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Data‑driven time‑dependent state 
estimation for interfacial fluid 
mechanics in evaporating droplets
Sahar Andalib*, Kunihiko Taira & H. Pirouz Kavehpour

Droplet evaporation plays crucial roles in biodiagnostics, microfabrication, and inkjet printing. 
Experimentally studying the evolution of a sessile droplet consisting of two or more components 
needs sophisticated equipment to control the vast parameter space affecting the physical process. 
On the other hand, the non-axisymmetric nature of the problem, attributed to compositional 
perturbations, introduces challenges to numerical methods. In this work, droplet evaporation problem 
is studied from a new perspective. We analyze a sessile methanol droplet evolution through data-
driven classification and regression techniques. The models are trained using experimental data of 
methanol droplet evolution under various environmental humidity levels and substrate temperatures. 
At higher humidity levels, the interfacial tension and subsequently contact angle increase due to 
higher water uptake into droplet. Therefore, different regimes of evolution are observed due to 
adsorption–absorption and possible condensation of water which turns the droplet from a single 
component into a binary system. In this work, machine learning and data-driven techniques are 
utilized to estimate the regime of droplet evaporation, the time evolution of droplet base diameter 
and contact angle, and level of surrounding humidity. Droplet regime is estimated by classification 
algorithms through point-by-point analysis of droplet profile. Decision tree demonstrates a better 
performance compared to Naïve Bayes (NB) classifier. Additionally, the level of surrounding humidity, 
as well as the time evolution of droplet base diameter and contact angle, are estimated by regression 
algorithms. The estimation results show promising performance for four cases of methanol droplet 
evolution under conditions unseen by the model, demonstrating the model’s capability to capture the 
complex physics underlying binary droplet evolution.

Wetting and spreading of liquid on a solid surface is an omnipresent phenomenon in nature and engineer-
ing technologies such as biodiagnostics, inkjet printing, microfabrication, spray cooling, and agricultural 
irrigation1–13. Droplet evaporation has gained increasing attention over the past 25 years14–19. The original work20 
on the coffee-ring effect was followed by the comprehensive study21 to theoretically, experimentally, and numeri-
cally calculate the evaporation rate of sessile water droplets. Evaporation of a single component sessile droplet is 
influenced by various factors such as substrate temperature22, environment pressure23, surfactant concentration24, 
substrate thermal conductivity25–27, and surrounding gas28. When an organic fluid droplet evaporates on a solid 
surface, thermocapillary instabilities known as hydrothermal waves (HTWs) are created due to surface tension 
gradient along the interface29.

Although the evolution of a single component droplet is mainly understood, the physics becomes com-
plex when there is more than one component in the droplet. Three stages were reported for evaporation of 
water–ethanol mixture droplets where the first stage corresponded to evaporation of a more volatile component 
while the last stage was responsible for evaporation of a less volatile component30. The humidity of the sur-
rounding plays a crucial role in evaporation of a binary sessile droplet. Two separate studies31,32 observed a rise 
in contact angle of binary mixtures which suggested possible condensation of water on droplet. Adsorption of 
water in ethanol and ethanol/water mixtures is also reported by time-resolved infrared spectroscopy33. Three 
different techniques of optical visualization, infrared thermography, and acoustic high-frequency echography 
were employed in a comprehensive study34 to examine the evaporation of butanol, ethanol, water/butanol, and 
water/ethanol droplets. Their results showed that due to the high hygroscopic power of ethanol, the humidity of 
the environment had a noticeable effect on the evolution of pure ethanol droplets. Heterogeneous thermal pat-
terns alongside the evolution of acoustic reflection coefficient proved that ethanol droplet undergoes continuous 

OPEN

Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA. 
*email: sandalib@ucla.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-92965-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13579  | https://doi.org/10.1038/s41598-021-92965-8

www.nature.com/scientificreports/

water loading. The combined influence of ambient temperature and relative humidity on early stages (i.e. pinned 
contact angle) of ethanol droplet was also examined35. In another study36 the water loaded onto ethanol drop-
let was quantified by gas injection chromatography (GIC) under controlled ambient temperature and relative 
humidity. The observed reduction in ethanol concentration was attributed to both ethanol evaporation as well 
as water intake on the drop. They concluded that at low relative humidity, the main mechanism for water intake 
was that of adsorption–absorption, though at high relative humidity water condensation plays a more dominant 
role. While the changes in relative humidity are commonly imposed environmental conditions, controlling 
ambient temperature to tune the effect of humidity is rather an expensive method for practical applications. 
The effects of relative humidity on methanol droplet evaporation was regulated by adjusting the temperature of 
the substrate37,38 which is less expensive compared to controlling ambient temperature. It was concluded that 
increasing substrate temperature maintains the liquid–gas interface temperature above the dew point which in 
turn limits the water condensation on the drop. A regime map was also proposed based on droplet evolution 
under various environmental conditions.

As the number of components in the droplet increases, the underlying physics becomes more complex. 
Recently, multi-component droplet evaporation revealed new phenomena such as spontaneous nucleation of 
oil microdroplets, phase transition, and multi-component diffusion39–42. Such intricate physics with numerous 
parameters in play makes experimental studies sophisticated and time-consuming while requiring advanced 
equipment to finely control the environmental condition. On the other hand, the highly non-axisymmetric nature 
of the problem due to compositional inhomogeneities brings up significant challenges to numerical models.

Machine learning methods have emerged as powerful tools for analyzing a wide range of fluid mechan-
ics problems43,44 such as turbulence45–49, phase transition50, ignition51, vortex vibrations52,53, and aerodynamics 
disturbances54. Image processing and pattern recognition techniques have been employed to analyze the remain-
ing stains after evaporation of sessile droplets. Analysis of patterns in dried drops of biological fluids revealed a 
lot of information for medical diagnostics55–59. Two different studies60,61 showed that the chemistry of fluid and 
substrate can be identified by recognition of patterns in the stains. The aforementioned studies utilized machine 
learning techniques to indirectly measure and detect the mechanisms inside droplets from the footprint after 
evaporation. Here, we introduce a data-driven approach to directly analyze the dynamics of binary droplet 
evaporation (induced by transfer of a second component present in the atmosphere).

In the present study, we use data-driven classification and regression algorithms to analyze the time-depend-
ent behavior of a methanol droplet at different levels of environmental humidity and temperature of the substrate. 
Water uptake into droplet through adsorption–absorption and possibly condensation turns methanol droplet 
into a binary system. Based on the environmental condition, a droplet evolves in different regimes: evaporation-
dominated, transition, or condensation-dominated. The capability of the proposed model is evaluated by estimat-
ing four different parameters, namely: regime of droplet evaporation (through classification algorithms), level 
of surrounding humidity (through regression algorithms), time evolution of droplet base diameter (through 
regression algorithms), and time evolution of droplet contact angle (through regression algorithms). First, a 
classification algorithm is trained to estimate the regime of droplet evaporation through analysis of diameter and 
contact angle evolution over time. The objective of the model is to detect the regime of droplet evolution with 
even a single data point at a specific time. Second, a regression algorithm is utilized to detect the humidity of the 
surrounding by analyzing droplet evolution. The high hygroscopic nature of methanol allows greater amount 
of water uptake into the droplet in humid environments. The higher content of water in droplet increases the 
contact angle and alters the rate of change of volume. The regression model analyzes these changes and reversely 
estimates the humidity. Last, given the condition of the surrounding, the continuous evolution of macroscopic 
parameters of droplet, i.e., diameter and contact angle, is estimated. Our method shows great potential in opening 
up new paths to analyze more complicated multi-component droplet evolution and interfacial fluid mechanics 
in general. Estimating the evolution of different parameters of droplet is a crucial step in designing high qual-
ity and high-resolution finish products in droplet-based biodiagnostics, inkjet printing, and microfabrication 
technologies. Our proposed method provides necessary information on evaporation of organic liquid droplets 
under various environmental conditions with simple and easy-to-use algorithms without the need to perform 
complicated simulations. We show that the regime of droplet, relative humidity of surrounding, and time evo-
lution of diameter and contact angle can be estimated under various conditions. In real-world applications 
anticipating the regime of droplet is of great importance as in many instances, the occurrence of one regime or 
the other should be avoided. For example, a droplet sitting on a surface forever is not ideal for high resolution 
of printing or biosensing.

Results
Physics of droplet evaporation.  Droplet evaporation is influenced by numerous factors including liq-
uid/substrate properties as well as environmental conditions25–28,35,36,62. We analyze the evolution of a sessile 
methanol droplet through macroscopic parameters: volume, V, diameter, D, contact angle, θ , and time, t, under 
controlled relative humidity of surrounding, RH, and substrate temperature, T (see Fig. 1a, inset). The variables 
are nondimensionalized as: t∗ = t/tf , V

∗ = V/V0, D
∗ = D/D0, θ

∗ = θ/θ0, T
∗ = T/T0, RH

∗ = RH/RH0 , 
where θ0 = 90◦,T0 = 35◦C,RH0 = 100% , and tf  , V0 , D0 , that are experimentally measured, stand for total evap-
oration time, initial volume, and initial diameter, respectively. The experiments are conducted in a chamber with 
controlled humidity and on a substrate with controlled temperature (Fig. 1a). Details of experimental procedure 
are given in “Methods” section. Three regimes of droplet evolution are observed under various relative humidity 
of the surrounding and substrate temperature (Fig. 1b, top left) namely: evaporation-dominated, transition, and 
condensation-dominated. Three sub figures represent the evolutions of θ∗ , V∗ , and D∗ over t∗ . Nondimensional 
plots are reported to better visualize different evolution patterns.
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At low relative humidity (the green-shaded region in Fig. 1b), change in substrate temperature does not alter 
the qualitative evolution of droplet. In this regime, the contact angle stays constant for most of droplet lifetime 
followed by a slight increase and a sharp decrease towards the end (Fig. 1b, bottom left). The modest rise in 
contact angle is attributed to the interplay of high evaporation rate of methanol and receding speed at the triple 
line31. Diameter and volume monotonically decrease during droplet lifespan.

Due to the high hygroscopic nature of methanol, at higher relative humidity, water vapor transfers into the 
droplet at the liquid–gas interface. Water adsorbing–absorbing and possibly condensing on the interface is 
reported in previous studies30,33–37. The growth in the concentration of water content changes the interfacial 
tensions and results in higher contact angle34,36,37. Unlike low relative humidity, substrate temperature plays a 
determining role in the regime of droplet evolution at high relative humidity of the surrounding. In the transi-
tion regime (red-shaded region), contact angle rises to a maximum value before gradually decreasing towards 
the end of droplet lifetime. Increasing contact angle demonstrates water uptake into droplet while methanol 
is evaporating. At the point of maximum contact angle, most of methanol has already evaporated and droplet 
consists mainly of water. However, some studies revealed that a small amount of residual methanol remains until 
the end of droplet lifetime31,32. Even though diameter and volume decrease monotonically, two obvious slopes are 
observed in their evolutions (Fig. 1b, top right). The two slopes correspond to two stages: the initial stage when 
merely methanol evaporates and the second stage when water mainly evaporates at a slower rate.

When the humidity of the environment is high and the substrate temperature is sufficiently low, another 
regime is observed. In condensation-dominated (blue-shaded) regime, contact angle monotonically increases 
until it reaches a plateau. Both diameter and volume converge to a non-zero value. Lower substrate temperature 
enhances water uptake through condensation by dropping the liquid-gas interface temperature below that of 
dew point37. In this regime, droplet comes to a quasi-steady state with a remaining droplet consisting mainly 
of water31,32,34,36.

Regime classification.  We have used a classification algorithm to detect the regime of droplet evapora-
tion as sketched in Fig. 1b. The classifier is trained with data on contact and diameter at each specific point in 
time and then classifies the regime of droplet evaporation. Dependence of variables is shown by the correlation 
matrix in Fig. 2a where RG stands for the regime of droplet evaporation. Diameter and volume are coupled for a 
spherical cap sessile droplet through the relation V = (π/3)(D/2)3(2+ cos θ)(1− cos θ)2 which assumes slow 
quasi–static evaporation. t∗ , D∗ , and θ∗ are used as input variables and RG is the target variable. It is observed 
that the contact angle is highly proportional to humidity because the higher the humidity, the higher the amount 
of water uptake into drop. Higher water content increases the interfacial tension at the triple line which results 
in higher contact angles.

Figure 1.   (a) Schematic of the experimental setup with macroscopic parameters of droplet shown in the inset; 
(b) regime map of droplet evaporation (top-left) under various relative humidity (RH) of surrounding and 
substrate temperature (T), evolutions of nondimensional contact angle, volume, and diameter versus time for 
evaporation-dominated (bottom-left), transition (top-right), and condensation-dominated (bottom-right) 
regimes. Each scale bar in droplet images represents a length of 1 mm. The schematic is made using free and 
open-source software Inkscape (Harrington63).
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The framework for detection of the regime of droplet evaporation characterizes the behavioral pattern of drop-
let by learning the values of contact angle and diameter at each specific point in time and classifying them to each 
regime. The model then labels the test and validation sets based on similar evolution observed previously during 
training. The ratio of training to test set is 80–20%. Two classifiers of Naïve Bayes (NB) and decision tree (DT) 
are trained and confusion matrices are used to compare the performance of classifiers on the test set (Fig. 2b). 
Precision, recall, F-score, and overall accuracy values (shown in Table 1) provide a comprehensive evaluation of 
the performance of each classifier on the test set. Based on the results shown in the Fig. 2b and Table 1, DT out-
performs NB for all regimes of the test set. It is also observed that the detection of the condensation-dominated 
regime is challenging for both classifiers. Detection of evaporation-dominated regime reaches an F score value of 
0.97 with decision tree classifier. For NB, around half (43%) of the points in the condensation-dominated regime 
are classified as transition regime (see Fig. 2b). Replacing diameter with volume slightly improves the results 
for both classifiers (6% on average) for this regime. This is due to a more discernible evolution of V∗ compared 
to D∗ towards the end of droplet lifetime for this regime. However, since measuring diameter is a more direct 
approach and also more convenient for the user, the model is trained with diameter.

The capability of the model to detect the regime of droplet evaporation under each specific condition (RH 
and T) is evaluated through a validation set. The validation step is performed on a single experiment at each 
time that is held out during training/testing. Validation results, averaged for each condition, are presented in 
Table 2. The accuracy and recall are the same for validation because at each condition there is only one true 
regime. Figure 2c illustrates a sample of validation for RH = 80% and T = 35 ◦ C. The classifier assigns a region 
for each point in time based on the value of contact angle and diameter. The true regime for this condition is the 
transition regime (red). The red regions on the two plots on the right side of Fig. 2c represents the regions that 
are classified correctly as transition regime and the green regions show the regions that are incorrectly classi-
fied as the evaporation-dominated regime. It is observed that both classifiers correctly detect the region of the 
majority of the data points although DT demonstrates better performance. NB struggles at the beginning and 
end of droplet lifetime. This issue is less pronounced for DT.

Figure 2.   Results of regime classification: (a) correlation matrix for parameters in droplet evaporation; (b) 
results of test set for regime detection illustrated with confusion matrices for Naïve Bayes (NB) and decision 
tree (DT) algorithms; (c) point-by-point validation results with NB and DT classifiers for regime detection 
with experimental data of droplet evaporation for RH = 80% and T = 35 ◦ C; (d) point-by-point results of 
estimation set with NB and DT classifiers for regime detection with experimental data of droplet evaporation for 
experiment #4 (RH = 75% and T = 25 ◦ C) in estimation set. The colors in (c,d) correspond to the regime colors 
used in Fig. 1b.

Table 1.   Regime classification results on test set: standard metrics for two different classifiers.

Classifier Accuracy RG Precision Recall F-score

NB 0.75

Evap. 0.74 0.65 0.6

Trans. 0.81 0.78 0.79

Cond. 0.46 0.93 0.61

DT 0.96

Evap. 0.99 0.97 0.97

Trans. 0.97 0.96 0.96

Cond. 0.83 0.89 0.85
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The capability of the model to estimate the regime of droplet is evaluated on an estimation data set from 
conditions that are unseen by the model and do not contribute to the model training, testing, and validation. 
The values of RH and T for these conditions are randomly selected in the range of 20%< RH <80% and 15 ◦ C 
< T < 35 ◦ C (shown with cross and star marks on the regime map of Fig. 1b). The model classifies each experi-
ment under each regime with different ratios as shown in Table 3. For example, Experiment 1 with RH of 30% 
and T of 15 ◦ C is close to the boundary of evaporation-dominated and transition regimes. With NB, 54% of the 
data points in this experiment are classified as evaporation-dominated regime and 46% as transition regime. 
This is expected due to the location of Experiment 1 on the regime map. It should be noted that the lines on 
the regime map are approximate boundaries. Figure 2d demonstrates regime estimation of all data points of 
experiment 4 with both classifiers. The shown evolution of contact angle is not similar to any of the evolutions 
shown in Fig. 1b subfigures. In fact, contact angle decreases at the beginning and then starts rising. Experiment 
#4 falls in transition regime. That is the reason that the profile for experimental data in Fig. 2d is colored in red 
for the true regime of experiment #4. As it is seen, NB and DT correctly classify 84 and 93% of the data points 
in experiment 4 to transition regime. The green regions represent the data points that are incorrectly classified 
as evaporation-dominated regime.

Relative humidity estimation.  In this section, we show the ability of the model to detect environmental 
humidity by analyzing the evolution of contact angle and diameter through regression algorithms. Polynomial 
regression with four different orders (linear, quadratic, third-order, and fourth-order) and regression tree are 
used for training. The coefficient of determination ( R2 ) increases from 0.66 for linear up to 0.93 for fourth-order 
polynomial regression. The test results for all five regression methods are shown in Fig. 3a. The horizontal axis 
shows the true value of RH∗ and the vertical axis shows the estimated values averaged over all the points for 
each RH∗ . As it can be seen, the higher the order of polynomial regression, the closer the average estimation to 
the ground-truth value and the smaller the error bar. Furthermore, regression tree performs more accurately 
compared to all polynomial regression methods. Model performance under each specific condition through 
validation set is shown in Fig.  2b. The consistent colors throughout Fig.  3a–c represent different regression 
methods and different markers are used for each substrate temperature in Fig. 3b. Based on the results shown in 
Fig. 3b, all methods except linear regression produce reasonably accurate results. The validation results get closer 
to actual values as the order of the polynomial regression increases. Nonetheless, it must be noted that higher 
order polynomial regression increases the computational cost as well as the chance of over-fitting. Performance 
of regression tree is comparable to third-order and fourth-order polynomial. The capability of different regres-
sion methods to estimate new humidity values by analyzing the time evolution of contact angle and diameter is 
presented in Fig. 3c. The new relative humidity values (30, 33, 65, and 75%) are randomly selected in the range 
of 20–80%. It is noteworthy that the model has not seen any data of droplet evolution under these RH values 
during training, testing, or validation. It is seen that, unlike testing and validation where increasing the order 
of polynomial or complexity of the model (i.e., regression tree) produces more accurate results, higher order 
polynomials do not result in better estimation of unseen conditions. As a matter of fact, linear, quadratic, and 
third-order polynomials estimate more accurately. This is a common issue when the model fits the training data 
very well and it negatively affects the model performance on the new data set. Figure 3c clearly indicates over-
fitting with fourth-order polynomial.

Table 2.   Regime classification results on validation set under each specific RH and T condition with two 
different classifiers.

Classifier RH(%) 15 ◦C 23 ◦C 35 ◦C

NB

20 0.72 (± 0.04) 0.73 (± 0.08) 0.78 (± 0.06)

50 0.80 (± 0.06) 0.62 (± 0.11) 0.63 (± 0.02)

80 0.41 (± 0.10) 0.88 (± 0.06) 0.83 (± 0.08)

DT

20 0.98 (± 0.03) 0.96 (± 0.08) 0.96 (± 0.08)

50 0.94 (± 0.10) 0.94 (± 0.03) 0.98 (± 0.03)

80 0.74 (± 0.23) 0.97 (± 0.05) 0.94 (± 0.07)

Table 3.   Results of regime estimation for four experiments under new conditions unseen by the model. The 
true regime of each experiment is shown on the regime map in Fig. 1b.

Experiment RH(%) T(◦C)

NB DT

Evap. Trans. Evap. Trans.

1 (X) 30 15 0.54 0.46 0.67 0.33

2 (X) 33 23 0.61 0.39 0.79 0.21

3 (X) 65 35 0.32 0.68 0.16 0.84

4 (*) 75 25 0.18 0.82 0.07 0.93
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Diameter and contact angle estimation.  In this section, the capability of the model to estimate the 
continuous evolution of contact angle and diameter over time is evaluated through regression algorithms. This 
means that the model estimates the evolution of diameter and contact angle at each time increment (approxi-
mately one second apart). The input variables include T∗ , RH∗ , t∗ , and θ∗ (or D∗ ) and the target variable is D∗ (or 
θ∗ ). By increasing the order of the polynomial, the coefficient of determination, R2 , for training improves from 
0.87 to 0.99, and from 0.78 to 0.96 for diameter and contact angle estimation, respectively. The performance of 
five different regression methods on the test set is presented in Fig. 4a. The first row represents the results when 
D∗ is the target variable and the second row illustrates the results for θ∗ as the target variable. The closer the 
distribution of data to the diagonal line in these plots, the better the performance of the model on the test set. 
Based on the results shown in Fig. 4a, the diameter test results saturate after third order polynomial while for 
contact angle the performance keeps improving when increasing the degree of polynomial from third to fourth.

The validation results are summarized in Fig. 4b for D∗ (top) and θ∗ (bottom) in terms of R2 and root mean 
square error (rmse). With D∗ being the target variable, an average R2 of 0.8 or higher and average rmse less than 
0.1 are achieved for all nine conditions. Going from linear to quadratic to third order polynomial increases 
and decreases the value of R2 and rmse, respectively. The profiles of R2 and rmse exhibit saturation, and fur-
ther increase in the order of the polynomial does not improve model performance on validation data. This is 
consistent with the test results where model performance saturates at third order. Furthermore, regression tree 
demonstrates accuracy comparable to third-order and fourth-order polynomials. By comparing the range of 
axes in Fig. 4b-top with bottom, it is obvious that R2 values are generally lower (hardly reaching 0.7) and error 
is higher when θ∗ is the target variable. In fact, there are a few instances where the average R2 turns negative, 
suggesting that the overall estimation of the model is worse than an estimation with a constant average value.

The performance of the model on estimating the evolution of θ∗ and D∗ versus time under four new conditions 
that did not contribute to model training, testing, or validation is shown in Fig. 4c. One value of R2 and rmse 
are reported for each condition (or experiment) which shows the overall quality of the fit. Higher coefficients of 
determination and lower rmse values demonstrate the better performance of the model in estimating D∗ then θ∗ 
evolution. Based on the results shown in Fig. 4c, third order polynomial regression has the best performance in 
estimating diameter. The results become less accurate with fourth-order polynomial which suggests over-fitting. 
It is interesting to note that regression tree, which had higher accuracy during testing and validation, is outper-
formed even by linear regression during estimation. The evolution of diameter versus time estimated by quadratic 
regression for Experiment 3 is depicted in Fig. 4d. As it can be seen, even with a quadratic regression, the model 
estimates the evolution of D∗ quite accurately for an unseen condition. Considering the range of values on axes 
of Fig. 4c-top and bottom, estimating the evolution of contact angle is more challenging for the model. Unlike 
estimating diameter, increasing the order of polynomials has a negligible effect. The accuracy of the model stays 
almost constant for linear, quadratic, and third order. However, it worsens drastically for fourth-order polynomial 
due to over-fitting the data. The R2 and rmse values for contact angle estimation with fourth-order polynomial 
fall outside the range shown in the plot. Since the estimation of θ∗ is generally more challenging for the model, 
the effect of over-fitting is more noticeable compared to D∗ estimation. The overall better performance of the 
model for diameter estimation compared to contact angle estimation is due to the fact that diameter evolution 
is relatively smooth and therefore easier to estimate whereas contact angle evolution changes substantially under 
different conditions. Figure 4d-bottom illustrates contact angle evolution over time estimated with third-order 
polynomial for Experiment 1 which is in the evaporation-dominated regime. Although the maximum value of 
contact angle is underestimated with 3rd order polynomial, the time corresponding to the maximum contact 
angle is estimated accurately. Also, there is a good agreement between the estimated and actual contact angle 
evolution during most of droplet lifetime with R2 value of 0.74 and rmse of 0.05.

Figure 3.   Relative humidity regression results: (a) test set; (b) validation; (c) estimation. Markers for all colors 
in (b) represent different temperatures as shown in legend. Markers and colors in (c) are the same as in (a).
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Discussion
In this study, we have analyzed the complex physics of sessile droplet evaporation (which starts with a single 
component and turns into a binary system due to the transfer of a second component i.e., water) through machine 
learning, classification and regression algorithms. Four different parameters pertaining to droplet evaporation, 
namely: regime of droplet evaporation, level of surrounding humidity, time evolution of droplet base diameter, 
and time evolution of droplet contact angle, are estimated. Point-by-point analysis of droplet profile enables 
time-dependent estimations given a limited number of data points. This means that the model does not need the 
entire evolution profile of a droplet to make an estimation. Instead, only a few (or even a single) data points are 
(is) sufficient for estimation, although more data points result in more accurate estimation. The model estimation 
capability is then assessed on the data that do not contribute to training, testing, or validation.

Two different classifiers are utilized to estimate the regime of droplet evaporation. NB is chosen as a simple 
easy-to-interpret algorithm, while DT serves as a more powerful algorithm. As expected, DT outperforms NB 
due to a more robust internal structure at the expense of computational cost and transparency. Both classifiers 
showed impressive performance (minimum 75% accuracy) on estimating the regime of droplet. Knowledge on 
droplet evaporation regime is necessary for compatible designs in numerous industries such as droplet-based 
biosensors or ink-jet printing.

Additionally, level of surrounding humidity, time evolution of droplet base diameter, and time evolution of 
droplet contact angle are estimated through regression techniques. Polynomial regressors, as well as regression 

Figure 4.   Diameter (D*) and contact angle (θ∗) regression results: (a) test set; (b) validation set; (c) estimation 
set; (d) diameter estimation with quadratic regression for E3 (top) and contact angle estimation with third-order 
polynomial regression for E1 (bottom).
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tree, are trained through point-by-point analysis of droplet evolution. The model performance improved by 
increasing the order of the polynomial and using regression tree for training, test, and validation sets. However, 
when estimating the new conditions unseen by the model, fourth-order polynomial and regression tree suffered 
from data over-fitting. The best performance of the model is achieved by third-order polynomial. In general, the 
model estimation results are more accurate when estimating diameter evolution compared to contact angle esti-
mation. This is due to smoother, hence easier to estimate, evolution of diameter with time. The sharp changes in 
θ∗ under different conditions make the estimation of its evolution challenging for the model. Information of this 
type is of great importance for technologies such as ink-jet printing, or droplet-based biodiagnostics where the 
estimations can provide critical information on the base diameter or contact angle of the droplet at a specific time.

In the current work, behavior of a sessile droplet transitioning from a single fluid into a binary mixture 
following transfer of a second component from the atmosphere is studied through data-driven techniques. 
The model demonstrated promising performance detecting the regime of droplet evolution, the humidity level 
surrounding droplet, and time evolution of diameter and contact angle. The current case study demonstrates 
the capability of the proposed model to analyze complex interfacial fluid mechanics problems through machine 
learning algorithms. Although we have estimated four parameters of droplet evaporation by this model, these 
kinds of techniques can be expanded to perform a wide range of estimations. Our preliminary study opens 
up new ways to study binary or multi-component droplet evolution which might lead to better analyzing the 
complex physics of the problem.

Methods
Experimental setup and procedures.  The experiments are carried out in a chamber (with dimensions 
127× 127× 76 mm3 ) of drop shape analyzer (DSA 100) from KRÜSS. The relative humidity inside the chamber 
is controlled and the temperature is kept at room temperature (i.e., 23 ◦C ). The bottom side of the chamber is 
equipped with a Peltier plate (electrical system and a temperature bath) to control the substrate temperature. The 
top of the chamber has a small hole for passing the syringe. Both sides of the chamber have transparent windows 
for visualization purposes. An LED light is used for illumination and a CCD camera is utilized to capture the 
time evolution of droplet profile (Fig. 1a). The whole setup is mounted on an anti-vibration table to eliminate 
environmental disturbances.

Methanol is purchased from Fisher Scientific with a purity of 99.8%. The glass substrates are coated with a 
very thin PDMS (polydimethylsiloxane) layer to achieve spherical and reproducible droplets with measurable 
contact angles. In order to ensure that methanol does not interact with the PDMS coating, multiple methanol 
droplets are successively deposited at the same location on the substrate and let evaporate. No change is observed 
in the initial contact angle of droplets or in their evolution during evaporation. The relative humidity inside the 
chamber and the temperature of the substrate are set to desired values and enough time is passed to make sure 
quasi-steady state is achieved. Three values of relative humidity: 20%, 50%, and 80% alongside three values of 
substrate temperature: 15 ◦C , 23 ◦C (room temperature), and 35 ◦C are tested. A drop of methanol is gently 
deposited on the glass substrate. Droplet volume is under 5 µ l in order to keep droplet size below capillary length. 
The corresponding volume to the capillary length for methanol droplet is around 45 µ l. The evaporation process 
of methanol droplet is recorded by the CCD camera at 50 frames per second. All experiments under each rela-
tive humidity and substrate temperature condition are repeated five to ten times to ensure the reproducibility 
of the data. A KRÜ SS Drop Shape Analyzer software is utilized to measure the time evolution of contact angle 
( θ ), base diameter (D), and volume (V). Due to the observed differences between the right and left contact angle 
values, elliptical fit is used for contact angle and volume measurements. For better analysis of droplet behavior, 
all dimensional parameters are nondimensionalized as followed: D∗ = D/D0 , V∗ = V/V0 , t∗ = t/tf  ; where D0 , 
V0 , and tf  are initial diameter, initial volume, and total evaporation time, respectively.

Data acquisition.  The data for the model is generated by experiments of methanol droplet evaporation 
under various environmental conditions. Nine different conditions are created by a combination of three levels 
of surrounding relative humidity: 20%, 50%, and 80% with three substrate temperatures: 15 ◦ C, 23 ◦ C, and 35 
◦ C. For each of these nine conditions, the relative humidity in the chamber and substrate temperature is set to 
the desired values and enough time is passed to ensure quasi-steady state. Then a droplet of methanol is gently 
deposited on the substrate and the evolution of droplet base diameter, contact angle, and volume is recorded 
over time with a CCD camera of Drop Shape Analyzer (see Fig. 1a inset). Each point in time with corresponding 
contact angle, diameter, and volume is considered a data point for the model.

Data partitioning and processing.  The data generated under nine different conditions mentioned in the 
previous section are used to train, test, and validate the model. The droplet evaporation experiments for each of 
these nine conditions are repeated five to ten times to make sure that the results are consistent and reproducible. 
We carried out 60 droplet evaporation experiments under these nine conditions which created a total number 
of 10,850 data points that are used for training, testing and validating the model. There are additional 761 data 
points that are used to assess the performance of the model at the final step. The environmental conditions under 
which these data points are generated are completely different than the other 10,850 data points used for train-
ing, testing, and validating the model.

Training and testing.  The data for training, testing, and validation are generated by methanol droplet evap-
oration under nine different conditions which are the combinations of three levels of surrounding humidity: 
20%, 50%, and 80% with three substrate temperatures: 15 ◦ C, 23 ◦ C, and 35 ◦ C. The behavior of droplet under 
the same condition is similar between experiments however it is not exactly the same due to microscopic defects 
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of the surface, initial conditions, etc. The data from a single experiment is held out at the beginning of training 
as a validation set. The remaining data from 59 experiments is partitioned into a training set and a test set with 
80–20% ratio. It should be noted that multiple training to test set ratios are examined to ensure the convergence 
of the model which is discussed in the “Performance criteria” section.

Cross validation.  A 10-fold cross-validation is carried out. The results for the test set show one of 10 sce-
narios from the test set. Cross-validation is performed to ensure all the results for training and test set are similar 
to each other and there is no anomaly in the data.

Validation.  Once the model is trained and tested, it is then examined on the validation set that was held 
out at the beginning of training. The validation set that is kept out, is the data pertaining to one whole experi-
ment out of 60 experiments. This means that the model has not seen the data for the specific experiment in the 
validation set. Validation is performed to specifically evaluate the performance of the model under each specific 
condition of surrounding humidity and substrate temperature. This procedure is repeated 60 times until each 
experiment is held out once and validated. Validation results are averaged over all experiments under each spe-
cific RH and T condition.

State estimation.  There are additional 761 data points, called estimation set, that are generated by four 
experiments of methanol droplet evaporation. It must be noted that the machine has not seen any data of droplet 
evaporation under these new conditions. The data in the estimation set does not contribute to the framework 
during training, testing, or validation. The surrounding humidity and substrate temperature for these new con-
ditions are randomly selected to be in the range within which the model is trained (i.e., 20% < RH < 80% and 
15 ◦C< T < 35◦ C).

Performance criteria.  The performance criteria of the model are reported by standard metrics. For clas-
sification, the confusion matrix of the model is used as well as the precision, recall, F score, and overall accuracy 
values for each regime. For validation, the accuracy values are the same as recall values for each combination of 
RH and T because there is only one true regime for each validation set. For regression methods, coefficient of 
determination ( R2 ) is reported to show how well the model fits the data in the training set. For RH testing, vali-
dation, and estimation, the actual RH of the environment is compared against the estimated value of RH. When 
D∗ (or θ∗ ) is the target variable, the test results are demonstrated as estimated values versus actual values. The 
validation and estimation results are reported by R2 that shows the quality of the fit; the proportion of variance 
in the target variable which is predictable from the input variables; and root mean squared error (rmse) which 
represents how much the estimation is off on average when estimating the average target variable. We have also 
tested the model convergence for both classification and regression algorithms. We trained the model by con-
sidering only fractions of the available data i.e., 80%, 70%, 60%, and 50%, and observed that the results for the 
test set remain unchanged. This proves the fact that the number of data points used for machine learning of this 
specific problem is converged.

Classifiers.  We have used Naïve Bayes Classifier64–67 as a simple and easy-to-interpret algorithm. Since the 
algorithm is simple, there is less chance for over-fitting the data, it is faster and needs a smaller memory foot-
print. However, the restrictive underlying assumptions compromise its accuracy for real case scenarios when the 
variables are not fully independent of each other.

Bagged Decision Tree68–70 with 250 trees is also used. It is a powerful classifier with built-in support for cross-
validation and a specialized function to measure feature importance. However, it results in complex models that 
are not very transparent. It is often hard to understand how it makes estimations.
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