression trees
model by setting warning level at 96.53% GPR for the
gamma criteria of 3%/2 mm, and sensitivity of 94.12%
(16/17) was observed in both bagged trees regression
and AdaBoost classification model by setting warning
level at 93.7% GPR for the gamma criteria of 2%/2 mm.
The highest specificity of 68.75% (22/32) was observed
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AdaBoost classification model

True Class

Predicted Class

Bagged tree regression model
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FIGURE 2 Confusion matrix of AdaBoost classification and
bagged tree regression model for gamma criteria of 2%/2 mm

in the bagged regression trees model for the gamma cri-
teria of 3%/2 mm, and specificity of 100% (37/37) was
observed in the AdaBoost classification model for the
gamma criteria of 2%/2 mm. This difference could be
contributed by various factors such as the size of the
pass and fail the institutional warning level population in
the training and testing dataset, the difference in models
used for training, and GPR settings for classification.

Kruse et al>* indicated that the sensitivity to detect
error can be further explored using tighter criteria. Sim-
ilar to this study, the gamma criteria of 2%/2 mm has
greater sensitivity than the gamma criteria of 3%/2 mm
as demonstrated by the 94.12% and 68.18% sensitivity,
respectively, in the classification model, and 94.12% and
63.63% in the regression model.

The advantage of the predictive model in patient-
specific QA is it aids medical physicists to evaluate

AdaBoost classification model

True Class

Predicted Class
Bagged tree regression model

True Class

Predicted Class

FIGURE 3 Confusion matrix of AdaBoost classification and
bagged tree regression model for gamma criteria of 3%/2 mm

the risk of plan fails QA. If there is a risk, the medical
physicist can re-optimize the plan by changing a plan
parameter such as the MLC speed and acceleration,
and variance of intensity fluence (contrast, correlation,
energy, entropy, and homogeneity in texture analy-
sis). Additionally, the predictive model can reduce the
iterative process, that is, re-measurement if a failed
QA result, which can decrease the change in patient
scheduling delay as reported by Abolaban et al.'®
Moreover, the predictive model can be implemented in
the online-adaptive radiation therapy workflow because
the patient-specific QA process cannot be performed
before delivering the beam to the patient due to the
time limitations. In online adaptive radiation, only inde-
pendent dose calculations can be performed before
treatment. Other solutions, such as the transit dose
measurement®®>3® and log-file analysis,®” can be used
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FIGURE 4 Comparison between measured and predicted GPR
in gamma criteria of 2%/2 mm and gamma criteria of 3%/2 mm

to monitor the dose delivery during treatment. There is
no additional process to predict the risk of failed QA
results for online adaptive radiation therapy; therefore,
the predictive model can solve this problem.

As Vial et al®® reported, disagreement between the
EPID measurement and PDIP can be caused by vari-
ous variables such as differences between the profile
correction at the EPID calibration and PDIP, and if the
change in the beam spectrum from MLC attenuation
does not consider the PDIP. Therefore, this error may
affect the accuracy of the model. Vlades et al.!” also
validated a machine learning approach for predicting
GPR using different QA devices, particularly diode-
array detectors and portal dosimetry, and determined
that the accuracy of the prediction model at diode-array
detectors was greater than the accuracy at the portal
dosimetry (3% compared with 3.5% accuracy) because
the portal dosimetry had large disagreements in the
low-dose regions. The EPID measurement in this study

was performed using an integrated mode with rotated
gantry during measurement to consider the MLC error
from the sagging effect, and the IsoCal systems on the
Varian TrueBeam was used to correctimager sag during
gantry rotation as previously described by Gao et al 3°

5 | CONCLUSIONS

The feasibility of the developed model to predict patient-
specific QA of head and neck VMAT plans was demon-
strated based on the MLC effect and texture analy-
sis using a machine learning approach. The promising
result was found at tighter gamma criteria 2%/2 mm
with 94.12% sensitivity (both bagged regression trees
and AdaBoost classification model) and 100% speci-
ficity (AdaBoost classification model). This tool would
reduce the number of re-QA measurements or re-plan
during the patient-specific QA process. Future studies
will include an implementation method to control beam
complexity scores in the optimization and the dose cal-
culation process to reduce the risk of failed QA results.
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