
RSC Advances

REVIEW
Current perspect
aDepartment of Basic Sciences, School of Ba

Health and Allied Sciences, PMB 31, Ho, VR
bNelson Mandela University, Department of
cSchool of Science, Faculty of Engineering

Chatham Maritime, Kent, ME4 4TB, UK

Cite this: RSC Adv., 2021, 11, 20355

Received 28th January 2021
Accepted 2nd June 2021

DOI: 10.1039/d1ra00745a

rsc.li/rsc-advances

© 2021 The Author(s). Published by
ives on supercharging reagents in
electrospray ionization mass spectrometry

Daniel A. Abaye, *a Irene A. Agboab and Birthe V. Nielsenc

In electrospray ionization mass spectrometry (ESI-MS), analytes are introduced into the mass spectrometer

in typically aqueous-organic solvent mixtures, including pH modifiers. One mechanism for improving the

signal intensity and simultaneously increasing the generation of higher charge-state ions is the inclusion

of small amounts (approx. <0.5% v/v mobile phase solution) of charge-inducing or supercharging

reagents, such as m-nitrobenzyl alcohol, o-nitrobenzyl alcohol, m-nitrobenzonitrile, m-(trifluoromethyl)-

benzyl alcohol and sulfolane. We explore the direct and indirect (colligative properties) that have been

proposed as responsible for their modes of action during ESI. Of the many theorized mechanisms of ESI,

we re-visit the three most popular and highlight how they are impacted by supercharging observations

on small ions to large molecules including proteins. We then provide a comprehensive list of 34

supercharging reagents that have been demonstrated in ESI experiments. We include an additional 19

potential candidate isomers as supercharging reagents and comment on their broad physico-chemical

properties. It is becoming increasingly obvious that advances in technology and improved ion source

design, analyzers e.g. the use of ion mobility, ion trap, circular dichroism (CD) spectroscopy, together

with computer modeling are increasing the knowledge base and, together with the untested isomers

and yet-to-be unearthed ones, offer opportunities for further research and application in other areas of

polymer research.
1. Introduction

Three main models seek to explain the mechanisms of elec-
trospray ionization (ESI), on which early work began with John
Fenn.1 The generation of ions in the dynamic ESI environment
which is under an electric eld and at elevated temperatures but
at ambient pressure is explored within the concept of these
three popular models. Fundamentals such as solution chem-
istry and gas-phase interactions are summarised to explain the
ESI processes. The role of supercharging reagents during ESI is
discussed and key ndings explored. Some of these ndings are
the direct and more complex interactions between these
reagents and macromolecules, especially proteins in the ESI
environment. The inuence of colligative properties of both ESI
solvents and supercharging reagents, including surface tension,
polarizability, dipole moments, and acidity/basicity are high-
lighted. Konermann et al. offer a detailed and rigorous review,
which includes experimentation and computational studies on
the mechanisms of ESI, dwelling mainly on the interactions
between supercharging reagents and proteins.2
sic and Biomedical Sciences, University of

, Ghana. E-mail: dabaye@uhas.edu.gh

Chemistry, Port Elizabeth, South Africa

and Science, University of Greenwich,

the Royal Society of Chemistry
In this brief review, we provide a comprehensive list of 34
supercharging reagents that have been used in studies and
include an additional 19 potential candidate isomers com-
menting on their broad physico-chemical properties. These
suggested isomers have the potential to further enhance our
understanding of supercharging during ESI-MS. This report
may be viewed as a rst compendium or a ‘one-stop-shop’ of
supercharging reagents for fellow ESI mass spectrometrists to
peruse.
1.1. Supercharging during ESI

One of the unique advantages during ESI-MS is the formation of
multiply charged ions, which enables the observation of mole-
cules of high molecular weights at relatively low m/z values.3,4

Thus, for instance, biological macromolecules including
proteins (>100 KDa), nucleic acids, industrial polymers of high
molecular weights can be analyzed in a mass spectrometer with
a triple quadrupole (QqQ), several types of ion trap (IT) analy-
sers (including orbitraps), and combinations, such as the
quadrupole time-of-ight (QToF), quadrupole-ion trap (QIT),
and with ion-mobility mass spectrometry.

In ESI, one of the main approaches for increasing the
generation and detection of higher charge state in peptide ions
(i.e. from [M + nH]n+ to [M + (n + 1)H]n+1)+ and simultaneously
improving the signal intensity (ESI response) is the inclusion of
very small amounts (approx. <5% v/v of mobile phase solution)
RSC Adv., 2021, 11, 20355–20369 | 20355
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charge-inducing compounds or supercharging reagents.
Supercharging reagents include glycerol,5 m-nitrobenzyl alcohol
(mNBA; 3-nitro(phenyl) methanol),4,6,7 o-nitrobenzyl alcohol (2-
nitro(phenyl)methanol) 8 and sulfolane.8,9 Thus far, the super-
charging reagents used in experiments are all small molecules
(mol. wt. <180 Da (Table 1).

1.1.1. Proposed modes of action of supercharging
reagents: colligative properties. In ESI, supercharging reagents
assist in surmounting deciencies such as ion suppression and
improve the linear dynamic range, that is, in the latter case, they
can decrease the detection limit across a wide sample concen-
tration linear range. Some colligative properties have been
indicated as responsible for the supercharging phenomena.
These are boiling points, surface tension, polarizability, dipole
moments, and acidity/basicity.

Boiling points and surface tension. One of the fundamental
properties of these reagents which promote higher ESI charging
is that they all have much higher boiling points than both water
and the organic solvents in the mobile phase mixture. They are
therefore less volatile than the solvents. Although opposing
arguments exist, the reason for their action has been attributed
to two phenomena:

(1) Their ability to raise the solution surface tension.10 Due to
the low volatility of these compounds compared with that of
common mobile-phase compositions (e.g. water/methanol or
water/acetonitrile), their concentration increases as evaporation
of the more volatile components from the droplets occurs. This
enrichment of the supercharging reagents raises the surface
tension which results in a requirement for a higher degree of
surface charging to reach the Rayleigh limit for a spherical
droplet. This, in turn, increases the boiling point of the super-
charging reagent-enriched environment10 However, Samalikova
and Grandori11 reported that their results were not easily
reconciled by considering only charge availability of the
precursor droplets at the Rayleigh limit as determined by
surface tension.

(2) Protein denaturation: Williams and co-workers argued
that protein unfolding induced by chemical and or thermal
denaturation appears to be the primary origin of the enhanced
charging observed in the protein complexes investigated.7 In
their experiments, the arrival time distributions obtained from
traveling wave ion mobility spectrometry showed that the
higher charge state ions that are formed with m-NBA and sul-
folane are signicantly more unfolded than lower charge state
ions. Sterling et al.12 argued that droplet heating, owing to the
high boiling point of m-NBA, resulted in thermal denaturation.
However, unlike Sterling et al.12 Hogan et al.13 reported that
supercharging reagents do not cause structural protein modi-
cations in solution and that the modest mobility decrease
observed could be partly attributed to trapping of the sulfolane
within the protein ions.

Polarizability and dipole moments. The addition of the
supercharging reagent sulfolane on cytochrome introduced
another dimension to the debate, in that, while supercharging
was observed in the positive ionization mode, no change in the
charge state distribution was observed in the negative mode.9

This, therefore, eliminates polarity-independent factors such as
20356 | RSC Adv., 2021, 11, 20355–20369
conformational changes or surface tension effects. The authors
also reported the formation of adducts between cytochrome and
sulfolane thus supporting the report of Hogan et al.13

Further, the study by Douglass and Venter demonstrated
that supercharging was shown to increase with increasing
dipole moment for the supercharging reagents sulfolane and
sulfolene.9 Finally, if an increase in surface tension is the cause
of supercharging, then it should occur in both the positive and
negative modes since the effect of surface tension on the Ray-
leigh limit is independent of the polarity of the charge. Like
many other identied supercharging reagents, sulfolane is
highly polar with a dipole moment of 4.35 D, much higher than
that of water (1.85 D) or methanol (1.70 D) (Table 1).

The interaction of supercharging reagents with charged
basic sites would depend on the molecular structure, such as
the type and location of functional groups. Thus, they exhibit
low solution-phase basicities and relatively low gas-phase
basicities.8 For example, the most effective supercharging
reagents have one or more carbonyl, sulfonyl, or nitro groups
present in their structure (Table 1), which may be important for
intermolecular interactions between the supercharging reagent
and the charged basic site. Lomeli et al. demonstrated that
supercharging occurs not only when liquid m-NBA is present,
but also with solid o- or p-isomers. This provides some evidence
against increased surface tension causing supercharging.8

1.1.2. Direct interaction
Adduct formation. Examination of the mass spectra generated

from the addition of these reagents show adduct formation on
the higher charges. This suggests that there is a direct interac-
tion between these reagents and fragments of unfolding poly-
peptides and proteins.8,9 Circular dichroism measurements
while titrating myoglobin with 6 M guanidinium hydrochloride
in the presence of 0%, 2.5%, 5.0%, or 7.5% sulfolane estab-
lished that sulfolane destabilized the protein by
�1.5 kcal mol�1 (moles L�1 of GuHCl)�1, which Sterling and co-
workers12 argued was evidence that chemical denaturation
caused the charge increases observed when sulfolane is added
to native-like solutions. However, they also found that without
the added GuHCl, the helicity of myoglobin was lower, even at
the highest sulfolane concentrations tested.

Chemical denaturation. Sterling's circular dichroism experi-
ment indicates a chemical denaturation activity of sulfolane.12

As supercharging reagents have low vapor pressures (higher
surface tension), therefore it has been suggested that aqueous
droplets are preferentially enriched in these reagents as evap-
oration occurs in the ESI environment. Sterling et al. reasoned
that less evaporative cooling will occur aer the droplets are
substantially enriched in the low volatility supercharging
reagent (i.e. the organic solvent is evaporated rst), and the
droplet temperature should be higher compared with when
these reagents are not present, in the more aqueous environ-
ment.12 Furthermore, Sterling et al. rationalized that protein
unfolding induced by chemical and/or thermal denaturation in
the electrospray droplet appeared to be the primary origin of the
enhanced charging observed for noncovalent protein complexes
formed from aqueous solutions that contain these super-
charging reagents, although other factors most certainly
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 A simple illustration of the ESI environment. For simplicity, droplets are presentedwith positive charges. According to themodel presented
by Loo et al.27 opposing charges may also be present in the gas phase ion. Under an electric field, elevated temperature but at ambient pressure,
the sprayed analyte solution undergoes the simultaneous processes of the droplet splitting, generation of highly charged droplets, repeated
splitting and shrinkage of the droplets, solvent evaporation, and removal under a directed gas (typically N2) stream. These progeny droplets
themselves undergo subsequent and repeated evaporation and splitting, and this process is repeated until only gas-phase ions are generated.76

The ions are then drawn under negative pressure into the mass spectrometer.

Review RSC Advances
inuence the extent of charging. However, some studies are not
in agreement with this. For example, Yao et al.14 reported that
supercharging of lysozyme by sulfolane was not related to
protein unfolding during the ESI process.

A report evaluating the potential of low volatility of super-
charging reagents demonstrated that there was not a strong
correlation between the extent of analyte (protein) charging
with either surface tension, dipole moment, or dielectric
constant of the additives.15 That is, there was no single physical
property of an additive that signicantly determined the extent
of protein charging when formed from a solutionmixture. What
is clear, however, was that most of the supercharging reagents
have higher boiling points, higher surface tension values, high
dielectric constants, and higher dipole moments than the ESI
solvents. Thus, a combination of these physicochemical prop-
erties together with other factors including adduct formation
between analyte and supercharger, basicity at the solution, and
gaseous phases, may all inuence charging, although the extent
of charging may depend on the experimental conditions.

A comprehensive list of 53 molecules of which 34 have been
shown to have supercharging ability in experiments and 19
potential candidate isomers, together with some of their
physico-chemical properties are given in Table 1. The molecules
are grouped conveniently in terms of molecular structure and
functional group given rise to four categories:

(1) Acyclic 3- to 4-membered and/or planar structures.
(2) Heterocyclic 4- to 5-membered molecules including the

sulfones and S-containing ones. Dimethyl sulfone and N,N,N0N0-
tetraethylsulfamide (TES) are acyclic molecules but are included
in this category because they contain the sulfone functional
group.

(3) Heterocyclic 4- to 5-membered molecules including the
heterocyclic acetals.
© 2021 The Author(s). Published by the Royal Society of Chemistry
(4) Molecules containing the benzene structure with at least
two functional group attachments which may have opposite
charges e.g. m-nitrobenzyl alcohol.

Recently, two new supercharging reagents N,N,N0,N0-tetrae-
thylsulfamide (TES), and 3-methyl-2-oxazolidone (MOZ) were
shown to counter the suppression activity of triuoroacetic acid
(TFA).16 The study also demonstrated that the two molecules
increased charge states of peptides and proteins and improved
separation efficiency during reverse-phase LC-MS
determinations.

We suggest that the following 19 additives (denoted by 3 and
in italics, Table 1) are potential supercharging reagents and
could be evaluated:

(1) Based on the fact that some of their isomers have success-
fully been demonstrated; methoxypropanol, 3-chloro-2H-thiete
1,1-dioxide, 4-butyrothiolactone, o-chlorophenol, p-chlorophenol,
3-nitrochlorobenzene, 4-nitrochlorobenzene, o-nitro-
phenylethanol, p-nitrophenyl ethanol, m-nitroanisole,
o-(triuoromethyl)-benzyl alcohol, and p-(triuoromethyl)-benzyl
alcohol, and,

(2) Molecules having a benzene ring structure and with two
or more attached functional groups having opposing charges
(‘dual polarity’ isomers); e.g. the isomers o-, m-, and p- of
nitrobenzoic acid, nitrobenzonitrile and nitrophenethyl
alcohol.

ESI mobile phase solvents. Six solvents commonly used during
ESI-MS are also included for comparison. The list in Table 1
includes the following physico-chemical properties: molecular
structure, molecular weight (Da), boiling point (or melting
point, �C), vapor pressure (mm Hg), surface tension (mN m�1),
acidity (pKa)/basicity (pKb), dipole moment (D), and references
of key publications in which the superchargers were employed.
The sources of the properties are also indicated. We concede
RSC Adv., 2021, 11, 20355–20369 | 20363
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that some of the properties of the reagents are either not
determined or could not be found in the literature.
1.2. The ESI mechanism

During ESI-MS operation and for samples extracted from
a complex and an electrolyte-rich biological matrice, such as
saliva, serum, cerebrospinal uid, or microbial extract, reso-
lution and detector signal response can be hindered. A clean-
up procedure, for example, solid-phase extraction (SPE) or
desalting steps is necessary to decrease the concentration of or
remove these usually confounding electrolytes, detergents, or
other compounds. In (positive) ESI-MS, analytes including
peptides are introduced into the mass spectrometer in typi-
cally aqueous-organic solvent mixtures, together with other
additives including pH modiers like formic acid (#0.3% v/v).
Following the application of an electric charge at the capillary
tip, there follows the simultaneous processes of solution-
phase ion generation, solvent evaporation, a plume of
charged ions in residual solvent, charge transfer, and/or
concentration, and nally, gas phase ion generation (Fig. 1).
These processes typically occur under an electric eld and in
a heated (approx. 90� to 120 �C) environment in the ion source
compartment of the mass spectrometer. And nally, the
generated highly charged gas-phase ions are then differen-
tially drawn into the rst stage of the mass spectrometer under
negative pressure. The uncharged gaseous solutes, molecules,
are also removed under negative pressure into a separate
exhaust stream.

Observations show that many parameters e.g. solvent
composition,3,4,17,18 analyte composition and concentration,19–21

pH, ow rate,18,21 denaturing solutions,22,23 and non-denaturing
solutions,24–26 solution- & gas-phase basicity, solution-phase
conformation,26,27 instrument settings: source voltage,28,29

sprayer orice diameter,30 gas pressures,31 and, ion source type
(laser ESI-LEMS vrs conventional ESI)32 affect charge state
distributions (CSD) especially, in large analytes such as
proteins. Further, sub-ambient pressure ESI source combined
with nano-ow signicantly improves ion yield and sensitivity33

Several models have been put forward to explain the mech-
anisms of action of the processes of generating gas-phase ions
from the liquid mobile phase. Among these, three are popular:
the charge residue model (CRM),34,35 the ion evaporation model
(IEM)36–40 and the third postulate, chain ejection model
(CEM)41,42 which was recently described for unfolded
proteins.2,43,44 These models are summarized in Table 2.

The use of nano-ESI, conventionally a non-pneumatic oper-
ation with very low mobile ow rates (�<1 mL min�1) and much
small samples sizes which then provides improved desolvation,
greater salt tolerance, and a higher ion yield29,33 has added
another dimension to the debate although the generated nal
ions are believed to be the same for both conventional and
nano-ESI.45

Hogan et al. proposed that both the IEM and CRM are in
play, in which macromolecules are charged residues but, in
negative ion mode, carry less charge because highly-charged
droplets eld-emit anions. Why positively charged droplets
20364 | RSC Adv., 2021, 11, 20355–20369
would not also eld-emit small ions has not yet been
explained.46,47 Excellent discussions are also given.9,27,48,49
1.3. The impact of supercharging reagents on ESI

Aer extensive investigations of ESI of macromolecules, neither
model (CRM or IEM) adequately and quantitatively explain the
extent of macromolecular multiple charging.50,51 Quite recently,
with increasing interest in using ESI-MS as a technology for top-
down proteomics and for studying protein interactions, the
expanding application of ion mobility mass spectrometry (IM-
MS), and the use of supercharging reagents, most of the re-
ported supercharging research has been on proteins in the
native state, that is, with solution pH around neutral and the
low voltage conditions to preserve protein structure. Thus, the
role of additive properties such as dipole moment and adduct
formation (between analyte and supercharger) have been shown
to play prominent roles in supercharging in proteins. Therefore,
a third model, the chain ejection model (CEM) has been
proposed42 where the ESI of unfolded proteins yields M + (z + 1)
H]z+ ions that are much more highly charged than their folded
counterparts. This model, it has been suggested, accounts for
the protein ESI behavior under such non-native conditions and
has been proposed to apply for unfolded proteins.2,43,44,52,53

Proteins that are unfolded in solution produce higher charge
states during ESI than their natively folded counterparts.
Building on the work by Douglass and Venter,9 who showed
experimentally the formation of adducts between sulfolane and
the most highly charged protein ions, Peters et al. recently, re-
ported that the CEM involves the partitioning of mobile H+ (e.g.
from formic acid) between the droplet and the departing
protein.44 Their results indicate that the supercharging of
unfolded proteins is caused by residual sulfolane that stabilizes
protonated sites on the protruding chains. This, therefore,
promotes H+ retention on the protein. Their report suggested
that charge stabilization on the sites of projecting chains is due
to charge–dipole interactions which are mediated by the large
dipole moment and the low volatility of sulfolane.

Denaturing ESI follows the CEM, where protein ions are
gradually expelled from the droplet surface. Proton (H+) equil-
ibration between the droplets and the protruding chains
culminates in highly charged gaseous proteins.2 The presence
of internal disulde (S–S) bonds on the extent of supercharging
was determined in three proteins each containing multiple
internal disulde bonds; bovine serum albumin, b-lactoglob-
ulin, and lysozyme.43 Reduction of the disulde bonds led to
a marked increase in charge state following the addition of
sulfolane without signicantly altering folding in solution. This
evidence supports a supercharging mechanism in which these
proteins unfold before or during evaporation of the electrospray
droplet and ionization would therefore, occur by the CEM.

Ogorzalek Loo et al. proposed a three-regime view of ESI, i.e.
with solution, intermediate, and gas-phase regimes in the ESI
environment.27 The intermediate phase was introduced to
explain the charge transfer and other accommodations that
analytes especially protein ions undergo when exiting the bulk
solution, this concept rationalizes observations that ion
© 2021 The Author(s). Published by the Royal Society of Chemistry
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intensities vary little over pH 3–11, despite huge changes in
solution compositions.17,54,55 This kinetic model is unique in
treating the evaporating droplets as charge-polarized and uses
their decompositions and the variation in solution-to-gas phase
properties to explain charge enrichment in ESI.

The 3-phase ESI environment could, in principle, be imag-
ined for the IEM, CRM, and other models, particularly as
distinctions between them blur in attempts to explain non-
conforming observations.29,56 Thus far, the IEM and the CRM
appear to represent the foundations of any discussion related to
the mechanism of ESI. Molecular dynamics (MD) simula-
tions52,57 suggest that small ions such as Na+ are ejected from
the surface of an aqueous ESI droplet (IEM), while folded
proteins in native ESI could be released by water evaporation to
dryness (CRM).43,52,53,58

Other factors that increase the charge state during ESI are
the diameter of the emitter opening: proteins (native and
denatured) charge state distributions (CSDs) undergo a small,
but reproducible shi to higher charge when delivered by nano-
spray versus standard electrospray59,60 and source voltage.26,61

Ogorzalek Loo, et al.27 noted that this relationship between the
extent of charging and initial droplet diameter could not be
observed for ions released as charge residues, thus, these
observations argue against CRM being the primary source of
native-like ions.

Improvements in ESI source design including sub-ambient
pressure with nano-ow,33,62,63 chemically-etched emitters with
sheath gas capillaries and nano-ow64 are reported to enhance
signal intensity, increase desolvated ion transmission to the
mass spectrometer proper and thus increasing overall sensi-
tivity. The use of these improvements together with super-
charging reagents should further enhance our understanding of
the ESI mechanism and how it is impacted by the super-
charging reagents.

2. Summary
2.1. The following are the main highlights on supercharging
during ESI

(1) Konermann et al.2 indicated that the ion evaporation model
(IEM) and the charged residue model (CRM) represent the
foundations underpinning the mechanism of ESI. Simulations
of molecular dynamics (MD) supported by classical solution
chemistry demonstrate that small ions such as Na+ or NH4

+ are
ejected from the surface of aqueous ESI droplets (IEM), while
folded proteins in the native ESI are released by water evapo-
ration to dryness (CRM).

(2) The application of ESI-MS in protein analysis and the
inclusion of supercharging reagents (SCR) has been the main
driver in the exploration of the mechanism of the ESI process
and the dynamics governing proteins in the native and
unfolded state.

(3) The Konermann team2,44,52,53 and Donor et al.43 indicated
that the CEM largely explains the CSD in proteins as it accounts
for the dipole-moment of solvents, charge distribution from the
folded to the unfolded state in proteins, and also the presence
of intramolecular di-sulde bonds within proteins.
20366 | RSC Adv., 2021, 11, 20355–20369
(4) SCRs have expanded and increased our knowledge of the
ESI environment and protein unfolding. These molecules have
boiling points and higher surface tension than the solvent
mixtures used in ESI,10 although studies by Samalikova and
Grandori11 reported a diminished role of surface tension. The
vast majority of supercharging molecules have densities greater
than that of water and other ESI solvents (Table 1). William's
and Loo's teams observed that SCRs also have low solution-
phase basicities (Brønsted bases weaker than H2O) and rela-
tively low gas-phase basicities.26–28 They also have higher dipole
moments (except for acetonitrile (3.92 D)). In solution, SCRs are
ionized, and highly polarized.

(5) Loo's team8 suggested that for dual-polarity super-
chargers, the molecule should both be a weak Brønsted base
and a weak Brønsted acid.

(6) Venter's team9 demonstrated supercharging in cyto-
chrome in the positive ionization mode, however, no change in
the CSD was observed in the negative mode. This, therefore,
diminishes the role of polarity-independent factors such as
conformational changes or surface tension effects as key vehi-
cles for supercharging.

(7) Venter's team9 also demonstrated that when a SCR is
added in concentration about equal to or greater than the
proteins concentration in solution, during ESI, there is adduct
formation between the proteins and SCR.

(8) Using SCRs such as nitrobenzyl alcohol, where there are
two functional groups (hydroxyl and nitro), supercharging
increases in the order of the para, meta, and ortho isomers. The
same principle could perhaps be applied to the isomers of
nitrochlorobenzene, nitroanisole, nitrobenzoic acid, nitro-
benzonitrile, and nitrophenethyl alcohol.

(9) Improvements in ion source design to include operating
at sub-ambient pressure combined with nano-ow increases
desolvation of charged species and elevates the ion trans-
mission rate into the analyser section.33,62–64

It should be pointed out that all these different super-
charging attributes have been proposed to matter, but not all
are of them are relevant. Experimental conditions would
increase the prominence of one or several of them over the
others depending on the aims of the researchers.

3. Conclusions

In summary, we presented a brief review of supercharging and
the attributed factors which inuence supercharging during
ESI. We highlighted the three most popular models, IEM, CRM
and CEM that seek to explain the ESI process. The use of
supercharging reagents have unraveled and expanded on the
ESI mechanisms. Advances in technology including improved
source design, the applications of IM-MS, nano-ESI, detectors
(e.g. ion traps), circular dichroism spectroscopy, and computer
soware to explore molecular dynamics coupled with the use of
supercharging reagents have expanded the knowledge base of
the ESI mechanism, especially as applied to proteins. The list of
19 untested candidate isomers and, many more to be
unearthed, offers opportunities for further study. The use of
extreme supercharging reagents should be very useful for
© 2021 The Author(s). Published by the Royal Society of Chemistry
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maximizing MS and MS/MS performance. A combination of
these tools offers avenues for further research and applications
in other areas of polymer research.
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