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Abstract: Rhythmic passive movements are often used during rehabilitation to improve physical
functions. Previous studies have explored oscillatory activities in the sensorimotor cortex during
active movements; however, the relationship between movement rhythms and oscillatory activities
during passive movements has not been substantially tested. Therefore, we aimed to quantitatively
identify changes in cortical oscillations during rhythmic passive movements. Twenty healthy young
adults participated in our study. We placed electroencephalography electrodes over a nine-position
grid; the center was oriented on the transcranial magnetic stimulation hotspot of the biceps brachii
muscle. Passive movements included elbow flexion and extension; the participants were instructed
to perform rhythmic elbow flexion and extension in response to the blinking of 0.67 Hz light-emitting
diode lamps. The coherence between high-beta and low-gamma oscillations near the hotspot of the
biceps brachii muscle and passive movement rhythms was higher than that between alpha oscillation
and passive movement rhythm. These results imply that alpha, beta, and gamma oscillations of the
primary motor cortex are differently related to passive movement rhythm.

Keywords: electroencephalogram; oscillation; passive movement; event-related desynchronization;
event-related synchronization

1. Introduction

Passive movements are often used during rehabilitation to improve the range of
motion, motor function, and proprioceptive function [1–3]. According to topographic
studies, the primary motor cortex, supplementary motor area, and premotor cortex are
activated during active movements [4]. Additionally, previous studies have investigated
the time course of changes in cortical oscillations during active movements [5]. During
movement execution by humans, the power of alpha and beta oscillations decreases in
the contralateral sensorimotor cortex 2 s before movement [6–9]. These phenomena are
called event-related desynchronization. Furthermore, the increase in gamma oscillation
power is accompanied by alpha desynchronization and beta desynchronization in the
contralateral sensorimotor area during active movements [5,10], which is referred to as
event-related synchronization. At the end of the movement, recovery of alpha and beta
oscillations occurs (alpha synchronization and beta synchronization) [7,8]. In addition to
gamma synchronization, alpha desynchronization and beta desynchronization have been
related to motor preparation. In contrast, post-movement alpha synchronization and beta
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synchronization have been related to sensory afferent activities because they disappeared
with ischemic nerve block [5,11] and the process of returning the motor cortex to a resting
state [8].

Despite the absence of voluntary planning and preparation during passive movement,
the sensorimotor cortex, primary motor area, supplementary motor area, and primary
and secondary somatosensory areas are activated during passive movements, resembling
active movement [12,13]. The primary motor cortex neurons receive and process sensory
afferent inputs from muscle spindles without generating any active movement and are
activated during passive movements [14–17]. Additionally, despite the absence of vol-
untary movement during passive movement, afferent somatosensory components (skin
mechanoreceptors, muscle spindles, and joint receptors) produce premovement alpha
desynchronization and beta desynchronization [18,19].

Previous studies of cortical oscillations in accordance with active and passive move-
ments implied that the sensorimotor cortex is activated by both active and passive move-
ments [12,13], cortical oscillations changed during active movements [5], and post-movement
alpha synchronization and beta synchronization occurred during passive movements [5,11].
However, despite being responsible for the motor command and receiving the sensory
afferent inputs, the time courses of alpha, beta, and gamma oscillations with passive
movement rhythm remain controversial. The relationship between passive movement
rhythm and alpha, beta, and gamma oscillations in the sensorimotor cortex is still unclear.
Knowledge of brain oscillations in accordance with passive movements may contribute to
an evidence-based approach to passive movement training in rehabilitation settings. We
predicted that if the primary motor cortex receives sensory input from the somatosensory
cortex during passive movement, then the cortical oscillations should be related to the
passive movement rhythm. Therefore, we hypothesized that the alpha, beta, and gamma
oscillations in the primary motor cortex would change differently in accordance with the
passive movement rhythm. Therefore, we aimed to quantitatively identify the relationship
between brain oscillations and passive movement rhythm.

2. Materials and Methods
2.1. Participants

Our target sample size was based on 95% statistical power to detect changes in the
elbow angle and brain oscillation with an effect size of 0.70 and a two-sided α-level of 0.05.
The input of the aforementioned parameters into the Hulley matrix [20] yielded a sam-
ple size of 20. Accordingly, we recruited 20 healthy, neurologically intact participants
(6 men and 14 women; age range: 20–47 years; mean age ± standard deviation (SD):
27.1 ± 9.1 years) to undergo behavioral and electroencephalography (EEG) measurements.
The screening revealed that none of the patients were at risk for adverse events caused
by transcranial magnetic stimulation [21]. Additionally, none of the participants were pre-
scribed medications or diagnosed with psychiatric or neurological diseases. We confirmed
right-hand dominance with the Edinburgh Handedness Inventory [22] and recorded a
mean laterality quotient score of 0.9 points (SD: 0.1 points). Our experimental procedures
were approved by the Research Ethics Committee of the Tokyo Kasei University and the
Saitama Prefectural University and followed the principles of the Declaration of Helsinki.
All participants provided written informed consent prior to their participation.

2.2. Hotspot Detection

Participants were seated with the elbow flexed at 90◦ and the right forearm strapped to
an armrest. We recorded motor-evoked potentials (MEPs) in the right biceps brachii muscle
using double differential surface electrodes (FAD-DEMG1; 4 Assist, Tokyo, Japan). Prior to
recording the MEPs, we cleaned the skin overlying the biceps brachii muscle with alcohol
to reduce its electrical resistance. MEP signals were amplified ×100, bandpass-filtered at
10 to 2000 Hz, digitized at 10 kHz with a PowerLab system (ADInstruments, Dunedin,
New Zealand), and stored in magnetic media.
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Monophasic transcranial magnetic stimulation was delivered to the scalp surface
through a figure-of-eight coil (internal diameter of each wing: 70 mm) using the Magstim 2002

(Magstim, Dyfed, UK) stimulator. After placing a tight-fitting cap over the head of the
participant, we drew the intersecting nasion–inion and interaural lines on the cap with a
marker pencil to localize the vertex (Cz) in accordance with the 10–20 International System.
To induce current flow in the left brain from the posterior–lateral to the anterior–medial
direction, we placed the coil tangentially to the scalp while holding the handle pointing
backward and sideways approximately 45º from the midline. First, we measured the
isometric maximum voluntary contraction such that the participants were instructed to
flex the elbow as much as possible for 5 s. Then, we visually detected the optimal coil
position to elicit maximum MEPs in the right biceps brachii muscle (“hotspot”) during 10%
maximum voluntary contraction of the biceps brachii muscle and marked the location with
a soft-tip pen.

2.3. Electroencephalography

After hotspot detection, we recorded EEG data before and during rhythmic passive
movements using Polymate V (Miyuki Giken, Tokyo, Japan) with a gold-coated active
electrode. After skin preparation, the EEG electrodes were placed over a nine-position grid
(5 × 5 cm2); the center was oriented on the hotspot of the biceps brachii muscle (Figure 1).
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Figure 1. Experimental design used to evaluate rhythmic passive movements. EEG electrodes were
placed over a nine-position grid (5 × 5 cm2); the center was oriented on the TMS hotspot of the
biceps brachii muscle. Two LED lamps were placed 0.25 m and 0.75 m from the right acromion of the
participant. Passive movements included elbow flexion and extension in response to the blinking
of the LED lamps: EEG, electroencephalography; TMS, transcranial magnetic stimulation; LED,
light-emitting diode. Ch, channel.

EEG data were sampled at 1000 Hz and filtered from 0.15 to 200 Hz; we maintained
electrode impedance ≤10 kΩ. EEG signals were referenced to the averaged recordings from
the electrodes on the bilateral earlobes. Before rhythmic passive movements, we recorded a
resting period of 35 s. Then, EEG data were recorded during rhythmic passive movements.

2.4. Passive Movement

We recorded movements at the elbow using an electric goniometer (FA-DL-263; 4Assist,
Tokyo, Japan) mounted on the elbow joint. A positive angle value corresponded with elbow
flexion. Signals from the linear potentiometer were digitized at 1000 Hz (Miyuki Giken,
Tokyo, Japan). The wrist and finger were fixed to a plastic support board. Two light-
emitting diode (LED) lamps—each blinking at 0.67 Hz for 100 ms—were placed 0.25 m and
0.75 m from the right acromion of the participant (Figure 1). Passive movements comprised
30 blocks of eight movement cycles, including elbow flexion and extension, with a 5 s to 7 s
random break. A blue dot was constantly displayed on the screen for gaze fixation during
the resting and passive movement period; it was located approximately 100 cm ahead of
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the participant. We instructed the participants to relax and look at the blue dot, to not
count during the movement, and to keep their arms relaxed throughout the experiment.
Before the start of passive movement trials, the assistants took the participant’s elbow and
wrist and guided them in the appropriate direction several times in accordance with the
blinking of the LED lamps to familiarize them with rhythmic passive movements. The
assistants were instructed to perform rhythmic elbow flexions and extensions as directly
and accurately as possible so that the index fingertip was near (0.25 m from the participant’s
acromion) the LED and far (0.75 m from the participant’s acromion) the LED in response to
the blinking of the LED lamps.

2.5. Data Analysis

We predicted that alpha, beta, and gamma oscillations would be differently related to
the passive movement rhythm because the primary motor cortex receives sensory input
from the somatosensory cortex and each oscillation band has a different role in sensory pro-
cessing. Based on this prediction, the time–frequency analysis and coherence calculations
were performed to measure the phase synchronization of the EEG power spectra to the
time-locking passive movements. In the time–frequency analysis, the onset of movement
was defined as the time point when the elbow angle exceeded the average of the baseline an-
gle by 2 standard deviations (SDs) of the baseline. The epochs of 12,000 ms after movement
onset were extracted from each block’s EEG and elbow angle data. Time–frequency analysis
was performed using Morlet wavelet transforms [23] in frequencies between 8 and 80 Hz
for each epoch. Additionally, EEG signal periods exceeding amplitudes of ±200 µV were
detected to exclude the data, including eye blinking or muscle movement artifacts (99.3%
of the raw data points were kept for further analysis). After artifact rejection, event-related
power spectra were averaged across 30 epochs. Moreover, frequency bands of interest were
selected in the alpha (8–12 Hz), low-beta (12–24 Hz), high-beta (24–30 Hz), low-gamma
(30–60 Hz), and high-gamma (60–80 Hz) ranges. Then, the power spectra were evaluated
for the outliers using Tukey’s fences [24]. The data with values more than 1.5 times the
interquartile range were excluded from the datasets. After removing the outliers, the
blank cells were linearly interpolated. Next, the power spectra and elbow angle for each
participant were normalized using linear transformation to analyze a coherence between
individual variability of the EEG power spectrum and the elbow angle. The data were
expressed as a Z score: Z score = (xi – M)

s , where xi refers to the sample EEG power spectra
or elbow angle, M refers to the mean EEG power spectra or elbow angle, and s refers to the
SD of the data. Moreover, the Z scores for EEG power spectrums were averaged from nine
EEG channels to compensate for the low spatial accuracy of 9 electrodes for the hotspot
of biceps brachii muscle as a region of interest. Furthermore, the Z score for EEG power
spectrum and the elbow angle were low-pass-filtered at 1 Hz to homogenize the difference
in temporal and spectral smoothing between the alpha, low-beta, high-beta, low-gamma,
and high-gamma oscillations by reference to a previous study [5]. Then, coherence calcula-
tion based on the Fourier transform of 5-s epochs (0.2 Hz resolution) which was updated
every 3.75 s (75% data overlapped) was computed between EEG oscillation and passive
movement rhythm by reference to the study by Bourguignon et al. [25].

To conduct a comparison of differences in the coherence values of EEG oscillations
and passive movement rhythm, the one-way repeated measures analysis of variance
was performed. Furthermore, a post hoc analysis with the Bonferroni correction was
performed to compare differences in the coherence between the alpha, low-beta, high-
beta, low-gamma, and high-gamma oscillations. Data analysis was performed using
EMSE (Miyuki Giken, Tokyo, Japan), the scipy package in the Python environment, and
R 3.5.2 software (R Foundation for Statistical Computing, Vienna, Austria). Data are
expressed as mean ± standard error of the mean (SEM). We defined statistical significance
as p < 0.05.
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3. Results
3.1. Consistency in Passive Movement Rhythms

The difference between passive elbow movement and the LED blinking cycles was
−12.1 ± 3.1 ms, indicating a movement delay of 12.1 ms for LED blinking. The rhythmic
passive movement procedure was successful because of the small SEM (i.e., 3.1 ms).

3.2. Time Course of Changes in the EEG Power Spectrum and Elbow Angle

Figure 2 depicts the time courses of changes in the Z scores of EEG oscillations to
the time locking of the elbow angles during a 12 s movement block of eight movement
cycles. The time courses of changes occurred in the mean ± SEM of the alpha-, beta-, and
gamma-band oscillations and in the mean ± SEM of the elbow angles (Figure 2A–F) during
the passive movement cycle. The Gray zone in Figure 2F denotes SEM of the elbow angle,
but it is hardly visible because deviations in the range and rhythm of the elbow angle were
extremely small. Seemingly, we observed that EEG oscillations, except for high-gamma
oscillation, similarly oscillated to the passive movement rhythm with the same time-locked
time scale.
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Figure 2. Time courses of changes in the mean ± SEM of alpha (A), low-beta (B), high-beta (C),
low-gamma (D), or high-gamma (E) oscillations, and in the mean ± SEM of the elbow angle (F).
Black lines and gray zones denote the mean and SEM of alpha (A), low-beta (B), high-beta (C),
low-gamma (D), or high-gamma (E) oscillations. Black dashed lines and gray zones denote the mean
and SEM, respectively.

3.3. Coherence between EEG Oscillations and Passive Movement Rhythm

The coherence between alpha-band oscillation and passive movement rhythm, low-
beta-band oscillation and passive movement rhythm, high-beta-band oscillation and pas-
sive movement rhythm, low-gamma-band oscillation and passive movement rhythm, and
high-gamma oscillations and passive movement rhythm were 0.164 ± 0.002, 0.167 ± 0.002,
0.171 ± 0.002, 0.172 ± 0.002, and 0.169 ± 0.002, respectively (Figure 3). The one-way re-
peated measures analysis of variance demonstrated significant differences in the coherence
among alpha, low-beta, high-beta, low-gamma, and high-gamma oscillations (F = 4.102,
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p = 0.0025). During post hoc testing, using the Bonferroni correction, the coherence value
of alpha oscillation was significantly lower than that of the high-beta and low-gamma
oscillations (alpha vs. low beta, p = 1.000; alpha vs. high beta, p = 0.013; alpha vs. low
gamma, p = 0.005; alpha vs. high gamma, p = 0.349; low beta vs. high beta, p = 0.519; low
beta vs. low gamma, p = 0.267; low beta vs. high gamma, p = 0.519; high beta vs. low
gamma, p = 1.000; high beta vs. high gamma, p = 1.000; low gamma vs. high gamma,
p = 1.000) (Figure 3).
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4. Discussion

We measured changes in cortical oscillations during rhythmic passive movements to
test the hypothesis that alpha, beta, and gamma oscillations of the primary motor cortex
should be differently related to the passive movement rhythm. Our findings suggested the
following: the coherence between high-beta and low-gamma oscillations near the hotspot
of the biceps brachii muscle and passive movement rhythms was higher than that between
alpha oscillation and passive movement rhythm. These results imply that each cortical
oscillation near the hotspot of the biceps brachii muscle differently changed in accordance
with the passive movement rhythm.

Previous studies [11,26,27] noted that alpha-band and low-beta-band oscillations
(15–25 Hz) increased after passive movements. These increments in oscillations required
input from the somatosensory afferents because this phenomenon was eliminated by an
ischemic nerve block [11]. Additionally, previous studies demonstrated an association be-
tween two peaks of the magnetoencephalography response and passive finger movements
from 30 to 100 ms after movement onset [12]. The earliest component was estimated to
be in the primary motor cortex. In contrast, the second component was estimated to be in
the primary motor cortex as well as in the supplementary motor area, posterior parietal
cortex over the hemisphere contralateral to the movement, and secondary somatosensory
cortex of both hemispheres [12]. Our study found that alpha, beta, and gamma oscillations
were differently related to passive movement rhythm. This is the first new observation in
our study. During rhythmic passive movements, the sensorimotor cortex neurons receive
sensory afferent inputs from skin mechanoreceptors, muscle spindles, and joint recep-
tors [14–17]. During our study, the sensory inputs continuously reached the sensorimotor
cortex because of the rhythmic passive movements. One possible explanation for cortical
oscillations during rhythmic passive movements is that changes in alpha, beta, and gamma
oscillations may be evoked by sensory afferents.

Additionally, previous studies regarding rhythmic stimulation without actual move-
ments reported an association between the time course of beta oscillation in the senso-
rimotor cortex and the predictive timing of upcoming external rhythmic visual [28] and
auditory [29] stimuli. Beta synchrony in the sensorimotor cortex increased from the start
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of the informative external cue and diminished afterward [28]; therefore, beta oscillation
may represent processes related to the prediction and integration of sensory information
because of the presence of sensory input of the fingers during movement [5]. Our study
also found that the coherence between high-beta and low-gamma oscillations and passive
movement rhythm were relatively high. This is the second new observation in our study.
One possible explanation for high-beta oscillation during rhythmic passive movement
is that high-beta oscillation may represent processes related to the prediction of the next
passive movement cycle based on sensory information.

Previous studies also reported a close relationship between gamma amplitudes and
movement sequences [30]. Additionally, previous studies noted that beta-band oscillations
were associated with inhibitory γ-aminobutyric acid (GABAergic) interneurons in several
cortical regions, including the primary motor area [31,32], and the increase in gamma
oscillation power was accompanied by beta desynchronization [5,10]. These results imply
that beta and gamma oscillations have opposing roles in the sensorimotor cortex. Beta
oscillation inhibits, whereas gamma oscillation facilitates, motor preparation and execu-
tion [5]. According to previous studies of active movements, gamma amplitudes were
conversely modulated to the beta amplitude during rhythmic active finger tapping [5] and
walking [33,34]. During our study, the high-beta and low-gamma bands similarly oscillated
to passive movement (i.e., coherences between high-beta and low-gamma oscillations
and passive movement were relatively high). Therefore, both high-beta and low-gamma
oscillations may be related to passive movement rhythm. Further research is necessary to
investigate the reciprocal functions of beta and gamma oscillations with rhythmic active
and passive movements.

The time course of alpha oscillation previously resembled that of beta oscillation in
sensorimotor areas [5]. However, the coherence between alpha oscillation and passive
movement was lower than that between high-beta and low-gamma oscillations and passive
movement rhythm in our study. This necessitates further study to investigate the detailed
function of alpha oscillation during rhythmic passive movements.

Several limitations of our study need to be considered. There were only nine EEG
electrodes with the center at the hotspot of the biceps brachii muscle in our study. Therefore,
we did not investigate specific cortical networks in the sensorimotor cortex. Further
studies are necessary to investigate the specific cortical networks based on whole-brain
EEG electrodes during passive movements to clarify the functions of alpha, beta, and
gamma oscillations. Additionally, muscle activity during passive movement was not
directly confirmed during our study; however, the EEG signal more than ±200 µV that
included eye blinks or muscle movement artifacts was excluded. Further studies using
both EEG and electromyography recordings during passive movements are required to
understand the oscillatory changes in the time course of the passive movement cycle and
to elucidate the mechanisms underlying the relationship between EEG oscillations and
passive movement rhythm.

5. Conclusions

Rhythmic passive movements were differently associated with alpha, beta, and gamma
oscillations at the primary motor cortex. Our findings imply that passive movements rely
on the nonequivalent activation of cortical neurons in the primary motor area.
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