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3Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux University, 33000 Bordeaux, France
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Several genetic causes of autism spectrum disorder (ASD) have been identified. However, more recent work has highlighted
that certain environmental exposures early in life may also account for some cases of autism. Environmental insults during
pregnancy, such as infection ormalnutrition, seem to dramatically impact brain development. Maternal viral or bacterial infections
have been characterized as disruptors of brain shaping, even if their underlying mechanisms are not yet fully understood. Poor
nutritional diversity, as well as nutrient deficiency, is strongly associated with neurodevelopmental disorders in children. For
instance, imbalanced levels of essential fatty acids, and especially polyunsaturated fatty acids (PUFAs), are observed in patients
with ASD and other neurodevelopmental disorders (e.g., attention deficit hyperactivity disorder (ADHD) and schizophrenia).
Interestingly, PUFAs, and specifically n-3 PUFAs, are powerful immunomodulators that exert anti-inflammatory properties. These
prenatal dietary and immunologic factors not only impact the fetal brain, but also affect the microbiota. Recent work suggests that
the microbiota could be the missing link between environmental insults in prenatal life and future neurodevelopmental disorders.
As both nutrition and inflammation can massively affect the microbiota, we discuss here how understanding the crosstalk between
these three actors could provide a promising framework to better elucidate ASD etiology.

1. Introduction

Autism is a complex neurodevelopmental condition whose
different forms are described in DSM-V as autism spectrum
disorder (ASD). ASD affects almost 1 in 100 children [1] and
is characterized, in varying degrees, by deficits in verbal and
nonverbal communication, and is associated with repetitive
behaviors [2]. Several forms of ASD have been described,

such as Asperger syndrome [3] or Kanner-type autism [4],
revealing that ASD is a highly heterogeneous disorder, likely
with multiple underlying causes. Intense scientific work has
been performed in recent years to understand the potential
origin of ASD, revealing that this disorder arises from both
genetic and environmental factors, especially those influenc-
ing fetal and early-life development [5].
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Although ASD has been shown to be highly heritable
(recent estimates 38–54%), several meta-analyses have high-
lighted that nongenetic prenatal causes of ASD exist, opening
the door for further studies to investigate such mechanisms
[6]. Approximately 10% of ASD cases are linked to disorders
of genetic etiology, such as fragile X syndrome, tuberous scle-
rosis, and Rett disorder. Supporting the idea of heterogeneity
of ASD, single genetic mutations account for only 1-2% of
ASD cases [7], with the majority of cases remaining idio-
pathic. Mutations identified by genetic studies have revealed
that some affected genes are involved in brain development
from in utero through infancy. Frequent aberrations in brain
cytoarchitectural organization and neuronal connectivity
have been observed in the brains of ASD patients, leading to
the concept that ASD is a synaptopathy [8]. Genes involved
in synapse formation or brain connectivity (e.g., fmr1,mecp2,
shank3, tsc, neuroligin, and cntnap2) have been repeatedly
linked to ASD [9–11].

ASD brain transcriptome studies identify molecular
abnormalities in synaptic and immune/microglia markers
gene expression, with the former being downregulated and
the latter upregulated [12]. Other genes related to inflam-
mation (e.g., il-1raplp1, il-1r2, c4b, met, mch2, par2, mtor1,
and 𝜇par) have been reported to be differentially expressed
in ASD as well [13, 14]. This is of particular interest as
the perinatal environment generating chronic neuroinflam-
matory processes leads to the rapid development of ASD
in susceptible children [15]. Indeed, maternal inflammation
linked to infection, autoimmunity, obesity, or gestational
diabetes during pregnancy is associated with a higher risk
of neurodevelopmental disorders, in particular ASD [16],
as reviewed by Estes et al. [15]. Many experimental stud-
ies have linked maternal immune activation (MIA) in the
pathogenesis of ASD with neuroinflammatory events in the
developing brain as an important component of brainmalfor-
mation [17, 18]. Experimental studies also revealed that MIA
induces long-lasting changes in immune system activity and
microbiota, which are believed to be involved in behavioral
alterations in offspring [19, 20]. Interestingly, the host micro-
biota has been shown to modulate local immune responses
in the brain [21], and conversely neuroinflammation can
influence the microbiota composition [19]. In addition to
the microbiota, nutrition is an important component of
inflammatory regulation and nutritional deficiency could
also be an important risk factor for ASD [22]. Recent animal
studies have revealed that maternal nutritional statuses in n-
3 polyunsaturated fatty acids (PUFAs), essential fatty acids
with anti-inflammatory properties that are present in the
brain [22–24], regulate microglia activity in the developing
brain [25] and influence ASD-like behavioral disorders [26].
Here, we discuss evidence of neuroimmune dysregulation in
patients with ASD, along with the epidemiological, clinical,
and experimental studies implicating MIA, gut microbiota,
and lipid nutrition as environmental factors that can lead to
sustained neuroinflammation and contribute to the etiology
of ASD. Understanding these risk factors could contribute to
the development of novel nutritional strategies for therapeu-
tic interventions in ASD.
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Figure 1: Association between prenatal infection and enhanced risk
of neurodevelopmental disorders. During pregnancy, pathogens are
thought to increase the risk of neurodevelopmental disorders in the
offspring depending on the timing of infection and the magnitude
of maternal immune response. Activation of the fetal immune
system by de novo synthesis of cytokines sensitizes the brain to neu-
rodevelopmental alterations. Interaction with other environmental
and/or genetic factors also contributes to ASD etiology. Modeling
prenatal immune activation represents a powerful tool to elucidate
the relative contribution of these various factors for enhanced risk
of ASD as well as other neurodevelopmental disorders.

2. Evidence of Neuroinflammatory
Processes in Autism

Over the last 10 years, much evidence has accumulated
pointing to inflammatory mechanisms as contributors to
ASD, and intense research has been undertaken to determine
exactly how immune dysregulation alters brain connectivity
and function and plays a role in autism phenotypes [27]
(Figure 1). The recent demonstration that microglia, the
resident immune cells of the central nervous system (CNS),
contribute not only to inflammatory events but also to
neural development, has raised new hypotheses regarding
their role in the etiology of autism. In addition to altered
systemic immunity [28, 29], neuroinflammation has been
observed in the brain of ASD patients. The presence of
activated microglia has been reported in the dorsolateral
prefrontal cortex of autistic patients [30]. Moreover, Positron
Emission Tomography (PET) imaging studies have revealed
an activation of microglia in other brain regions [31, 32].
Postmortem studies of individuals with ASD have also
shown activation of microglia, as well as an increase in
density [30, 33, 34]. Reinforcing the idea of immunological
dysfunction in ASD [35–39], this activation of microglia is
accompanied by increased expression of proinflammatory
factors, such as cytokines and chemokines, in the brain and
cerebrospinal fluid of ASD subjects [30, 34]. In particular, the
proinflammatory cytokine IL-6 and the chemokines MCP-1
and RANTES have been reported in neonatal blood samples
from ASD children [40]. Brain arginine vasopressin, which
is released during inflammation and plays a role in social
behavior inmammals, has also been associatedwithASD [41]
and is considered as a biomarker of the disease. Quinolinic
acid and neopterin, which are activated by indoleamine 2,3-
dioxygenase (IDO), an enzyme upregulated by inflammatory
factors and involved in depression [42], are decreased in
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the cerebrospinal fluid (CSF) of ASD patients [43]. This
may reflect an inadequacy or lack of maturation of the
immune system. Despite the lack of evidence in humans that
neuroinflammation plays a direct role in the pathogenesis
of autism, research in animal models strongly suggests this
to be the case. Deficits in microglial activity during brain
development have been shown to be deleterious toward
the formation of mature synapses, leading to an increase
of immature synapses that could account for cognitive and
ASD-like behavioral deficits [44, 45].Therefore, in addition to
genetic risk factors for inflammation, environmental factors
leading to neuroinflammatory events are receiving more
scrutiny in the etiology of autism. In this review, we will
particularly focus on maternal immune activation (MIA),
PUFAs, and microbiota as environmental risk factors that
may participate in the etiology of ASD in combination to
genetic risk factors.

3. Risk Factors for Neuroinflammation
and Autism

3.1.Maternal Infection during Pregnancy andAutism Epidemi-
ological Studies. Epidemiological studies strongly support a
link between maternal infection and the development of
ASD [18]. Compelling evidence supporting this hypothesis
comes from a study on babies born from mothers exposed
to the 1964 rubella pandemic. An increased incidence of
children suffering from autistic disorders of 8–13% (versus
0.05% in controls) was found in this ecological cohort [46,
47]. Since then, ASD has been associated with numerous
types of infectious agents, including not only viral, but also
bacterial and parasitic infections [18]. Data collected from
a Danish register of one million children born between
1980 and 2005 showed an association between infection-
driven hospitalizations of pregnant women and an increased
prevalence of ASD diagnoses in children. Interestingly, the
time-window of infection is critical for the association with
ASD and is different depending on the pathogen. The first
trimester has been identified as critical for viral infections
whereas bacterial infections during the second trimester have
been associated with [16]. These observations suggest that
the maternal immune effectors synthesized during infection
rather than infection per se would be responsible for cerebral
changes in the offspring leading to ASD. Furthermore, in
addition to the temporal window of infection, the magnitude
of inflammation (i.e., fever duration and hospitalization) is
crucial for the prognosis of children born from infected
mothers. Of note, recent evidence, showing that infection
with Zika virus (ZIKV) during pregnancy induces major
brain damage and microencephaly, has led to speculation on
the role of this virus in developmental diseases such as ASD
[48–50]. ZIKV has been shown to directly infect neural cells
and promote their death but could also activate the immune
system and in turn affect neuronal network-building in the
fetus brain [51, 52].

One plausible mechanism supporting the association
between maternal infection and ASD is cytokine production
in the fetal brain in response to maternal inflammatory

reaction [53]. Such cytokine expression may affect normal
brain development in the offspring. In 2013, Zerbo et al. [54]
showed that maternal fever during pregnancy is associated
with ASD outcomes in the offspring while the risk of
developing autism is reduced when mothers take antipyretic
medications [54]. Moreover, mothers of children with ASD
present higher blood levels of interferon gamma (IFN𝛾),
IL-4, and IL-5 amid pregnancy [55]. Recent case-control
studies have shed light on the positive correlation between
proinflammatory cytokines levels in the amniotic fluid and
occurrence of ASD [28, 56] (recently reviewed in Bilbo and
Schwarz, 2012 [57]). Remarkably, IFN𝛾 is critical for social
behavior and frontocortical brain regions, a hallmark of ASD,
as demonstrated in mice deficient in adaptive immunity,
further reinforcing the link between social behavior and
this cytokine [58]. Altogether, these associations give rise
to the hypothesis that maternal immune activation (MIA)
irremediably impacts the developing brain,which contributes
to the etiology of autism [18, 59–61].

3.1.1. Animal Models. The clinical evidence highlightingMIA
as a risk factor for ASD has motivated the development of
several animal models. In particular, infection of pregnant
rodents with pathogens (virus and bacteria) relevant to
human and activation of maternal immune system with viral
or bacterial endotoxins in the absence of pathogen have been
widely used (reviewed in Patterson, 2011 [18]). Interestingly,
despite the fact that different molecular pathways are acti-
vated in thesemodels, considerable overlaps have been found
in behavioral impairment consistent with ASD symptoms.

3.1.2. Active Viral/Bacterial Infections. Attempts to model
prenatal infection in animals led to exposing pregnant
rodents to the human influenza virus. Prenatally exposed
offspring presented typical signs of altered neuronal migra-
tion [62], as well as astrogliosis [63], mimicking alterations
found in ASD patients [61, 64]. In another prenatal infection
study, Fatemi and colleagues reported increased expression of
Vldlr and Foxp2, also consistent with data from human ASD
patients [65]. Behavioral assessments of murine offspring
are designed to mirror as closely as possible those used
to observe ASD patients [66, 67]. Deficits in sensorimotor
gating are typically assessed by a prepulse inhibition (PPI)
paradigm, in which a weak prestimulus inhibits the reaction
for a subsequent stronger startling stimulus. Patients suffer-
ing from ASD display deficits of prepulse inhibition as a
manifestation of their general inability to filter out unnec-
essary information. This has been linked to abnormalities of
sensorimotor gating. Adult offspring that had been exposed
to influenza early in their gestation exhibit PPI deficits and
altered exploratory and social behavior [68]. Recently, the
influenza model was used in rhesus monkeys, an animal
model more relevant for human brain development. Flu
infection early in the third trimester leads to reduced volume
of cortical grey matter, decreased white matter in the parietal
cortex, and neuronal alterations. Such aberrations of brain
development are all characteristic of ASD [5].

Bacterial infections have also been shown to increase the
risk of developing autism [18]. Live bacterial infectionmodels
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were developed in rodents by infecting dams with Group
B Streptococcus (GBS), the most common human pathogen
in fetal environments. When exposed to GBS during preg-
nancy, the offspring recapitulated numerous neurobiological
and behavioral autistic-like symptoms. Moreover, a gender
dichotomy appears in offspring, which is a cardinal feature
of human ASD [69].

Taken together, findings obtained in animal models of
viral and bacterial infections support the hypothesis of
deleterious effects of a prenatal infection in ASD. Notably,
viruses are never found in the brains of offspring, suggesting
that the maternal immune response to infectious agents is
more relevant than the agents themselves in the detrimental
effects of prenatal immune challenges [68]. In fact, animal
studies show that infectious agents do not usually reach fetal
compartments; however, cytokines from the mother can still
cross the placental barrier and stimulate de novo synthesis
of cytokines in the fetal brain [70]. To test whether altered
expression of maternal and/or fetal cytokines might play a
role in linkingmaternal infection and development of autism,
other models using immune-activating agents have been
developed and are widely used in present-day studies.

3.1.3. Viral/Bacterial Mimics. Viral and bacterial mimics
activate the maternal immune system to induce cytokine
release without any intervention of active viruses or bacteria
with poly(I:C) and lipopolysaccharide (LPS) being the most
studied. Poly(I:C) models have been very useful in decipher-
ing the critical time-windows of infection relevant to ASD
[71]. Poly(I:C) administration at midgestational time points
(E9, E12.5) recapitulates ASD-like behavior in offspring,
including decreased social behavior, ultrasonic vocalization
deficits, repetitive behaviors, increased anxiety, and deficits
in PPI [17, 72, 73]. Impaired ability to filter stimuli has
been mostly associated with schizophrenia-like phenotypes,
especially in rodents, but human adults suffering from ASD
have similar sensorimotor gating deficits [74]. In rhesus
monkeys, poly(I:C) injection during the first trimester leads
to impaired social interaction, social attention, and repetitive
behavior [75, 76]. Most of the behavioral impairments in
offspring from mothers treated with poly(I:C) are observed
with LPS [77]. Interestingly, late gestation administration of
LPS triggered PPI deficits and social behavior alterations
in offspring in adulthood [78, 79], while behavioral deficits
appeared in infancy when mothers receive LPS at an early
stage of gestation [80, 81]. Very lowdoses of LPS administered
to rhesus monkeys at the end of gestation also induce PPI
impairment in offspring [82]. Of note, LPS administration
in mice pups at 14 days of postnatal age can also trigger
behavioral deficits, which differ from adolescence to adult-
hood, with anxiety-like behavior appearing at adolescence,
while depressive-like behavior develops during adulthood
only [83]. Indeed, the exposition to viral or bacterial mimics
during the whole brain developmental period seems to be
critical for later life behavioral deficits classically observed in
ASD.

Neurobiological changes induced by viral and bacterial
mimics also share common features such as altered dopamin-
ergic neurotransmission [70, 84, 85], altered myelin proper-
ties within frontostriatal-limbic circuits [86], an increase in

GFAP-positive cells, hippocampal disorganization [87–89],
and synaptic density turnover and transmission abnormali-
ties [71]. Such impairment could be linked to alterations in
developmental processes such as neuronal migration, estab-
lishment of neuronal layers, synaptogenesis, and synaptic
pruning [90, 91]. Indeed, large number of reelin-expressing
and newly born neurons are decreased in the hippocampus
of poly(I:C)-treated pups whereas the amount of apoptotic
cells is increased [92]. The decreased number of reelin-
positive cells, together with GAD67- and parvalbumin-
positive cells, is found in the developing hippocampus and
prefrontal cortex of offspring from LPS-injected mothers
[93–96]. Interestingly, early pregnancy administration of LPS
increases spine density in the hippocampus of offspring
during development but decreases it in adulthood [97], sug-
gesting a transient developmental effect on spines close to the
inflammatory response window. This is consistent with the
observed activation of microglia, the brain’s innate immune
cell recently highlighted as key in developmental brain wiring
[98, 99], in the brain of pups from poly(I:C)-injected dams
[73]. Therefore, it appears that immune challenges during
pregnancy lead to the impairment of structural development
and wiring. This could be linked to altered expression of
neuronal migration genes [100] or to defects in synaptic
pruning and synaptogenesis with a plausible involvement of
microglia [45].

Numerous studies have highlighted that developmental
impairment triggered by inflammatory mimics could involve
cytokines [72]. Indeed, poly(I:C) is a synthetic double-
stranded RNA that induces inflammatory responses by bind-
ing to Toll-Like Receptor- (TLR-) 3 [101]. Like viral particles,
poly(I:C) is a potent inducer of not only classical interleukins
(e.g., IL-1𝛽 and IL-6) or TNF𝛼, but also type 1 IFN (𝛼
and 𝛽). LPS, a gram-negative bacteria cell wall component,
activates TLR4. Most of the cytokines produced in response
to poly(I:C) or LPS are quite similar, except for type 1 IFN
release, which is only elicited by poly(I:C). In addition, LPS
treatment leads to a longer and larger release of IL-6 [58],
a cytokine consistently increased in ASD patients [60, 102,
103]. Prenatal administration of poly(I:C) and LPS activates
inflammatory response not only in mothers, but also in
the fetus [76, 104, 105]. Overall, data using manipulation
of cytokines have reported that IL-6 is essential for MIA-
induced abnormalities in offspring’s brain and behavior [17,
18, 20, 70, 106] and supports evidence from human ASD
patients [17, 60, 102]. Recent data pointed that IL-17, a
cytokine found in the blood of ASD children [107, 108] and of
animal model of MIA [109], is involved in some symptoms of
MIA-induced ASD-like behavior [110] providing additional
data on the role of cytokines in fetal brain development.

In summary, MIA triggered by active pathogens or
noninfectious endotoxins (poly(I:C) and LPS) administered
during pregnancy recapitulates ASD-like behaviors and neu-
robiological alterations in offspring. MIA-induced long-term
deficits depend on the stage of pregnancy that is targeted,
in accordance with observational studies in humans [79,
92]. Animal models of MIA offer the opportunity to better
understand themechanisms underlyingMIA and autism-like
disorders to develop specific anti-inflammatory strategies to
protect mothers at risk of having children with ASD.
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3.1.4. Interactions between ASD Risk Factor Genes and MIA.
One important question arises from “inflammatory genes” ×
“inflammatory insults” as risk factors for autism. As previ-
ously described, MIA is an environmental risk factor for ASD
that modulates the same inflammatory mediators identified
as ASD susceptibility genes [111]. While many studies provide
evidence for altered immune responses in patients with
ASD [12, 111], recent transcriptome and protein interactome
network analyses have revealed a direct link between genes
implicated in ASD and immune signaling [112, 113]. Among
the immunologic gene variants identified inASD (e.g.,mecp2,
il-1, mhc, and c4), many are expressed by microglia or mod-
ulate their activity, especially during brain development. Of
note, the deletion of mGluR5, whose expression is decreased
in the brains of ASD patients, increased the number of
microglia in mice [114]. Indeed, the contribution of genetic
factors and environmental insults targeting the immune
status to ASD risk could be of particular importance during
the developing period. Studies using transgenic mice with
ASD-associatedmutations reported developmental defects in
these animals. However, to our knowledge, the interaction
between MIA and immunity risk variants in ASD in humans
or animal models has not yet been reported.

Several studies have reported that early-life inflammation
has differential effects in patients or in transgenic mice
with targeted mutation of genes identified in ASD. Early
prenatal inflammation in mice (E9) has been shown to
trigger some behavioral and neurobiological abnormalities in
mice expressing the human mutation of disc1 [115]. Autism-
like behaviors such as sensorimotor gating deficiencies and
impaired social behavior were modified by MIA depending
on the type of disc1 mutation. One-half of patients with
tuberous sclerosis have been shown to develop ASD. In a
mouse model of tuberous sclerosis (tsc2 haploinsufficiency),
maternal immune challenge led to impaired social behavior
in adult offspring. Moreover, the authors found that seasonal
flu activity in late gestation and TSC mutations increased
the risk of ASD in offspring. TSC is involved in the mTOR
pathway as well as other ASD-associated genes, for instance,
pten, eif4e, or fmr1 [15]. In another recent study, alterations in
sensorimotor gating and attention processes were observed
in the offspring of Nurr1 heterozygous mice undergoing
prenatal immune challenge [116]. In another study, a positive
associationwas found between copy number variants in some
hot spots for ASD pathology and maternal infection or fever
during pregnancy [117, 118]. Epigenetic changes aftermaternal
immune activation have also been observed in the offspring’s
brains, including abnormalities in histone acetylation in
genes known to be involved in neurodevelopment [119].
Anotherwork has identified hypomethylation ofASD-related
genes such as Mecp2 after MIA [120]. Altogether, these data
strongly suggest that mutations in immune or nonimmune
genes and environmental inflammatory insults are key in
ASD. However, further studies are needed to understand
how these factors converge on common molecular networks
during brain development.

3.2. GutMicrobiota and Autism. Emerging evidences suggest
that the microbiome plays an important role not only in

immunity but also in neurodevelopmental disorders such
as autism [19, 20]. Bacteria within the gut are complex
ecosystems which produce metabolites, such as short-chain
fatty acids (SCFAs), vitamins, and antimicrobial peptides
[121].The gutmicrobiota and itsmetabolites participate to the
body physiology, including the brain [122], while microbiota
alterations, often referred to as dysbiosis, participate to
numerous pathologies, including neuropsychiatric disorder.
Importantly, food composition influences gut microbiota
composition and very recent data obtained in rodents
causally linked maternal diet, gut microbial imbalance, and
neurodevelopmental disorders [123]. Among the pathways
through which gut microbiota influences brain functions, the
immune system is particularly relevant to neuroinflamma-
tion and ASD [20].

3.2.1. Epidemiological Studies. Gut-brain interactions are
now recognized to play a major role in neurodevelopment
and in regulating behavior. In fact, ASD subjects often
suffer from gastrointestinal distress [124], a comorbid factor
for autism [125]. Gastrointestinal features include chronic
abdominal pain and alterations in bowel habits, leading to
questions about the nutritional status and the diet quality
of children with ASD [125, 126]. Often, gastrointestinal
symptoms remain mostly untreated and can give rise to
behavioral alterations. Microbiome-related factors may also
be responsible for increases in ASD prevalence [127]. Dys-
biosis has been found in children with ASD compared to
healthy controls [128, 129]. Gastrointestinal microflora is
dysregulated in late onset autistic children [130], leading to
alterations of microbial species density and variations of bac-
terial metabolites in feces and urine [131]. Studies have shown
that the Clostridia species is consistently highly represented
in feces from autistic children [129, 132].There is also a greater
abundance of Bacteroides and Firmicutes in severe ASD [130,
133]. Clostridia toxins are known to affect neurotransmitter
functions that can possibly result in neurobehavioral changes.
Dysregulated activity of the autonomic nervous system,
associated with anxiety and stress-responsiveness, may also
play a role in increased intestinal epithelial permeability in
ASD subjects [134], leading to observed behavioral changes.
Altered intestinal permeability could represent a possible
explanation for behavioral abnormalities observed in ASD, as
immune molecules or products of diverse microbial popula-
tions could more likely enter the blood circulation and affect
the brain. Conversely, antibiotic therapy using vancomycin
during a short period improved behavior [135]. Dysregulated
gut-brain communications, in addition to genetic heritability,
could account for some of the extreme diversity seen across
wide spectrum for autism, depending on the severity of
alterations of microbial communities.

3.2.2. Animal Models. Only a few studies have shown mech-
anistic connections between alterations of the gut microbiota
and behavioral changes observed in ASD patients. Rodent
models are useful for examining these interactions and
to discover new targets from diet patterns to therapeutic
treatment using probiotics instead of antibiotics.
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Figure 2: Synthesis of PUFAs in the liver. Precursors of n-3 and n-6 polyunsaturated fatty acid (PUFA) 𝛼-linolenic (ALA; 18:3 n-3) and
linoleic acid (LNA; 18:2 n-6) can be desaturated and elongated. This leads to the synthesis of long-chain PUFAs, including docosahexaenoic
acid (DHA; 22:6 n-3), but also arachidonic acid (AA; 20:4 n-6) which are carried into the blood as free forms or lipoproteins. Both, n-3 and
n-6 long-chain PUFAs, compete for their synthesis (for desaturation and elongation), meaning that PUFAs intake significantly impacts their
cerebral incorporation level.

Rodent models of ASD have been used to determine a
link between alterations of the gut microbiome, associated
changes in microbial factors, and their implication in behav-
ioral changes observed in autistic-like behavior [136]. These
changes were rapidly reversed by the use of probiotics in an
MIA model [20]. Clostridia and Bacteroides species were the
primary drivers of these microbiota differences. Offspring
from an MIA model that received Bacteroides fragilis as
a probiotic significantly recovered the abundance of some
taxis. Moreover, B. fragilis dramatically attenuated altered
behavior observed in offspring including communication,
repetitive behaviors, and reduced anxiety. Animals subjected
to valproic acid exposure in utero, a mouse model of ASD,
show disturbed social interactions and increased expression
of neuroinflammatory markers alongside intestinal inflam-
mation [136]. Prenatal exposure to valproic acid has a
transgenerational impact on the gut microbiota as observed
by increased levels of short-chain fatty acids (SCFAs) like
butyrate in the caecumof offspring [136]. Interestingly, SCFAs
are considered neuroactive metabolites as they can cross
the blood-brain barrier and modulate CNS function and
behavior [137–139]. Interestingly, prenatal administration of
propionic acid, a SCFA byproduct of enteric bacteria found
in ASD subjects [140], triggers some of the ASD-like behavior
[141]. Notably, propionic acid intracerebral administration
activates microglia, suggesting a role of this SCFA in neu-
roinflammation [139]. Because the maternal transmission of
immune factors induces specific changes in the gut micro-
biome, it could therefore affect the neurometabolites available
to the offspring that could potentially lead to autistic-like
behaviors or alterations of the gut epithelium. Further studies
are needed to better understand whether changes in the gut
microbiota of children could be a risk factor for dysbiosis,
neuroinflammatory processes, and ASD.

3.2.3. Interactions between ASD Risk Factor Genes and Gut
Microbiota. Abnormalities in immunity could be closely

linked to the gut microbiota and dysbiosis in ASD. The gut
microbiota stimulates both nonspecific and specific immu-
nity in the first years of age [142] and has been recently
suggested to regulate microglia activity [21]. After birth, the
low-grade inflammation, although generally beneficial, trig-
gered by the continuous immune stimulation provided by the
gut microbiota [143] could be detrimental in children at risk
for ASD because of genetic synaptic dysfunction. However,
such a link has been poorly studied. Recently, transgenic
mice with a defect in inflammasome/IL-1𝛽 production (i.e.,
caspase 1 KO mice) have been shown to have a different
microbiota composition than wild-type mice, together with
depressive-like behavior, suggesting that behavioral impair-
ment linked to dysbiosis requires inflammasome activity
[144, 145]. Whether a specific interaction between genes
identified as risk factors for autism and dysbiosis/microbiota
changes exists in patients with ASD is unknown. Further
clinical and fundamental research on this issue is warranted.

3.3. Dietary N-3 Polyunsaturated Fatty Acids and Autism.
Several studies have highlighted the fundamental role of
lipids in neuronal processes and immune modulation, which
are implicated in ASD. In particular, polyunsaturated fatty
acids (PUFAs) are essential fatty acids required for brain
development and maturation [22]. Because they need to be
provided by alimentation (Figure 2), deficiencies or imbal-
ances in these nutrients, both precursors and long chains
strongly affect brain function, not only during development,
but also throughout life and especially during periods of
neuroinflammation. Recent evidence suggests that n-3 PUFA
homeostasis may be altered in ASD, either as a result of
nutritional imbalance or genetic defect [146].

3.3.1. Epidemiological Studies. Total n-3 PUFAs in the plasma
of autistic children are decreased without any changes in the
n-6 PUFAs family [147, 148]. A positive association between
anti-myelin basic protein (MBP) antibodies and low levels
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of the main n-3 PUFA found in the brain (docosahexaenoic
acid, DHA) has been reported in autistic children [149].
Parental health questionnaires and red blood cell (RBC) fatty
acid measurements have highlighted a decrease in DHA and
total n-3 PUFAs in both autistic and Asperger patients. More
recently, Al-Farsi and colleagues reported lower consumption
of DHA foodstuff and a concomitant decrease in DHA levels
in the plasma of children with ASD [150]. A case-control
study in California measured fatty acids in the blood of
153 autistic children and 97 controls and showed that DHA
is decreased in the phosphatidylethanolamine (PE) [151].
Another case-control study in Saudi Arabia showed altered
phospholipid and fatty acid profiles in ASD patients [152].
Consistentwith the idea of impaired PUFAs cerebral level and
metabolism, Brigandi and colleagues uncovered a massive
decrease in AA and DHA. They also found an increase in
proinflammatory derivative Prostaglandin E2 in a subset
of patients [153]. Interestingly, gene expression of FABP3,
FABP5, and FABP7 has been shown to be modulated in psy-
chiatric illnesses such as schizophrenia and ASD [154]. In the
brains of ASD patients, FABP7, which binds DHA preferen-
tially, was upregulated in both the frontal and parietal cortex
[155]. As in schizophrenic patients, PUFA distribution and
metabolism are markedly altered in ASD patients. Six weeks
of DHA and eicosapentaenoic acid (EPA) supplementation in
children with autism led to improvement of symptoms, espe-
cially stereotypy and hyperactivity [156]. A 12-week n-3 fatty
acid dietary supplementation also led to the improvement of
hyperactivity in autistic children [157]. Another study using
a DHA, EPA, and AA dietary supplementation for 3 weeks in
autistic children reported improved behavioral performance
in two-thirds of children [158]. Recently, an open-label pilot
study in Singapore found positive associations between blood
fatty acid levels and changes in the core symptoms of ASD
following a 12-week n-3 PUFAdietary supplementation [159].
However, several interventional studies with n-3 PUFAs
failed to reproduce these beneficial effects [160–162]. Thus,
larger cohorts and accurate ASD behavioral phenotypes are
needed to clearly decipher the potential beneficial effects of
n-3 PUFA dietary supplementation on behavioral deficits.
In addition, the inflammatory status and/or the microbiota
composition should be considered in interventional studies
with n-3 PUFAs [15, 124].

3.3.2. Animal Models. Some human-like ASD alterations
were observed in preclinical models of n-3 PUFA dietary
deficit. Developmental n-3 PUFA depletion in rodents led
to decreased levels of serotonin in the prefrontal cortex, as
observed in autistic children [163, 164]. Numerous studies on
n-3 PUFA deficiency models revealed profound alterations
in GABAergic, dopaminergic, and cholinergic neurotrans-
mission [165–168]. Importantly, long-term dietary n-3 PUFA
deficiency triggers the development of ASD-like behavioral
impairment in rodents, including reduced PPI [169], social
interactions [170–174], and increased anxiety [171–173, 175].
Conversely, some studies investigated the possible beneficial
role of n-3 PUFA dietary supplementation at weaning in
different mice models of ASD. In the Fmr1-KO mice model
of autism, n-3 PUFA supplementation rescues not only social

defects but also memory impairments and some neurobio-
logical imbalance [26]. In a model of prenatal inflammation
by poly(I:C), DHA supplementation improves social inter-
actions, decreases repetitive behaviors, and normalizes IL-
6 levels after immune challenge [176]. A recent study on
an early MIA model showed that n-3 PUFA-enriched diet
alleviates ASD-like symptoms, altered GAD67 protein levels,
metabolic changes, and PPI deficits [177]. As n-3 PUFAs
potently regulate neuroinflammatory processes, microglia
activity, and synaptic plasticity [24, 174, 178], their beneficial
effects could be linked to their action on neuroinflammatory
processes in the developing brain. Interestingly, n-3 PUFAs
modify the gut microbiota composition, but their effect in
ASD-like behavior has not yet been unraveled [179].

Taken together, both studies in humans and animals
identify long-chain PUFAs, especially those from the n-3
series, as interesting candidates in curative strategies due to
their ability to counteract someASD-like symptoms and ame-
liorate inflammation. Several studies have also shown their
ability tomodulate themicrobiota and vice versa. Indeed, one
study reports that SCFA propionic acid administered into the
brain of rats alters lipid metabolism, in particular the one of
PUFAs [180]. According to a recent report, n-3 PUFA defi-
ciency induces dysbiosis, with increased numbers of potential
pathobionts, including bacteria from the Enterobacteriaceae
family [181]. Conversely, n-3 PUFA supplementation prevents
the bloom of Enterobacteriaceae, as well as the translocation
of bacteria into the submucosal region, and instead promotes
the enrichment of Lactobacillus and Bifidobacterium species
[181, 182]. Using a genetic model of n-3 PUFA supplementa-
tion (Fat-1), Kaliannan et al. demonstrated that elevated n-3
PUFA levels enhance intestinal production and secretion of
intestinal alkaline phosphatase (IAP), which induces changes
in the gut bacteria composition, resulting in decreased LPS
production and gut permeability and, ultimately, in reduced
metabolic endotoxemia and inflammation [183]. N-3 PUFA
deficiency during development (over gestation and lactation)
also alters the normal trajectory of intestinal microbe estab-
lishment in the intestine of offspring, with lowered bacterial
density, a decreased ratio of Firmicutes to Bacteroidetes, and
a decrease in several other dominant microbes [184]. These
data suggest that n-3 PUFA levels modulate microbiota com-
position and activity during development. However, more
results are needed to unravel the underlying mechanisms.

N-3 PUFAs are likely to be taken up in large amounts by
the brain during the endof gestation and the firstmonth of life
[185, 186]. The use of n-3 PUFA supplementation, especially
during pregnancy and lactation, could help prevent ASD in
children at risk. In this context, developmental animal studies
giving n-3 PUFA supplementation from conceptionmight be
a fruitful line of investigation.

3.3.3. Interactions between ASDRisk Factor Genes and Dietary
PUFAs. Genetic interactions and PUFAs content have been
poorly studied in ASD. However, some links exist between
lipid metabolism gene alleles, PUFA metabolism, and brain
diseases. Indeed, the APOE4 allele, which is a well-known
genetic risk factor of Alzheimer’s disease, is involved in dis-
rupted PUFAmetabolismwith a shift to long-chain n-3 PUFA
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oxidation [187, 188]. Genetic variability in fads (desaturases
involved in the metabolization of PUFAs) is involved in the
bioavailability of long-chain PUFAs AA and DHA to the
brain, as well as brain development and cognitive impairment
[189–192]. Polymorphism of several genes involved in PUFA
metabolism or inflammation is crucial in the efficacy of
dietary n-3 PUFA supplementation on inflammation and
triglyceride blood level [193, 194]. The relationship between
PUFA metabolism genes, inflammation, and efficacy of n-
3 PUFA dietary supplementation remains to be determined.
This is of particular importance as concentration and expres-
sion of phospholipase A2, a phospholipase at the cross of
PUFA metabolism and inflammation, are higher in ASD
patients but are reduced by dietary supplementation with
EPA [195–197]. N-3 PUFAs potently regulate not only neu-
roinflammatory pathways [24, 178, 198] but also synaptic
plasticity [25, 173, 199–201].These properties could be of high
interest in correcting synaptic defects linked to genetic risk
factors. Indeed, dietary n-3 PUFA supplementation rescues
social behavioral impairment and neuroinflammation in a
mouse model of fragile X syndrome [26].

4. Conclusion

The pathogenesis of ASD is linked to maternal immune
activation-triggered neuroinflammatory events in the devel-
oping brain of offspring, potentially in association with dys-
biosis during pregnancy and/or infancy.The dysregulation of
these components during early development leads to brain
malformation and alterations that can be imprinted until
adulthood. Thus, elucidating the brain-microbiota axis is
critical for finding more effective strategies to prevent or
treat ASD. In particular, nutritional interventions, especially
those taking advantage of the anti-inflammatory properties
of n-3 PUFAs, are promising candidates, as they would
potentially modulate both neuroinflammatory components
and microbiota dysbiosis in ASD (Figure 3). Further studies
are therefore needed to decipher the mechanisms underlying
the beneficial effect of n-3 PUFA diets in ASD.
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