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We introduce here a new class of invariants for MD trajectories based on the spectral moments pk(L) of
the Markov matrix associated to lattice network-like (LN) graph representations of Molecular Dynamics
(MD) trajectories. The procedure embeds the MD energy profiles on a 2D Cartesian coordinates system
using simple heuristic rules. At the same time, we associate the LN with a Markov matrix that describes
the probabilities of passing from one state to other in the new 2D space. We construct this type of LNs for
422 MD trajectories obtained in DNA–drug docking experiments of 57 furocoumarins. The combined use
of psoralensþ ultraviolet light (UVA) radiation is known as PUVA therapy. PUVA is effective in the
treatment of skin diseases such as psoriasis and mycosis fungoides. PUVA is also useful to treat human
platelet (PTL) concentrates in order to eliminate Leishmania spp. and Trypanosoma cruzi. Both are
parasites that cause Leishmaniosis (a dangerous skin and visceral disease) and Chagas disease, respec-
tively; and may circulate in blood products collected from infected donors. We included in this study
both lineal (psoralens) and angular (angelicins) furocoumarins. In the study, we grouped the LNs on two
sets; set1: DNA–drug complex MD trajectories for active compounds and set2: MD trajectories of non-
active compounds or no-optimal MD trajectories of active compounds. We calculated the respective pk(L)
values for all these LNs and used them as inputs to train a new classifier that discriminate set1 from set2
cases. In training series the model correctly classifies 79 out of 80 (specificity¼ 98.75%) set1 and 226 out
of 238 (Sensitivity¼ 94.96%) set2 trajectories. In independent validation series the model correctly
classifies 26 out of 26 (specificity¼ 100%) set1 and 75 out of 78 (sensitivity¼ 96.15%) set2 trajectories.
We propose this new model as a scoring function to guide DNA-docking studies in the drug design of
new coumarins for anticancer or antiparasitic PUVA therapy.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Quantitative Structure–Activity Relationship (QSAR) studies
unravel structural and physicochemical requirements for biological
activity in a great variety of compounds [1]. The classic QSAR
studies connect information of the chemical structure of the
molecule, expressed by means of numbers, with the biological
activity [2]. However, QSAR-like procedures are not restricted to
drugs and biological activity but other systems and properties, such
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as allergenic character of proteins, may be predicted [3–6]. One
special class of indices used in QSAR called Topological Indices (TIs)
are based on the concept of molecular graph; which indicates the
presence of vertices or nodes (atoms) and connections or edges
between nodes (chemical bonds) [7–10]. In the same way, the field
of application of TIs is, of course, not restricted to the chemistry of
low-molecular-weight compounds and extends to other branches
of sciences. In general, TIs of different types of graph representa-
tions or networks such as protein structure, gene polymorphisms,
metabolic networks, food webs or host–parasite networks,
internet, or social networks may be used. In these networks, amino
acids, nucleotides, enzymes, microorganisms, cerebral cortex
regions, web pages, social groups.etc, may play the role of nodes
and electrostatic interactions, mutations, metabolic reactions,
host–parasite relationships, brain region co-activations, links,
disease propagations.etc may play the role of edges [11–17]. For
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instance, the pseudo amino acid (PseAA) composition or PseAAC
method for calculation of protein TIs was originally introduced by
Chou to improve the prediction quality for protein subcellular
localization and membrane protein type [18], as well as for enzyme
functional class [19]. The PseAA composition can be used to
represent a protein sequence with a discrete model yet without
completely losing its sequence-order information. Ever since the
concept of Chou’s pseudo amino acid composition was introduced,
various PseAAC approaches have been stimulated for enhancing the
prediction quality of various protein features [20–29]. Owing to its
wide usage, recently a very flexible pseudo amino acid composition
generator, called ‘‘PseAAC’’ [30], was established at the website
http://chou.med.harvard.edu/bioinf/PseAAC/, by which users can
generate 63 different kinds of PseAA composition, including the
dipeptide components. The publication in the area has steadily
increased and, consequently, in the last years have appeared
in-depth reviews that could be useful for the readers of the present
manuscript [11,31–38].

Many authors prefer to use the term Quantitative Structure–
Binding affinity Relationship (QSBR) when one uses QSAR-like
procedures to predict drug–target binding affinity and 3D struc-
tural information [39]. Anyhow, the term QSBR has to be used
carefully to avoid confusion with Quantitative Structure–Biode-
gradability Relationships analysis [40,41]. In this work, we use
QSBR in the first sense. In any case, both approaches QSAR and
QSBR diverge in some degree in the type of measure (activity or
binding) and sometimes in how detailed manner we need to know
the chemical structure (2D or 3D) but both use essentially the same
algorithm. In addition, predicting drug activity we can use 3D drug–
target QSAR/QSBR models as scoring function to guide the search of
optimal drug–target interaction geometries in drug–target docking
studies [42–44]. Almost all QSAR/QSBR or other types of docking
scoring functions are aimed to predict protein–drug interactions.
For instance, Wang et al. [45] reported a comparative study of
eleven whereas Ferrara et al. [46] studied nine different docking
scoring functions all for protein–drug interactions.

Conversely, DNA–drug and RNA–drug dockings are generally
less investigated. In particular, we did not find a QSBR scoring
function for DNA–Furocoumarin docking. The furocoumarins are
a class of natural or synthetic compounds with very interesting
pharmacological properties [47], commonly used in the treatment
of skin diseases such as psoriasis and mycosis fungoides [48]. This
treatment called PUVA consists in a therapy that combines the use
of both chemicals and long-wave ultraviolet light (UVA) [49]. The
molecular basis of PUVA is connected with the highly specific
photo-damage in DNA of epidermal cells. This damage interferes
with the DNA replication, producing an inhibition of DNA synthesis
which reduces or blocks the cell duplication [50]. Although the
lineal furocoumarins (psoralens) are able to form the three adduct
types, the geometry of the angular ones (angelicins) only allows
them to form mono-adducts with the DNA. It is well known that the
side effects observed in PUVA therapy, such as skin photo-toxicity
and risk of skin cancer are strictly connected with the bi-functional
lesions in DNA [51]. Recently, Eastman et al. demonstrated the
effectiveness of PUVA treatment with the psoralen analogue called
amotosalen to inactivate the parasite Leishmania spp. in human
platelet (PLT) concentrates intended for transfusion. Leishmania
spp. are protozoans that cause skin and visceral diseases. Leish-
mania spp. are obligate intracellular parasites of mononuclear
phagocytes and have been documented to be transmitted by blood
transfusion. Both metacylic promastigotes and amastigotes were
extremely susceptible to photochemical inactivation by PUVA.
Promastigotes represent the infectious from the sand fly vector and
amastigotes are the form that grow in mononuclear phagocytes.
Thus, the PUVA of PLT concentrates inactivates both forms of
Leishmania that would be expected to circulate in blood products
collected from infected donors [52]. In addition, Gottlieb et al.
reported the inactivation of the blood-borne parasite Trypanosoma
cruzi (T. cruzi) by PUVA with 40-aminomethyl-4,50,8-trimethyl-
psoralen (AMT) in PLT concentrates [53]. The infectivity of the
parasite is eliminated at 4.2 J/cm2. The trypomastigote motility
continues for at least 16 h-post-treatment and is inhibited only
after much higher light doses. Isolation of total DNA from the
parasite cells after treatment in the presence of 3H-AMT indicated
that at the lethal UVA influence about 0.5 AMT adducts per kilobase
pairs occurred. These results suggest that this PUVA methodology
may eliminate blood-borne T. cruzi, the causative agent of Chagas
disease. More recently, Castro and Girones demonstrated that the
pathogen reduction system based on PUVA with amotosalen
presents a robust efficacy for inactivation of high doses of three
different strains of T. cruzi and offers the potential to make the PLT
supply safer [54]. The biological activity of these compounds is
normally studied by evaluating their capacity of forming an inter-
calated complex with DNA and their ability of photo-binding
through mono or bi-functional addition to the same macromole-
cule [55]. A traditional procedure to determine the photo-biological
and antiproliferative activity of furocoumarins measures ID50, the
UVA dose that reduces to 50% of the DNA synthesis in Ehrlich
Ascites tumor cells (EATC) in presence of tested compound at
certain concentration (18–20 mM). The protocols used in the
activity determination are heterogeneous, however the use of the
8-MOP as reference to express the activity is very common [56–58].

These facts point to the stability of DNA–drug complex as
a central factor in the activity of anticancer drugs in general
including furocoumarins. At the light of these facts Molecular
Dynamics (MD) of the DNA–drug complexes is central for drug
design towards PUVA therapy. Since the advent of bioscience with
the studies of Karplus et al. MD has become the by foremost well-
established, computational technique to investigate structure and
function of bio-molecules and their respective complexes and
interactions [59–61]. In addition, after a pioneer paper entitled ‘The
Biological Functions of Low-Frequency Phonons’ [62] published in
1977, a series of investigations into biopolymers from MD point of
view have been stimulated. These studies have suggested that low-
frequency (or terahertz frequency) collective motions do exist in
proteins and DNA that hold a very high potential to reveal the
profound dynamic mechanisms of many marvelous biological
functions in biological systems (see, e.g., [63–76] and a compre-
hensive review [77]). This kind of inferences has been later observed
by NMR [78], and been further used for medical treatments [79,80].
In view of this, to understand really the interaction mechanism of
drugs with proteins or DNA, we should consider not only the static
structures concerned but also the dynamical information obtained
by simulating their interactions through a dynamic process.

In this sense, it is of high relevance taking into account that the
previous non-covalent binding (in dark) between drug and DNA
has a strong influence on the subsequent photoreaction and
therefore on their biological activity [81]. Consequently, MD studies
of the DNA–drug complexes in furocoumarins and anticancer drugs
in general are of the major relevance. In this sense, it would be very
interesting to work with invariants that encode information about
the MD trajectories for the intercalation complexes of furo-
coumarins and anticancer drugs in general. The analysis of the MD
trajectories resulting from the integration of the equations of
motions in MD remains, however, the greatest challenge and
requires a great deal of insight, experience, and effort. In a recent
and very important work, Hamacher [82] proposed a new, theo-
retically sound, and versatile analysis procedure that provides
scientists with a semi-quantitative invariant measure to compare
various scenarios of their respective simulations.

http://chou.med.harvard.edu/bioinf/PseAAC
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However, using graphic approaches to study biological systems
can provide useful insights, as indicated by many previous studies
on a series of important biological topics. Graphs have been used to
study enzyme-catalyzed reactions [83–92], protein folding kinetics
[36], inhibition kinetics of processive nucleic acid polymerases and
nucleases [93–99], codon usage [100–102], base frequencies in the
anti-sense strands [103], and analysis of DNA sequence [104].
Moreover, graphical methods have been introduced for QSAR study
[2,11,105,106] as well as utilized to deal with complicated network
systems [11,38,107]. Recently, the ‘‘cellular automaton image’’
[108,109] has also been applied to study hepatitis B viral infections
[110], HBV virus gene miss-sense mutation [111], and visual anal-
ysis of SARS-CoV [112,113], as well as representing complicated
biological sequences [114] and helping to identify protein attributes
[115,116]. Several authors have used pseudo-folding lattice
Hydrophobicity–Polarity (HP) models to simulate protein folding
making simulations to optimize the lattice structure and resemble
real folding [117–124]. However, we can choose notably simpler
pseudo-folding rules to avoid optimization procedures and speed
up notably the construction of the lattice. In this sense, useful graph
representations of DNA, RNA and/or protein sequences have been
introduced by Nandy et al. [125–131], Gates [132], Leong and
Morgenthaler [133], Randic et al. [134] based on 2D coordinate
systems. We call these graph representations as sequence pseudo-
folding lattice networks (LNs) because they look like lattice struc-
tures and in fact, we are forcing a sequence to fold in a way that not
necessarily occurs in nature. In general, these LNs (as for other
graphs) can be numerically characterized with TIs. These TIs
describe the distribution of amino acids or nucleotides along the
sequence but also encode higher order information. Thus lattice
pseudo-folding TIs can be used in protein QSAR. Our group, have
used different MARCH-INSIDE TIs of pseudo-folding lattice-like
networks to predict diverse protein or DNA/RNA functions. For
instance, we have used stochastic pseudo-folding spectral
moments to predict ribonucleases [135] and dyneins [136]. In other
works, we used Markov chain pseudo-folding electrostatic poten-
tials to predict polygalacturonases [137] or human colon and breast
cancer biomarkers [138]. All these MARCH-INSIDE pseudo-folding
TIs can be calculated when we sum the respective indices for each
node of the graph. All the above-mentioned values were used
recently to predict mycobacterium promoters and compare entro-
pies, spectral moments, and pseudo-folding electrostatic potentials
[139]. The readers may see three recent reviews discussing the
applications ranging from graph of small molecules to graph or
network representation of protein sequences and 3D structure,
DNA sequences, RNA secondary structure, or human blood
proteome mass spectroscopy outcomes [11,38,140].

In any case, if we understand sequence as a type of input data we
need not limit the applications of the pseudo-folding lattice network
method to proteins, DNA or RNA sequences. Elaborating this line of
thinking, we have proposed pseudo-folding lattice network repre-
sentations of mass spectroscopy outcomes typical of blood proteome
samples containing many proteins. For instance we have constructed
lattice network representations for mass spectroscopy results
obtained from blood proteome samples typical of drugs causing
cardiotoxicity [141]. After calculation of the sum of the TIs of each
sample we used them to seek a new type of classifier. The model
connects TI values of the mass spectra of the blood proteome with
the probability of appearance of drug cardiotoxicity. This new type of
model was called Quantitative Proteome–Property Relationships
(QPPR) in analogy to QSAR or QSPR [142]. We have used these lattice
network TIs also to predict human prostate cancer [143].

The success of this strategy encouraged us to consider other
classes of sequence data and solve different problems. For instance,
the MD trajectories referred in previous paragraphs are time series
obtained from simulation runs that constitute another type of
sequential data. In any case, even if spectral moments of different
graphs have been successfully used in QSAR before [144–147] we
can see that spectral moments of an LN for MD trajectories have not
been explored. Consequently, we decided to study here these
indices to describe MD trajectories. In the present paper, we
introduce an LN representation for the study of MD trajectories. We
also obtain quantitative models able to differentiate furocoumarin
derivatives according to their antiproliferative activity and the
stability of the DNA–drug complex. The new model is also QSBR
that has potential applications as scoring function for DNA–furo-
coumarin docking studies.

2. Materials and methods

2.1. Model building of DNA–drug intercalation complexes

For our study we used the decanucleotide of sequence
d(CCGCTAGCGG) and the software application HyperChem [148],
a fragment of DNA with double helix in B form and sugars in 20-endo
form. This decanucleotide sequence has been used in different
studies concerning psoralens intercalation [149]. The structure of all
the compounds selected for DNA–drug interaction studies were
optimized using the interactive model building package of Hyper-
Chem [148]. The optimization of their geometries was carried out by
the semi-empirical quantum mechanics calculations with method
PM3 [150] using the Polak–Ribiere algorithm and the options
implemented by default in the mentioned package. Thus, the mini-
mized molecular structures were intercalated by hand approach in
the DNA fragment, using the HyperChem package and taking into
account the following experimentally demonstrated statements:

1. In the dark, the poly[dA-dT] poly[dA-dT] sequence in DNA is
the most favorable site for intercalation since the further
photoreaction takes place mainly on the 5,6 double bond of the
thymine [151]. So, the optimized molecules were inserted
among the thymine units in a parallel plane to the bases and,
according to our decision, in a halfway position (Fig. 1. Left).

2. The furocoumarins have two reactive sites, but after photore-
action, different types of cycloadducts can be formed: mono
(furan-side or pyrone-side) and di-adducts (the cross-link)
[152]. Although psoralens are able to form all the cycloadduct
types, angelicins form only mono-adducts owing to their
angular molecular structure. Keeping this in mind, for each
lineal molecule we modeled only one starting conformation,
for which the cycloadduct formation by either one or other
reactive site (furan or pyrone-side) is equally feasible from
a geometric point of view. For each angular molecule, we
decided to model two starting conformations, one for each
mono-adduct formation (for the furan-side that we named
as j-conformation and for the pyrone-side that we named as
c-conformation).

3. The stereochemistry of the furocoumarin adducts is cis–syn
[153,154]. Consequently, the molecules were oriented in such
a way that the intercalation complex favors mainly the forma-
tion of cycloadducts with this stereochemistry. In the case of
the furan-side, the stereochemistry syn means that the furan
O10 and the pyrimidine N1 are going to be on the adjacent
corners of the future cyclo-butane ring. For the pyrone-side, the
stereochemistry syn is defined as having the carbonyl-carbon
of the pyrone ring and the N1 of the pyrimidine on the adjacent
corners of the future cyclo-butane ring (Fig. 1, right).

On the other hand, some of the studied angular molecules
present ramifications in the C3 carbon that hindered us to model



Fig. 1. DNA–drug complex (A) and MD lattice network (B) used to calculate the pk(L) values.

L.G. Pérez-Montoto et al. / European Journal of Medicinal Chemistry 44 (2009) 4461–44694464
appropriately their j-conformation, due to steric problems with the
thymine ring. We also found steric impediments in the backbone of
the DNA when these ramifications are much bigger. In all these
cases, we decided to model several alternative starting conforma-
tions for which the steric effects were eliminated. For the majority
of the cases we just varied the insertion degree of molecule in the
DNA; in the most critical cases we also had to rotate the molecule
clockwise, see Figs. 1 and 2 and Table 1 for details.

Both, the displacement outwards DNA and the molecule rota-
tion were carried out in the halfway and parallel plane to the
nitrogen bases. In this sense, the geometric criterion used was the
relative distance (in the plane projection) between the geometric
centers of the double bonds (j or c bond for furocoumarins and 5,6
bond for the thymine) that will take part in the photo-addition and
the relative angle between them. In both Table 1 and Fig. 2, the
variations of these geometric parameters used to model the
j-conformations are represented in a simplified way. Taking these
aspects into consideration the notation of an MD trajectory is given
here as: m-[Bond/Dist./Ang.], where, m is the number of the
compound in Table 2 or Table 3, Bond¼ j, c, or j and c are the
chemical bonds susceptible to photo-addition in this position;
whereas Dist. and Ang. are the distance and angular intercalation
parameters, respectively (see Table 1).

2.2. Obtaining Monte Carlo MD energetic profiles

The DNA–drug docking molecular dynamics trajectories or
energetic profiles of all the starting intercalation complexes were
obtained by means of the Monte Carlo [155] method, using the
HyperChem package. In this sense, the force field AMBER94 of
molecular mechanics was used with distant-dependent dielectric
constant (scale factor 1), electrostatic and Van der Waals values by
default and cutoffs shifted with outer radius of 14 Å. All the
components of the force field were included and the atom type was
recalculated keeping their current charges. Finally, the simulation
was executed in vacuo at 300 K and 100 optimization steps
obtaining MD trajectories with 100 potential energy dEj (j¼ 1, 2, 3,
.100) values each. We obtained 21 MD trajectories for psoralens
and 154 MD trajectories for the 36 different angelicins. We also
analyzed 36 averaged MD trajectories for each angelicin taking the



Fig. 2. Modifications made to the j-conformations to avoid the steric impediments.
(Top) Decrease of the insertion degree of the molecule in the DNA. The relative distance
between the geometric centers of the double bonds takes discrete values of �1, �0.5, 0,
0.5 and 1 times the distance of a C–C bond. (Bottom) Decrease of the insertion degree
accompanied by a rotation clockwise of the molecule to a magnitude of 45� .
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average energy dEj(avg) for all the initial positions of one compound
at each one of the 100 steps. All these MD trajectories form a total of
21þ154þ 36¼ 211 MD trajectories. In addition, we analyzed other
211 MD trajectories (decoy trajectories) obtained as a random
deviation from each one of the previous 211 MD trajectories.

dEjðrndÞ ¼ dEj þ randomðj;maxðdEjÞ;minðdEjÞÞ (1)
Table 1
Representations for starting conformations used.
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These random MD trajectories contain 100 energy values
dEj(rnd) obtained with the random generator of Excel by adding
a random deviation term to each dEj within the max–min limits of
dEj for all the previous MD trajectories. The utility of these decoy
trajectories is to test the robustness of the method to deviations of
the MD trajectories selected. In total, we studied 422 MD trajec-
tories. The information about all these 422 MD trajectories
including pk(d) and pk(L) values relevant to this work was recorded
in the Supplementary material.
2.3. Markov spectral moments for 2D lattice representation
of DNA–drug MD trajectories

The MARCH-INSIDE approach is extended here to the study of
LN representations for MD trajectories obtained in DNA–drug
docking studies. The key of the method we propose is the
regrouping into four groups of the energy values dEs obtained for
different steps (s) of one MD trajectory after docking one drug with
DNA. These four groups characterize the deviation of the energy
value dEs from the average energy of the same DNA–drug complex
at other steps (MD-average); or the deviation from average energy
values of the same step for other drugs (step-average). First, the
values of energy for the MD profile of one DNA–drug complex is
placed in a Cartesian 2D space starting with the first energy value at
the coordinates (0, 0). We calculated coordinates of the successive
energy values using simple heuristic rules, in a similar manner than
it can be used for a DNA or protein sequences [136,138]:

a) Increases in þ1 the x axis; if dEs >MD-average and
dEs > step-average (rightwards-step) or:

b) Decreases in �1 the x axis; if dEs>MD-average and dEs< step-
average (leftwards-step) or:

c) Increases in þ1 the y axis; if dEs <MD-average and
dEs > step-average (upwards-step) or:

d) Decreases in �1 the y axis; if dEs<MD-average and dEs< step-
average (downwards-step).

Secondly, the method uses the matrix 1P, which is a squared
matrix to characterize the MD profile embedded into the lattice-
like graph. Please, note that the number of nodes (n) in the graph
may be equal or even smaller than the number of steps given to
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Table 2
Lineal furocoumarins (psoralens) and their aza-analogues used.

Z OO O

R3
R4R4´

R5´

R5

R8

c
h

Drug Z R3 R4 R5 R40 R50 R8 ID50
a Ref.b

1 C Me Me H Me H H 0.34 [35]
2 C H H OMe H H H 0.66 [30]
3 C H CH2OH H Me H OMe 0.84 [32]
4 C Me H H Me H OMe 0.89 [76]
5 C H H H H H OMe 1.00 [34]
6 C Me H H Me H H 1.01 [77]
7 C H H H Me Me H 1.26 [35]
8 C Me H H Me H Me 1.34 [77]
9 C H H H H H H 1.52 [78]
10 C Me H H Me Me H 1.79 [35]
11 C H CH2OH H Me H H 2.32 [32]
12 C H Me H H Me Me 27.6 [30]
13 N H H H Me H – 0.13 [34]
14 N H Me H H H – 0.14 [34]
15 N H H H Me Me – 0.18 [79]
16 N H H Me Me Me – 0.25 [34]
17 N Me Me H Me H – 0.67 [34]
18 N H Me H Me H – 0.68 [79]
19 N H H Me Me H – 0.97 [34]
20 N Me Me H Me Me – 1.83 [79]
21 N H Me H Me Me – 3.66 [79]

a The experimental antiproliferative activity in Ehrlich Ascites tumor cells
expressed as ID50 relative to 8-MOP.

b Ref.: References in which the activity of compounds was reported.
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obtain the MD profile. The same happens for amino acids or DNA
bases in the polymeric chain. Accordingly, the matrix 1P contains
the probabilities 1pij to reach a node ni moving throughout a walk of
length k¼ 1 from other node nj [139,141]:

pij ¼

�
1

D0j

�
,

�P
s˛j

dEs

�

Pn
m¼ s

ail,
�

1
D0s

�
,

�P
s˛j

dEs

� ¼
�

dEj

D0j

�
Xn

m¼ l

ail,

�dEl

D0s

� (2)

where, dEj is the sum of all energy values of the steps dEs that
overlap on the same node j. The parameter aij equals to 1 if the
nodes ni and nj are adjacent in the graph and equals to 0 otherwise.
The value D0j gives the geometric location of the node and repre-
sents the Euclidean distance between the node and the center of
coordinates. In Fig. 1 (bottom part) we depicted an example of LN
for an MD trajectory. Afterwards, it is straightforward to realize the
calculation of pk(L) values:

pkðLÞ ¼
Xn

i¼ j

kpijðdEsÞ ¼ TrðkPÞ ¼ Tr½ð1PÞk� (3)

2.4. Markov spectral moments of classic molecular
graph representations

Using MCM we can calculate these pk(d) values associated to the
electronic distribution in molecule of the drug (d). The theoretic
foundations of the method have been given in previous works, so we
do not detail it here but refer the reader to these works [156–158].
We can use pk(d) values in addition to the pk(L) values to describe
only the drug (not the MD trajectory). The pk(d) values are spectral
moments of the classic electronic Markov matrix (1P). These values
have been used in QSAR before and depend only on connections
(chemical bonds) between node (atoms) in the molecular graph and
the electronegativity (cj) of these atoms. The values pk(d) are
referred to atoms (nodes) in molecular graphs. These vectors are
elements of a Markov chain based on the stochastic matrix 1P,
which contains elements that describe the probabilities of transition
of electrons p1(i,j) from node (atom) i-th to, j-th.

pkðdÞ ¼
Xn

i¼ j

kpijðcÞ ¼ TrðkPÞ ¼ Tr
h
ð1PÞk

i
(4)

In order to ensure that the p1(i,j) values describe the probabili-
ties of transition of electrons from node (atom) i-th to, j-th we use
atmoic electronegativity values. At following, we give the formula
for both the transition probabilities (elements of the matrix) and
the atoms set entropy centrality measures.

1pijðcÞ ¼
dij,cjPn

k¼1
dik,ck

(5)

2.5. The dataset statistical analysis

In this study, we selected different furocoumarins and some of
their aza-analogues, whose antiproliferative activities in Ehrlich
Ascites tumor cells have been determined (Tables 2 and 3). We
obtained in total 422 MD trajectories for these compounds. We
constructed 422 LNs (one for each MD trajectory) transformed
them in a vector of 11 pk(d) values for the compound and 11 pk(L)
values for the MD trajectory (see previous sections). We grouped all
these 422 MD trajectories into two sets, one composed of MD
trajectories of complexes between DNA and active compounds
and the other composed of trajectories of active compounds with
no-optimal MD trajectories and/or trajectories of non-active
compounds. In general, compounds such as 40-MAP and the 4-
MBAP, with activities (ID50 relative to 8-MOP) of 0.13 and 0.14 are
considered as poorly active [57,58]. Keeping in mind all the above-
mentioned aspects, we classified the 57 compounds, compiled for
our dataset into two observed activity groups: 0 for the inactive
compounds (LD50� 0.1) and 1 for the active ones (LD50> 0.1).

QSBR studies were carried out to obtain models that allow us to
classify the furocoumarin derivatives in one of these two activity
groups. We selected Linear Discriminant Analysis (LDA) [159,160] to
fit the discriminant function as implemented in the LDA module of
the STATISTICA 6.0 software package [161]. We used forward-
stepwise algorithm for variable selection [162–164]. The strength of
the correlation was determined by the Canonical Regression Coef-
ficient (Rc) and the statistical significance of the LDA model was
determined with U-statistics (U) and the respective p-level (p). We
standardized all the variables included in the model in order to
bring it into the same scale. Subsequently, a standardized linear
discriminant equation that allows to compare their coefficients is
obtained [165]. We also inspected the percentage of good classifi-
cation, cases/variables’ ratios (r parameter), and number of vari-
ables to be explored to avoid over-fitting or chance correlation
[162,163]. The general form of this model is:

MD-score ¼
X10

k¼0

ak,pkðLÞ þ
X10

k¼0

ck,pkðdÞ þ b0 (6)

3. Results and discussion

Computational approaches, such as structural bioinformatics
[76,77], molecular docking [66,78,79], Monte Carlo simulated
annealing approach [80] and QSAR [50,81,82] can timely provide very



Table 3
Angular furocoumarins (angelicins) and their aza-analogues used.

Z O

R3
R4R5

O

R5´ R4´
R1

R6 c

j

Compd. Z R1 R3 R4 R5 R6 R40 R50 ID50
a Ref.b

22 O – COMe H H H H H <0.01 [80]
23 O – COPh H H H H H <0.01 [80]
24 O – CON(Et)2 H H H H H <0.01 [80]
25 O – CONH(CH2)2OH H H H H H <0.01 [80]
26 O – CONH(CH2)2OEt H H H H H <0.01 [80]
27 O – CONH(CH2)2NMe2 H H H H H <0.01 [80]
28 O – CON[(CH2)2OH]2 H H H H H <0.01 [80]
29 O – CON(CH2)2NMe H H H H H <0.01 [80]
30 O – CONH2 H H H H H 0.05 [80]
31 O – CON(CH2)2O H H H H H 0.06 [80]
32 O – CO2H H H H H H 0.07 [80]
33 O – CON(Me)2 H H H H H 0.07 [80]
34 O – CO2Me H H H H H 0.20 [80]
35 O – Me H H H H H 0.20 [81]
36 O – Me Me H H Me H 0.03 [35]
37 O – Me Me H H H H 0.35 [81]
38 O – CO2Et H H H H H 0.40 [81]
39 O – H H H H H H 0.55 [82]
40 O – H Me H H H H 0.55 [35]
41 O – H Me H H CH2OMe Me 0.60 [81]
42 O – H H H H H Me 0.80 [82]
43 O – H H H H Me H 0.81 [82]
44 O – H Me H H H Me 1.27 [81]
45 O – H H H H Me Me 1.47 [81]
46 O – H H Me H Me H 5.30 [82]
47 O – H Me H H Me H 5.75 [82]
48 O – H Me Me H Me H 5.78 [81]
49 N H H Me H H Me H 0.48 [83]
50 N H H CH2OH H Me H Me 0.66 [84]
51 N H H Me H Me Me CH2OH 1.07 [83]
52 N H H Me H Me H Me 1.36 [83]
53 N Me H CH2OMe H Me H Me 2.09 [84]
54 N H H Me H H Me Me 2.59 [83]
55 N H H Me H Me Me H 4.62 [83]
56 N Me H CH2OH H Me H Me 5.60 [84]
57 N H H Me H Me Me Me 9.25 [83]

a The experimental antiproliferative activity in Ehrlich Ascites tumor cells expressed as ID50 relative to 8-MOP.
b Ref.: References in which the activity of compounds was reported.
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useful information to stimulate basic research and drug development.
In view of this, the present study was attempted to propose a new
scoring function for studying docking of drugs to DNA in hopes that
our method may become a useful tool for drug development. Using
both the classic pk(d) and the new pk(L) values as inputs we can obtain
a classifier to discriminate DNA–drug complexes of the two classes
defined in Section 2. The best model we found was:

MD-score ¼ 3:17,p2ðLÞ � 15:47,p4ðdÞ � 17:66,p0ðdÞ
þ111:19,p10ðdÞ � 114:87,p9ðdÞ � 2:96

n ¼ 318 Rc ¼ 0:77 F ¼ 88:5 p < 0:01 (7)

The output of the model, MD-score, is a real value variable that
scores the predicted goodness of fit for one MD trajectory. In
statistical prediction, the following three cross-validation methods
are often used to examine a predictor for its effectiveness in prac-
tical application: independent dataset test, sub-sampling test, and
jackknife test [166]. However, as elucidated by [167] and demon-
strated in [168], among the three cross-validation methods, the
jackknife test is deemed the most objective that can always yield
a unique result for a given benchmark dataset, and hence has been
increasingly and widely used by investigators to examine the
accuracy of various predictors (see, e.g., [20–25,27,169–172]). In the
current study, because the jackknife test would take a lot of
computational time, we choose to use the independent dataset test
to examine the prediction accuracy. The model was trained with
a training series and later validated with an external validation
series. In training series the model correctly classifies 79 out of 80
(specificity¼ 98.75%) optimal and 226 out of 238
(sensitivity¼ 94.96%) no-optimal MD trajectories. In external vali-
dation series the model correctly classifies 26 out of 26 (specific-
ity¼ 100%) optimal and 75 out of 78 (sensitivity¼ 96.15%) no-
optimal MD trajectories. These results represent total accu-
racy¼ 95.91% and 97.12% in training and validation respectively.
Previous QSAR works that use LDA as the classification technique
accept this level of sensitivity, specificity, and accuracy as indicative
of high quality of the model [106,173–178þ].
4. Conclusions

We can obtain new types of 2D graph theoretical representation
for Molecular Dynamics (MD) trajectories that resemble LNs used
for DNA and protein sequences. At the same time, it is possible to
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calculate new classes of invariants for MD trajectories based on the
spectral moments pk(L) of the Markov matrix associated to these
LNs. The pk(L) values can be used as inputs to train new classifiers in
order to discriminate between optimal and no-optimal intercala-
tion modes relevant to the biological activity. The new models can
be used as scoring functions to guide DNA-docking studies in the
drug design of new coumarins for PUVA therapy.
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L.G. Pérez-Montoto et al. / European Journal of Medicinal Chemistry 44 (2009) 4461–4469 4469
[103] K.C. Chou, C.T. Zhang, D.W. Elrod, J. Protein Chem. 15 (1996) 59–61.
[104] X.Q. Qi, J. Wen, Z.H. Qi, J. Theor. Biol. 249 (2007) 681–690.
[105] H. Gonzalez-Diaz, A. Sanchez-Gonzalez, Y. Gonzalez-Diaz, J. Inorg. Biochem.

100 (2006) 1290–1297.
[106] H. Gonzalez-Diaz, I. Bonet, C. Teran, E. De Clercq, R. Bello, M.M. Garcia, et al.,

Eur. J. Med. Chem. 42 (2007) 580–585.
[107] Y. Diao, M. Li, Z. Feng, J. Yin, Y. Pan, J. Theor. Biol. 247 (2007) 608–615.
[108] S. Wolfram, Nat. Protoc. 311 (1984) 419–424.
[109] S. Wolfram, A New Kind of Science (2002) Champaign, IL.
[110] X. Xiao, S.H. Shao, K.C. Chou, Biochem. Biophys. Res. Commun. 342 (2006)

605–610.
[111] X. Xiao, S. Shao, Y. Ding, Z. Huang, X. Chen, K.C. Chou, J. Theor. Biol. 235 (2005)

555–565.
[112] M. Wang, J.S. Yao, Z.D. Huang, Z.J. Xu, G.P. Liu, H.Y. Zhao, et al., Med. Chem.

1 (2005) 39–47.
[113] L. Gao, Y.S. Ding, H. Dai, S.H. Shao, Z.D. Huang, K.C. Chou, J. Pharm. Biomed.

Anal. 41 (2006) 246–250.
[114] X. Xiao, S. Shao, Y. Ding, Z. Huang, X. Chen, K.C. Chou, Amino Acids 28 (2005)

29–35.
[115] X. Xiao, S.H. Shao, Y.S. Ding, Z.D. Huang, K.C. Chou, Amino Acids 30 (2006)

49–54.
[116] X. Xiao, K.C. Chou, Protein Pept. Lett. 14 (2007) 871–875.
[117] M. Chen, W.Q. Huang, Genomics Proteomics Bioinformatics 3 (2005)

225–230.
[118] C. Thachuk, A. Shmygelska, H.H. Hoos, BMC Bioinformatics 8 (2007) 342.
[119] X.S. Zhang, Y. Wang, Z.W. Zhan, L.Y. Wu, L. Chen, J. Bioinform. Comput. Biol.

3 (2005) 385–400.
[120] M. Jiang, B. Zhu, J. Bioinform. Comput. Biol. 3 (2005) 19–34.
[121] A. Gupta, J. Manuch, L. Stacho, J. Comput. Biol. 12 (2005) 1328–1345.
[122] A. Gupta, J. Manuch, L. Stacho, Proc. IEEE Comput. Syst. Bioinform. Conf.

(2004) 311–318.
[123] B. Berger, T. Leighton, J. Comput. Biol. 5 (1998) 27–40.
[124] R. Agarwala, S. Batzoglou, V. Dancik, S.E. Decatur, S. Hannenhalli, M. Farach,

et al., J. Comput. Biol. 4 (1997) 275–296.
[125] A. Nandy, Comput. Appl. Biosci. 12 (1996) 55–62.
[126] A. Nandy, M. Harle, S.C. Basak, ARKIVOC 9 (2006) 211–238.
[127] A. Nandy, Indian J. Biochem. Biophys. 31 (1994) 149–155.
[128] A. Nandy, S.C. Basak, J. Chem. Inf. Comput. Sci. 40 (2000) 915–919.
[129] C. Raychaudhury, A. Nandy, J. Chem. Inf. Comput. Sci. 39 (1999) 243–247.
[130] M. Randic, M. Vracko, A. Nandy, S.C. Basak, J. Chem. Inf. Comput. Sci. 40

(2000) 1235–1244.
[131] A. Nandy, A. Ghosh, P. Nandy, In Silico Biol. 9 (2009).
[132] M.A. Gates, J. Theor. Biol. 119 (1986) 319–328.
[133] P.M. Leong, S. Morgenthaler, Comput. Appl. Biosci. 11 (1995) 503–507.
[134] M. Randic, X. Guo, S.C. Basak, J. Chem. Inf. Comput. Sci. 41 (2001) 619–626.
[135] G. Aguero-Chapin, H. Gonzalez-Diaz, G. de la Riva, E. Rodriguez, A. Sanchez-

Rodriguez, G. Podda, et al., J. Chem. Inf. Model. 48 (2008) 434–448.
[136] M.A. Dea-Ayuela, Y. Perez-Castillo, A. Meneses-Marcel, F.M. Ubeira, F. Bolas-

Fernandez, K.C. Chou, et al., Bioorg. Med. Chem. 16 (2008) 7770–7776.
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[157] H. González-Dı́az, O. Gia, E. Uriarte, I. Hernadez, R. Ramos, M. Chaviano, et al.,

J. Mol. Model. 9 (2003) 395–407.
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