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Objective: Necroptosis represents a new target for cancer immunotherapy and is
considered a form of cell death that overcomes apoptosis resistance and enhances
tumor immunogenicity. Herein, we aimed to determine necroptosis subtypes and
investigate the roles of necroptosis in pancreatic cancer therapy.

Methods: Based on the expression of prognostic necroptosis genes in pancreatic cancer
samples from TCGA and ICGC cohorts, a consensus clustering approach was
implemented for robustly identifying necroptosis subtypes. Immunogenic features were
evaluated according to immune cell infiltrations, immune checkpoints, HLAmolecules, and
cancer–immunity cycle. The sensitivity to chemotherapy agents was estimated using the
pRRophetic package. A necroptosis-relevant risk model was developed with a multivariate
Cox regression analysis.

Results: Five necroptosis subtypes were determined for pancreatic cancer (C1~C5) with
diverse prognosis, immunogenic features, and chemosensitivity. In particular, C4 and C5
presented favorable prognosis and weakened immunogenicity; C2 had high
immunogenicity; C1 had undesirable prognosis and high genetic mutations. C5 was
the most sensitive to known chemotherapy agents (cisplatin, gemcitabine, docetaxel, and
paclitaxel), while C4 displayed resistance to aforementioned agents. The necroptosis-
relevant risk model could accurately predict prognosis, immunogenicity, and
chemosensitivity.
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Conclusion: Our findings provided a conceptual framework for comprehending
necroptosis in pancreatic cancer biology. Future work is required for evaluating its
relevance in the design of combined therapeutic regimens and guiding the best choice
for immuno- and chemotherapy.
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INTRODUCTION

Pancreatic cancer is one of the most lethal human cancers
with an undesirable five-year survival rate < 10% (Yu et al.,
2021). In 2018, there were 458,918 newly diagnosed
pancreatic cancer cases and 432,242 death cases worldwide
(Rawla et al., 2019). Surgical resection is currently the only
therapeutic option with curative potential (Zhu et al., 2019a).
Nevertheless, when diagnosed, about 80–85% patients have
developed an unresectable or metastatic state (Tao et al.,
2021). Even for the minority of patients who have the
opportunity to receive surgical resection, only 20% can
survive for 5 years (Zhu et al., 2020). Adjuvant
chemotherapy with FOLFIRINOX (fluorouracil, irinotecan,
leucovorin, and oxaliplatin) as a standard treatment option
can prolong patients’ long-term outcomes, with a median
overall survival of 54.4 months (Park W. et al., 2021).
Nevertheless, intrinsic and acquired resistance to
chemotherapy is still a thorny issue in pancreatic cancer
therapy (Zhu et al., 2019b). At present, a few clinical trials
are ongoing to evaluate the efficacy of immunotherapy in
pancreatic cancer (O’Hara et al., 2021; Pang et al., 2021; Zhu
et al., 2021). Regrettably, none of these trials fail to show
satisfying outcomes (Schizas et al., 2020). Hence, it is urgently
required to design novel therapeutic regimens specifically
targeting pancreatic cancer biology.

Necroptosis is a form of regulated necrotic cell death mainly
mediated by receptor-interacting protein kinase 1 (RIPK1), RIPK3,
and mixed lineage kinase domain-like (MLKL) protein (Gong et al.,
2019). Necroptosis has become a new target for cancer
immunotherapy because it is considered a form of cell death
overcoming apoptosis resistance that enhances tumor
immunogenicity, which is particularly important for the treatment
of immune-desert tumors (Tang et al., 2020b). For instance,
RIPK3 activation-triggered de-inhibition of tripartite motif protein
28 (TRIM28) in tumor cells results in increased immunostimulatory
cytokine production within the tumor microenvironment and thus
contributes to robust cytotoxic antitumor immunity (ParkH.H. et al.,
2021). Previous studies have uncovered the significance of
necroptosis in pancreatic cancer. For instance, necroptosis
facilitates pancreatic cancer cell migration and invasion through
releasing CXCL5 (Ando et al., 2020). The aurora kinase inhibitor
CCT137690 triggers necroptosis in pancreatic cancer cells through
RIPK1, RIPK3, and MLKL and thus suppresses tumor growth (Xie
et al., 2017). Necroptosis-induced CXCL1 and Mincle signaling
facilitate macrophage-mediated adaptive immune inhibition and
thus enhance pancreatic cancer progression (Seifert et al., 2016).
In-depth understanding of necroptosis is crucial for immune
surveillance and treatment management.

In our study, we clustered five robust necroptosis subtypes of
pancreatic cancer, following the consensus clustering approach
based on prognostic necroptosis genes. The five necroptosis
subtypes displayed diverse prognosis, immunogenic features,
genomic mutations, and chemosensitivity, providing a
reference for combined therapeutic regimens and guiding the
best choice of patients for immuno- and chemotherapy.
Moreover, we developed a necroptosis-relevant risk model for
reflecting necroptosis subtypes in clinical practice.

MATERIALS AND METHODS

Collection and Integration of
Transcriptomic Data on Pancreatic Cancer
This study retrospectively collected transcriptomic data on
pancreatic cancer from public databases after removing
normal tissue specimens and specimens without clinical
follow-up data, including the Cancer Genome Atlas (TCGA;
https://www.cancer.gov/tcga; n = 177) as well as Pancreatic
Cancer-Australia (PACA-AU; n = 91) and Pancreatic Cancer-
Canada (PACA-CA; n = 234) from the International Cancer
Genome Consortium (ICGC; https://www.icgc-argo.org) (Zhang
et al., 2019). Due to samples from different platforms, the batch
effects were removed utilizing the ComBat function of the sva
package (version 3.42.0) (Leek et al., 2012). A principal
component analysis (PCA) was conducted to evaluate the data
before and after the removal of the batch effects. The follow-up
data and clinicopathological characteristics were also collected.
Moreover, single-nucleotide variant (SNV) and copy number
variation (CNV) data on pancreatic cancer were retrieved
from TCGA project. After reviewing the previously published
literature, we collected 159 necroptosis genes, as listed in
Supplementary Table S1. The GSE21501 cohort containing
expression profiling and follow-up information of 101
pancreatic cancer patients was downloaded from the Gene
Expression Omnibus (GEO) repository (https://www.ncbi.nlm.
nih.gov/gds/), which was used as the external validation cohort
(Stratford et al., 2010; Stratford et al., 2017). Supplementary
Figure S1 depicted the workflow of our study.

Consensus Clustering Analysis
Univariate Cox regression models were conducted between
necroptosis genes and pancreatic cancer survival, and genes
with p < 0.05 were determined for a consensus clustering
analysis. A consensus clustering approach offers quantitative
and visual stability evidence to estimate the number of
unsupervised classes within a specified data set. The
ConsensusClusterPlus package (version 1.58.0) adopts the
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consensus clustering approach, comprising consensus matrix,
empirical cumulative distribution function (CDF), and delta
area plots (Wilkerson and Hayes, 2010). Through
implementing the consensus clustering analysis, necroptosis
subtypes were clustered based on the expression values of
prognostic necroptosis genes across pancreatic cancer
specimens. The number of clusters k was set as 2–9, and 80%
of the samples were sampled using a re-sampling method. After
multiple sampling, stable and reliable unsupervised classes were
found in line with the following parameters: re-samplings = 50,
proportion of items to sample = 0.8, proportion of features to
sample = 1, and distance = “pearson”. PCA was conducted to
visualize the difference in expression levels of prognostic
necroptosis genes among diverse necroptosis subtypes.

Gene Set Variation Analysis
GSVA, a non-parametric and unsupervised gene set enrichment
approach, can estimate the enrichment score of specific pathways
or signatures in accordance with transcriptomic profiles
(Hänzelmann et al., 2013). The 50 hallmarks of gene sets were
retrieved from theMolecular Signatures Database (Liberzon et al.,
2015). The activity of each hallmark pathway was quantified
using the single-sample gene set enrichment analysis (ssGSEA)
function.

Estimation of Tumor Immunogenicity
The relative infiltrations of immune cell populations were
estimated with the ssGSEA function derived from the GSVA
package (Hänzelmann et al., 2013) on the basis of the expression
values of 782 meta-genes (Charoentong et al., 2017) in pancreatic
cancer specimens. The mRNA expressions of known immune
checkpoints and human leukocyte antigen (HLA) molecules were
quantified in each pancreatic cancer specimen.

Cancer–Immunity Cycle
Chen and Mellman proposed a cancer–immunity cycle to
evaluate antitumor immune responses, containing seven steps:
1) release of cancer antigens, 2) cancer antigen presentation, 3)
priming and activation, 4) trafficking of T cells to tumors, 5)
infiltration of T cells into tumors, 6) recognition of cancer cells by
T cells, and 7) killing of cancer cells (Karasaki et al., 2017). The
levels of each step within the cancer–immunity cycle were
quantified using the ssGSEA approach.

Quantification of Known Biological
Processes
The gene sets of known biological processes were retrieved from
Mariathasan et al. (2018), containing epithelial–mesenchymal
transition (EMT1-3), immune checkpoint, antigen processing
machinery, CD8 T effector, angiogenesis, pan-fibroblast TGFβ
response (pan-F-TBRS), DNA damage repair, FGFR3-related
genes, KEGG-discovered histones, Fanconi anemia, cell cycle,
cell cycle regulators, DNA replication, nucleotide excision repair,
homologous recombination, mismatch repair, and WNT target.
The enrichment score of aforementioned biological processes was
quantified using the ssGSEA approach.

Chemosensitivity Analysis
The therapeutic responses to known chemotherapy agents
(cisplatin, gemcitabine, docetaxel, and paclitaxel) were
estimated using the pRRophetic package (Geeleher et al.,
2014). Through construction of the ridge regression model on
the basis of the Genomics of Drug Sensitivity in Cancer (GDSC)
pharmacogenomics database (www.cancerRxgene.org) (Yang
et al., 2013) and transcriptomic data, the half-maximal
inhibitory concentration (IC50) of each chemotherapeutic
agent was calculated across pancreatic cancer specimens.

Analysis of SNV and CNV Data
Utilizing the maftools package (version 2.10.0) (Mayakonda et al.,
2018), SNV data were analyzed and visualized on the basis of the
mutation annotation format (MAF) of pancreatic cancer.
GISTIC2.0 (Mermel et al., 2011) was implemented to analyze
copy number amplification and deletion.

Identification of Necroptosis-Relevant
Genes
A differential expression analysis was implemented between any
two necroptosis subtypes utilizing linear models for the
microarray data (limma; version 3.50.0) package (Ritchie et al.,
2015). Genes with adjusted p-value<0.05 were screened, and
necroptosis-relevant genes were determined following the
intersection of differentially expressed genes.

Functional Enrichment Analyses
Utilizing the clusterProfiler package (version 4.2.0) (Yu et al.,
2012), a functional enrichment analysis of necroptosis-relevant
genes was carried out, comprising Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses.

Generation of a Necroptosis-Relevant Risk
Model
Prognostic necroptosis–relevant genes with p < 0.05 were
determined through univariate Cox regression models, which
were ranked by using the randomForestSRC package (version
2.14.0), following number of replication = 100, number of step =
5, Monte Carlo iteration number = 100, and genes with relative
importance ˃ 0.4. Thereafter, a necroptosis-relevant risk model
was generated on the basis of the expression of the most
important genes and regression coefficients from a
multivariate Cox regression model. Following calculation of
the necroptosis-relevant risk score of each pancreatic cancer
patient, high- and low-risk groups were separated in
accordance with the median value of risk score. Receiver
operator characteristic (ROC) curves at 1-, 3-, and 5-year
survival were conducted to evaluate the predictive reliability of
the necroptosis-relevant risk model in pancreatic cancer survival.
Using the GEPIA web tool (http://gepia.cancer-pku.cn/), the
expression of genes in the necroptosis-relevant risk model was
examined in pancreatic cancer (n = 179) and normal tissues
(n = 171).
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Construction of a Prognostic Nomogram
In the nomogram, the line length indicates the degree of
influence of a specific variable and diverse values of this
variable on outcomes. After univariate and multivariate
Cox regression models, a nomogram was generated on the

basis of independent prognostic factors through the rms
package (version 6.2-0), showing the intuitive and effective
results of the risk model. Calibration curves were utilized to
validate the predictive accuracy of the nomogram-predicted
survival probabilities for 1-, 3-, and 5-year survival.

FIGURE 1 | Characterization of five necroptosis subtypes with diverse survival outcomes for pancreatic cancer in the integrated TCGA, PACA-AU, and PACA-CA
cohorts. (A,B) PCA plots show the data before and after the removal of the batch effects. (C) Forest plots visualize the hazard ratios and p-values of prognostic
necroptosis genes for pancreatic cancer patients utilizing univariate Cox regression models. Red, risk factor; blue, protective factor. (D) Based on the expression values
of prognostic necroptosis genes, the consensus matrix is shown when k = 5. The rows and columns of the matrix represent samples. The values of the consensus
matrix range from 0 (cannot be clustered) to 1 (always clustered) in white to dark blue. (E) Consensus CDF plot when k = 2–9. (F) Delta area plot when k = 2–9. The delta
area score (y-axis) indicates the relative change in cluster stability. (G) PCA plots visualize the difference among five necroptosis subtypes, following the expression values
of prognostic necroptosis genes across pancreatic cancer specimens. (H) Survival analysis of five necroptosis subtypes. (I) Heatmap visualizes the expression of
prognostic necroptosis genes in diverse necroptosis subtypes.
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Statistical Analysis
R software (version 3.6.1) was implemented for data processing.
Univariate and multivariate Cox regression analyses were
conducted, and the hazards ratio (HR) and p-value were
calculated to evaluate the correlations of variables with
pancreatic cancer survival. Kaplan–Meier curves and log-rank
test were depicted for the survival difference between groups. The
difference between two groups was compared with student’s t-test
or Wilcoxon test, while comparison between three groups was
presented through the Kruskal–Wallis test. A correlation analysis
was carried out via Pearson’s or Spearman’s test. The C-index was
calculated for estimating the prediction performance through the
survival package. p < 0.05 indicated statistical significance.

RESULTS

Characterization of Five Necroptosis
Subtypes With Diverse Survival Outcomes
for Pancreatic Cancer
We retrospectively collected transcriptomic data on pancreatic cancer
from TCGA, PACA-AU, and PACA-CA cohorts. The batch effects
of integrated data were eliminated for subsequent analyses, which
were visualized through PCA (Figures 1A,B). Among 159
necroptosis genes, 18 genes (SPATA2, AIFM1, SLC25A4, BCL2,
SPATA2L, TYK2, SMPD1, STAT5B, SLC25A6, USP21, STAT4,
VPS4A, RIPK1, PLA2G4C, IL33, CAMK2B, MAPK10, and BAX)
were protective factors of pancreatic cancer prognosis, while 14 genes
(TNFRSF10B, HSP90AA1, BIRC3, TNFRSF10A, CHMP4C, CASP8,
FADD, CAPN2, GLUD1, PYGL, BIRC2, CAPN1, CHMP2B, and
IFNA13) were risk factors of prognosis, as depicted in Figure 1C.
These prognostic necroptosis genes were utilized for the consensus
clustering analysis. When k = 5, pancreatic cancer samples were
clearly separated into five clusters (Figure 1D). Figure 1E depicted
the CDFwhen k takes different values, and we found that when k = 5,
CDF reached the approximate maximum, indicative of cluster
stability. Figure 1F showed the relative change in CDF of k
compared to k-1. When k = 6, CDF only slightly decreased, so 5
was the appropriate value of k. Ultimately, five necroptosis subtypes
were identified for pancreatic cancer, namely, C1 (n = 187), C2 (n =
135), C3 (n = 121), C4 (n = 21), and C5 (n = 38). PCA also confirmed
the reliability of necroptosis subtypes (Figure 1G). The survival
analysis demonstrated the remarkable survival difference among
necroptosis subtypes (Figure 1H). The C1 subtype had the worst
survival outcomes, followed by C3, C2, C4, and C5. Figure 1I
depicted the prominent expression difference of prognostic
necroptosis genes among diverse subtypes. The accuracy and
reliability of necroptosis subtypes were confirmed in the TCGA
cohort (Supplementary Figures S2A-F).

Necroptosis Subtypes With Diverse
Immunogenic Features
Further analysis was conducted to uncover the mechanisms
underlying five necroptosis subtypes. In Figure 2A,
tumorigenic pathways (hedgehog signaling, KRAS,

angiogenesis, glycolysis, etc.) were remarkably activated in C1
and C2 subtypes, contributing to an undesirable prognosis. C4
and C5 subtypes presented the relatively high infiltrations of
immune cells, while C2 was characterized by low infiltrations of
immune cells (Figure 2B). Most immune checkpoints were
markedly downregulated in C4 and C5 subtypes, while their
upregulations were found in C2 (Figure 2C). Tumors can evade
T-cell responses through losing the major histocompatibility
complex (MHC)/HLA class I and II molecules (Godfrey et al.,
2018). In Figure 2D, we observed the loss of HLA class I and II
molecules in C4 and C5. Differently, C2 displayed the prominent
activation of HLA molecules, followed by relatively modest
expression in C1 and C3. C4 and C5 subtypes presented the
relatively low levels of almost all steps within the
cancer–immunity cycle in comparison to other subtypes;
meanwhile, the C2 subtype had the highest activation of each
step (Figure 2E). Similarly, CD8 T effector and antigen
processing machinery, immune checkpoint, and stromal
activation (EMT1-3) were relatively downregulated in C4 and
C5 (Figure 2F); C2 had relatively high levels of immune and
stromal activation pathways; and C1–3 presented the enhanced
cell cycle progression (cell cycle, cell cycle regulators, DNA
replication, etc.). Overall, five necroptosis subtypes had diverse
immunogenic features.

Necroptosis Subtypes With Different
Chemosensitivity and Tumor Mutation
Features
We compared the sensitivity to known chemotherapy agents
(cisplatin, gemcitabine, docetaxel, and paclitaxel) in five
necroptosis subtypes. As depicted in Figure 3A, C4 had the
highest IC50 values of cisplatin, gemcitabine, docetaxel, and
paclitaxel, while C5 presented the lowest IC50 values of
aforementioned chemotherapy agents, indicating that C4
presented the highest probability of chemotherapy resistance
while C5 was the most sensitive to these chemotherapy agents.
We also investigated that C1 and C3 had relatively higher tumor
mutation burden (TMB) than other subtypes (Figure 3B). KRAS
(53%) and TP53 (53%) were the most frequent mutant genes. The
widespread copy number amplification (Figure 3C) and deletion
(Figure 3D) occurred in pancreatic cancer specimens. Among
five necroptosis subtypes, C2 and C4 had the relatively decreased
fractions of genome altered (FGAs), as depicted in Figure 3E.
Moreover, we noted the relatively lowered copy number
amplification and deletion in C2 and C4 in comparison to
other subtypes (Figure 3F). Aforementioned data uncovered
the difference in tumor mutations among necroptosis subtypes.

Generation of a Necroptosis-Relevant Risk
Model for Pancreatic Cancer Prognosis
Through the intersection of DEGs (adjusted p < 0.05) between
any two subtypes, we determined 591 necroptosis-relevant genes
(Supplementary Table S2). Their biological significance was
further analyzed through GO and KEGG enrichment analyses.
In Figure 4A, necroptosis-relevant genes were remarkably linked
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FIGURE 2 | Five necroptosis subtypes with diverse immunogenic features. (A)Quantification of the activation levels of known hallmarks of cancer pathways in five
necroptosis subtypes. (B) Estimation of the infiltration levels of immune cell populations in diverse necroptosis subtypes. (C,D) Visualization of the mRNA expression of
(C) immune checkpoints and (D) HLA molecules across necroptosis subtypes. (E) Comparison of the enrichment scores of all steps within the cancer–immunity cycle
among five necroptosis subtypes. (F)Comparison of the enrichment scores of known biological processes in five necroptosis subtypes. *p < 0.05; **p < 0.01; ***p <
0.001; and ****p < 0.0001.
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with regulation of protein localization to the membrane.
Moreover, they had prominent associations with tumorigenic
pathways (p53 signaling pathway and cell senescence) and
immune pathways (Th17 cell differentiation, PD-L1
expression, PD-1 checkpoint pathway in cancer, Th1 and Th2
cell differentiation, etc.), indicative of the critical roles of
necroptosis-relevant genes in pancreatic cancer progression
(Figure 4B). Among all necroptosis-relevant genes, 207
displayed significant correlations to pancreatic cancer
prognosis (Supplementary Table S3). Using the random forest
approach, we determined the most important genes with the

relative importance > 0.4 (Figures 4C,D). A multivariate Cox
regression model was constructed in line with the following
formula: risk score = 0.119399555 * MYEOV expression +
(−0.258345687) * HDAC4 expression + 0.26238863 * TLDC1
expression + (−0.395042137) * PITPNA +0.175544976 *
FNDC3B expression + 0.338675676 * HMGXB4 expression +
(−0.150557275) * BAX expression. Following the calculation of
the risk score, all patients were separated into high- and low-risk
groups (Figure 4E). The high-risk group had more dead patients
relative to the low-risk group (Figure 4F). The survival analysis
demonstrated the survival advantage of low-risk patients

FIGURE 3 | Necroptosis subtypes with different chemosensitivity and tumor mutation features. (A) Comparison of the IC50 values of chemotherapy agents
(cisplatin, gemcitabine, docetaxel, and paclitaxel) among five necroptosis subtypes. (B) Waterfall diagram depicts the first 20 mutated genes and TMB (upper of the
panel) across necroptosis subtypes. (C,D) Chromosome arms with significant amplification and deletion (q-value <0.25). The focal peak of amplification and deletion is
separately visualized. Red indicates copy number amplification, while blue represents copy number deletion. (E) Comparison of the fraction of genome altered
(FGA) among necroptosis subtypes. (F) Comparison of the copy number amplification (red) and deletion (green) in five necroptosis subtypes. ****p < 0.0001.
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(Figure 4G). The difference in expression of aforementioned
genes between groups is visualized in Figure 4H.

Necroptosis-Relevant Risk Model as a
Reliable and Independent Prognostic
Indicator of Pancreatic Cancer
Uni- and multivariate Cox regression analyses uncovered that
age- and necroptosis-relevant risk models were both
independently associated with pancreatic cancer survival

(Figures 5A,B). AUCs at 1-, 3-, and 5-year survival were
separately 0.714, 0.724, and 0.757, indicative of the reliability
of the necroptosis-relevant risk model in predicting survival
outcomes (Figure 5C). To facilitate the clinical application of
the necroptosis-relevant risk model, we generated a
nomogram following integration of age (Figure 5D).
Calibration curves demonstrated the predictive accuracy of
this nomogram in pancreatic cancer survival (Figures 5E–G).
In addition, we also performed a stratified analysis and
demonstrated that the risk model can serve as an

FIGURE 4 | Generation of a necroptosis-relevant risk model for pancreatic cancer prognosis. (A,B) GO and KEGG enrichment results of necroptosis-relevant
genes. (C,D)Most important necroptosis-relevant genes ordered by the relative importance through the random forest approach. (E,F) Distribution of the risk score and
survival status in high- and low-risk groups. (G) Survival analysis of high- and low-risk groups. (H) Heatmap depicts the expression of genes in the necroptosis-relevant
risk model between two groups.
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independent prognostic factor without consideration of the
impact of age (Supplementary Figures S3A,B).

Externally Verifying the
Necroptosis-Relevant Risk Model
The robustness of the necroptosis-relevant riskmodel was verified in
the GSE21501 cohort. In accordance with the same formula, we
computed the necroptosis-relevant risk score of each pancreatic

cancer patient in the external cohort (Figure 6A). As expected, high-
risk patients had poorer survival outcomes than low-risk patients
(Figure 6B). AUCs at 1- and 3-year survival were separately 0.69 and
0.71 (Figure 6C), demonstrating the excellent performance in
predicting prognosis. Compared with the existing prognostic
models constructed by Chen et al. (2021), Xiao et al. (2022), and
Zhang et al. (2022), the necroptosis-relevant risk model had a higher
C-index (Figure 6D), indicating the advantage of this model in
predicting prognosis. We also examined the expression of genes in

FIGURE 5 |Necroptosis-relevant risk model as a reliable and independent prognostic indicator of pancreatic cancer. (A,B) Forest plots show the correlations of the
necroptosis-relevant risk score, age, and stage with pancreatic cancer prognosis through (A) uni- and (B)multivariate Cox regression models. (C) ROC curves at 1-, 3-,
and 5-year survival for the necroptosis-relevant risk score. (D) Generation of an age- and risk score–based prognostic nomogram. (E–G) Calibration curves depict the
deviations between nomogram-predicted probabilities of 1-, 3-, and 5-year survival and actual survival outcomes.
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FIGURE 6 | External verification of the necroptosis-relevant risk model. (A) Distribution of the necroptosis-relevant risk score, survival status, and expression of
necroptosis-relevant genes in the GSE21501 cohort. (B,C) Survival analysis and ROC curves in the GSE21501 cohort. (D) Comparison of the C-index of the
necroptosis-relevant risk score with known prognostic signatures. (E) Box plots of the expression of necroptosis-relevant genes using the GEPIA web tool. *p < 0.05.
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the necroptosis-relevant risk model using the GEPIA web tool. BAX,
FNDC3B, HDAC4, HMGXB4, MYEOV, and TLDC1 displayed
upregulated expressions in pancreatic cancer than normal tissues
(Figure 6E).

Necroptosis-Relevant Risk Model
Correlates With Tumor Immunogenicity for
Pancreatic Cancer
Compared with other necroptosis subtypes, C1 presented a
relatively higher necroptosis-relevant risk score, followed by
C3 (Figure 7A), indicating the heterogeneity in the risk score

among diverse necroptosis subtypes. Further analysis was
conducted to evaluate the correlations of necroptosis-relevant
risk score with tumor immunogenicity. In Figure 7B, as the
necroptosis-relevant risk score increased, the infiltrations of
immune cells gradually decreased, indicative of the negative
correlations of the necroptosis-relevant risk score with
immune cell infiltrations. Moreover, we noted that the
necroptosis-relevant risk score was negatively linked with the
expression of immune checkpoints and HLA molecules (Figures
7C,D). The aforementioned data indicated the role of the
necroptosis-relevant risk model in tumor immunogenicity of
pancreatic cancer.

FIGURE 7 | Necroptosis-relevant risk model links with tumor immunogenicity for pancreatic cancer. (A) Distribution of the necroptosis-relevant risk score in five
necroptosis subtypes. Ns: not significant; **p < 0.01; ***p < 0.001; and ****p < 0.0001. (B) Visualization of the infiltrations of immune cell populations in pancreatic cancer
specimens ordered by the necroptosis-relevant risk score. (C,D)Quantification of themRNA expression of (C) immune checkpoints and (D)HLAmolecules in pancreatic
cancer specimens ordered by the necroptosis-relevant risk score.
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Necroptosis-Relevant Risk Model Links
With the Cancer Immunity Cycle and Known
Biological Processes
In Figure 8, we noted that the necroptosis-relevant risk score
presented a significantly positive correlation to the release of
cancer cell antigens but displayed significantly negative
correlations to recruiting of B cells, CD4 T cells, dendritic
cell, macrophages, T cells, Th17 cells, Treg cells, and killing of
cancer cells, indicative of the remarkable interactions of the
necroptosis-relevant risk score with the cancer–immunity
cycle. Moreover, necroptosis-relevant risk score was
negatively linked with CD8 T effector, and angiogenesis but
was positively associated with pan-F-TBRS, FGFR3-related
genes, EMT2, KEGG discovered histones, Fanconi anemia,
cell cycle, cell cycle regulators, DNA replication, DNA damage
repair, nucleotide excision repair, homologous recombination,
and mismatch repair, indicative of the mechanisms underlying
the necroptosis-relevant risk score.

Necroptosis-Relevant Risk Model
Correlates With Chemosensitivity of
Pancreatic Cancer
Further analysis was conducted to evaluate the correlations
between the necroptosis-relevant risk score and
chemosensitivity of pancreatic cancer. No remarkable
differences of the IC50 values of cisplatin and gemcitabine
were noticed between high- and low-risk groups (Figures
9A,B). But the high-risk group presented the prominently
reduced IC50 values of docetaxel and paclitaxel relative to the
low-risk group (Figures 9C,D). This indicated that high-risk

patients were more likely to be sensitive to docetaxel and
paclitaxel.

DISCUSSION

Since there are currently no specific molecular biomarkers for
detecting necroptosis, identifying necroptosis usually requires
combined detection approaches (Niu et al., 2022). Under
transmission electron microscopy, necrotic morphology is
identified. Detecting necroptosis by biomarkers mainly
focuses on the pivotal molecular events involving
necroptosis. Nevertheless, the exact roles of necroptosis in
pancreatic cancer remain to be adequately clarified. Herein, we
proposed five necroptosis-based molecular subtypes and a
necroptosis-relevant risk model for pancreatic cancer
through integrated analysis of necroptosis genes, which
expanded the understanding of necroptosis in pancreatic
cancer biology.

Consensus clustering analysis is beneficial to provide patients
with more accurate therapy, referring to a situation where diverse
clusters are acquired for a specific dataset and desired for
aggregating the clustering results to obtain an in-depth
clustering solution (Li et al., 2020). On the basis of the
expression values of prognostic necroptosis genes, five
necroptosis subtypes were determined for pancreatic cancer,
with diverse survival outcomes. C1 subtype had the worst
survival outcomes, followed by C3, C2, C4 and C5.
Tumorigenic pathways (hedgehog signaling, KRAS,
angiogenesis, glycolysis, etc.) were remarkably activated in C1
and C2 subtypes, contributing to unfavorable survival outcomes.
The five subtypes presented diverse expression patterns of

FIGURE 8 | Necroptosis-relevant risk model links with the cancer–immunity cycle and known biological processes in pancreatic cancer. Spearman’s correlation
analysis was conducted between the necroptosis-relevant risk score and all steps within the cancer–immunity cycle and known biological processes.

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 86250212

Fang et al. Pancreatic Cancer Necroptosis Comprehensive Analysis

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


necroptosis genes. Elucidating the exact regulatory mechanisms
of necroptosis can facilitate the development of new therapeutic
strategies to overcome apoptosis resistance in pancreatic cancer.
Tumors express various MHCmolecules, which can be targets for
specific cytotoxic T lymphocytes, resulting in them to be
immunogenic. Most immune checkpoints and HLA molecules
were markedly downregulated in C4 and C5 subtypes while their
upregulations were found in the C2 subtype. This indicated that
tumors in C4 and C5 with robust T-cell immunosurveillance
presented disable antigen presentation to evade
immunorecognition. The cancer–immunity cycle contains
seven stepwise steps for obtaining an efficient control of
tumor growth through the immune system, which is initiated
via the release of neo-antigens produced by genomic instability
(Huntington et al., 2020). Cancer-associated antigens are
captured by dendritic cells, and after dendritic cells migrate to
lymph nodes, they trigger and activate tumor-specific cytolytic
CD8+ T cells. These effector cells migrate and penetrate the tumor
stroma, where they are able to recognize and kill tumor cells. The
cytotoxic response mediated by T cells releases new tumor
antigens and promotes the cancer immune cycle. In
comparison to other subtypes, C4 and C5 had the relatively
rate-limiting steps within the cancer immune cycle. Hence, five
subtypes possessed diverse immunogenic features and were
predictive of immunotherapeutic responses.

Accumulated evidence suggests the links of necroptosis
with chemotherapy resistance (Gong et al., 2019). Cisplatin is
a crucial agent for treatment of pancreatic cancer patients
with BRCA1/2 or PALB2 mutation (Kong et al., 2020).
Apoptosis resistance represents a primary obstacle resulting
in chemotherapy failure. Bypassing the apoptotic pathway to
induce cancer cell death is a promising therapeutic option to
overcome this issue (Gong et al., 2019). Necroptosis is an
alternative mode of programmed cell death to overcome
apoptosis resistance. Experimental evidence shows that
cisplatin induces necroptosis with tumor necrosis factor α
(TNFα)-dependent and independent pathways (Xu et al.,
2017). Moreover, multitargeted kinase inhibitor KW-2449
alleviates cisplatin-induced nephrotoxicity through
targeting RIPK1-independent necroptosis (Rui et al., 2021).
Combination therapy of CD95L and gemcitabine facilitates
RIP1-independent necroptosis in pancreatic cancer cells
(Pietkiewicz et al., 2015). Necroptosis can alleviate
docetaxel resistance in prostate cancer (Markowitsch et al.,
2021) and breast cancer (Mann et al., 2020). Five necroptosis-
based molecular subtypes presented diverse sensitivity to
chemotherapeutic agents (cisplatin, gemcitabine, docetaxel,
and paclitaxel). Among them, the C4 subtype presented the
highest probability of chemotherapy resistance while C5
subtype was most sensitive to these chemotherapy agents,

FIGURE 9 | Necroptosis-relevant risk model correlates with the chemosensitivity of pancreatic cancer. Box plots show the IC50 values of (A) cisplatin, (B)
gemcitabine, (C) docetaxel, and (D) paclitaxel in high- and low-risk groups.

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 86250213

Fang et al. Pancreatic Cancer Necroptosis Comprehensive Analysis

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


indicating that patients with the C5 subtype were most likely
to benefit from chemotherapy. Moreover, the necroptosis-
relevant risk score can predict the sensitivity to docetaxel and
paclitaxel in pancreatic cancer.

A necroptosis-relevant risk model was developed for predicting
pancreatic cancer survival and responses to immuno- and
chemotherapy, comprising MYEOV, HDAC4, TLDC1, PITPNA,
FNDC3B, HMGXB4, and BAX. External validation confirmed that
this model was capable of accurately predicting pancreatic cancer
patients’ survival outcomes. The genes in the necroptosis-relevant risk
model were upregulated in pancreatic cancer in comparison to
normal tissues. Previous research has uncovered the significance
of aforementioned genes in pancreatic cancer progression. For
instance, MYEOV upregulation is linked with undesirable survival
outcome of pancreatic cancer (Tang et al., 2020a), which elevates the
HES1 expression and triggers pancreatic cancer progression through
enhancing SOX9 trans-activity (Liang et al., 2020). HDAC4 correlates
with the proliferative capacity and metastases of pancreatic cancer
(Cohen et al., 2013). TLDC1 can facilitate proliferation andmigration
of pancreatic cancer cells (Yuan et al., 2021).

Several limitations should be pointed out in this study. First of
all, clinical information retrieved from TCGA and ICGC projects
is not complete, especially the therapy, which may assist in
comprehending whether necroptosis genes are biomarkers of
therapeutic responses. Second, the mechanisms how
necroptosis modulate the precise process of pancreatic cancer
are indistinct. Third, the necroptosis-relevant risk model is
required to verify in large-scale and multicenter clinical
cohorts. Despite these limitations, this study does offer a
comprehensive overview of necroptosis gene profiling in
pancreatic cancer, and aforementioned limitations will be
solved if there are sufficient data in our further research.

CONCLUSION

Collectively, we characterized five robust necroptosis subtypes for
pancreatic cancer with diverse prognosis, immunogenic features,
genomic mutations, and chemosensitivity. Furthermore, we

established a necroptosis-relevant risk model for reflecting
necroptosis in clinical practice. Our findings offered a
reference for combined therapeutic regimens and might guide
the optimal selection of patients for immuno- and chemotherapy.
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