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Newborns are prone to fungal infections, largely due to Candida species. The immuno-
logical basis for this vulnerability is not yet fully understood. However, useful insights can 
be gained from the knowledge of the maturation of immune pathways during ontogeny, 
particularly when placed in context with how rare genetic mutations in humans predis-
pose to fungal diseases. In this article, we review these most current data on immune 
functions in human newborns, highlighting pathways most relevant to the response to 
Candida. While discussing these data, we propose a framework of why deficiencies in 
these pathways make newborns particularly vulnerable to this opportunistic pathogen.
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inTRODUCTiOn

Fungi are present everywhere in the environment, including in water, on solid surfaces, on our 
skin, and gastrointestinal tract. Taxonomists estimate the existence of 1.5 to over 5 million fungal 
species, although only a small minority (<300 species) causes diseases in humans (1). Despite their 
ubiquitous presence, fungi rarely become invasive in healthy adults due to multiple levels of immune 
defenses. In contrast, fungal infections are common in newborns and can be particularly invasive in 
those born very prematurely (2, 3).

A number of studies have investigated the functional characteristics of newborn immune cells 
[reviewed in Ref. (4, 5)]. The immune system is composed of two main arms involved in the recogni-
tion of fungi. Developmental changes in some of the main immune pathways involved in responses 
against Candida are illustrated in Figure  1. During gestation, innate immune cells are skewed 
toward anti-inflammatory responses. Adaptive immune cells also lack immunological memory 
from prior exposure to antigens and are skewed toward a T helper 2 (Th2) effector profile. These 
changes are essential to prevent allogeneic maternal rejection and during the establishment of toler-
ance toward self-antigens. Moreover, the expansion and maturation of immune cells is incomplete 
in infants born very prematurely, which further increases their vulnerability to infections (4, 5). 
These functional limitations are also affected by pregnancy complications, which can be linked to 
a premature birth (6, 7).

While our knowledge of the maturation of immune pathways in human newborns has greatly 
progressed recently, few of these studies have focused on fungi as model organisms. Therefore, our 
understanding of the immunological basis for the increased susceptibility of the neonatal immune 
system to fungi remains limited. Nonetheless, insights can be gained from rare genetic mutations 
predisposing to localized or invasive Candida infections in humans. These data have been recently 
covered by other experts (8, 9). The clinical presentation, risk factors, and treatment of neonatal 
Candida infections have also been reviewed recently (10, 11). This review discusses recent data 
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FiGURe 1 | Developmental changes in the immunological response to Candida. Developmental differences in some of the main immunological events 
involved in the recognition of Candida, between adults (in black) and neonates (in red, cross also indicates a reduction in neonates compared to adults). Candida 
colonizes the skin or mucosa as yeast but often invades in hyphae form allowing to penetrate through epithelial barriers more efficiently. Upon innate immune 
detection of Candida through pattern recognition receptors [e.g., toll-like receptors (TLRs); Dectin-1 receptor], microorganisms get opsonized (reduced in preterm 
neonates), facilitating phagocytosis and resulting in the production of pro-inflammatory cytokines (also reduced in neonates) through Syk and NFκB-mediated 
intracellular signaling. Internalized Candida antigens are presented (reduced in neonates) to naïve CD4 T cells, resulting in their differentiation into Th1/Th17 effector 
cells (skewed toward T helper 2 in neonates). Whereas deficiencies in innate functions (e.g., MALT-1/CARD9) can lead to invasive candidemia, selective deficiencies 
in adaptive functions (e.g., IL-17 responses) most often lead to chronic mucocutaneous infections.
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underlying the immunological basis for newborns’ increased 
susceptibility to Candida infections.

neOnATAL CANDIDA inFeCTiOnS

In newborns, Candida is responsible for the common oral thrush 
and rash in skin folds and in the diaper area. Before the advent of 
modern sanitary measures and topical antifungal treatments, infants 
died from dehydration due to severe oral mucocandidiasis (12). 
Nowadays, invasive infections are rare with the exception of infants 
born very premature, those who require prolonged indwelling medi-
cal devices, or in cases of a primary immunodeficiency (8, 13).

Once invasion occurs, the mortality from Candida infections 
in newborns is high, and so is the associated morbidity: up to two-
thirds of those who survive will suffer long-term impairments 
(14). Similarly, fungemia due to other genera such as Malassezia 
(15), Aspergillosis (16), and Zygomycosis (17) also carry a high 
mortality, though these infections are more rare. Dermatophytes 
infrequently cause skin infections in young infants.

At birth, neonates generally have a low fungal burden (18–20); 
however, colonization occurs in a majority of neonates through 
both vertical (mother-to-child) and horizontal (nosocomial) 
transmission (20–28). Most invasive Candida infections occur 
between the second and sixth week postnatal age (29, 30) owing 
to the timing of colonization. Candida albicans is the most 
frequently isolated Candida species, but other species, particu-
larly Candida parapsilosis, but also Candida tropicalis, Candida 
glaberata, and Candida kruzei are becoming more prevalent (11, 
31–33). Interestingly, major variations have been reported in the 
incidence and species distribution of Candida infection among 
neonatal intensive care units across the world (3, 34, 35). For 
example, in North America and Europe, invasive disease almost 
exclusively occurs in infants of birth weight less than 1,000 g (2, 
11, 36, 37), whereas up to 15% of infants born below 33 weeks 
in neonatal center in Shanghai were diagnosed with a systemic 
fungal infection (38). These variations may be due to racial 
differences in immune phenotypes, although this has not been 
formally examined in the context of Candida infections. On the 
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other hand, these differences in epidemiology are more likely due 
to geographical variations in infection control measures and in 
the use of broad spectrum antibiotics.

innATe iMMUne ReSPOnSeS

The innate immune system is the first-line of immune defenses 
responsible for signaling the presence of microorganisms and 
riding our body from an invasion through opsonization (i.e., 
targeted labeling), cell-to-organism killing, and phagocytosis. 
The epithelial layers (skin and mucosa) are the first line of defense 
of the innate immune system against a fungal invasion (39, 40). 
Highly premature infants lack vernix caseosa, which is a natural 
substance composed of antimicrobial sebum, covering the skin of 
term newborns (41, 42). This lack of vernix caseosa may increase 
fungal invasion by affecting the balance between the infant’s 
bacterial and fungal flora (42). However, this contention, at this 
point, remains speculative and requires further study.

Antimicrobial Peptides
Antimicrobial peptides are a major component of innate immune 
defenses. These peptides generally show reduced levels in those 
born prematurely [reviewed in Ref. (43)]. Levels of α-defensin 
have been correlated with the presence of mannan in bronchoal-
veolar lavage fluids from preterm neonates, indicating a role in 
controlling fungal growth at mucosal surfaces (44). Complement 
proteins are another major component, consisting of at least 20 
interdependent components that are deposited on the surface of 
pathogens, resulting in phagocytosis via opsonization, killing 
via pore-formation, and activation of inflammatory cytokine 
responses. In mice, deficiencies in complement proteins, particu-
larly C3, result in an inability to clear infections due to C. albicans 
and Candida glabrata (45). Human C5a also appears important 
for induction of inflammatory cytokine responses to C. albicans 
(46). In one case, a child with a hereditary C3 deficiency was 
unable to opsonize this microorganism and normal function was 
restored with C3 supplementation (47); deficiencies in factor H 
and factor I have also been shown to negatively affect killing of 
C. albicans (48). Production of complement proteins is detect-
able early on in the fetus during ontogeny (49) and increases in 
a gestational age-dependent manner until the term of gestation 
and even after birth (50, 51). Therefore, it is possible that relative 
complement deficiencies in newborns may increase susceptibility 
to invasive Candida infections, but to a relatively minor extent.

Phagocytes
Innate immune cells such as neutrophils, macrophages/mono-
cytes, and dendritic cells play important roles in preventing 
a fungal invasion [reviewed in Ref. (52)]. In mice, depletion 
of neutrophils increased susceptibility to cutaneous Candida 
infections (53) and also increased the risk of lethal invasion 
following experimental mucosal damage (54). Humans with 
genetic defects that impair neutrophil functions, such as the 
autosomal recessive myeloperoxidase deficiency, are at greatly 
increased risk of systemic Candidiasis, suggesting an important 
role for neutrophils and other phagocytes (55). Neutrophil extra-
cellular traps (NETs) facilitate killing of C. albicans, although 

their functional importance against this pathogen is debated 
(55–57). NET formation upon Candida exposure is operational 
in newborns and, therefore, a neonatal deficiency in NET does 
not explain their susceptibility to infections (58). On the other 
hand, neutropenia due to a central, bone marrow cause, severely 
predisposes to systemic candidiasis in adults (59). In the fetus, 
bone marrow production of hematopoietic cells rapidly increases 
after the 20th week of gestation (4, 5). Consequently, lower 
neutrophil and monocyte cell counts are observed in extremely 
low gestation preterm infants, which may play a more important 
role in increasing the risk of systemic infections in these infants 
(60, 61). Interestingly, neutropenia is often not observed during 
Candida sepsis in preterm neonates, in contrast to Gram-negative 
bacteria, which may indicate a more limited role for these cells 
once invasive infection has occurred (62).

In addition to a relatively limited neutrophil cell count, some 
studies have reported reduced neutrophil function in very 
preterm neonates. In a whole blood assay, reduced migration 
and phagocytosis of C. guillermondii was observed in very low 
birth weight (<1,500 g) infants compared to term neonates and 
adults (63). However, a recent study reported no difference in 
phagocytosis and oxidative burst between age groups (64). In 
general, phagocytosis functions are relatively preserved in very 
preterm neonates (65–67). These differences in findings may be 
due to differences in the assay or strain of Candida that have 
been used between these studies. More functional in vitro stud-
ies are required using Candida in order to help resolve these 
findings.

Monocytes/macrophages also appear to play an important 
role in preventing a Candida invasion based on mouse studies 
(52). Monocytes rely primarily on non-opsonic phagocytosis via 
Dectin-1 and Dectin-2 (68). To the best of our knowledge, the 
response of macrophages (or monocytes) to Candida has not 
been studied in infants born prematurely.

Pathogen Recognition
The lipid bilayer of Candida is surrounded by chitin, an inner 
cell wall component made of polysaccharides (β,1-3 glucan, β,1-6 
glucan) and an outer cell wall composed of N-linked glycoproteins 
coated with mannan polymers (69). C. albicans can transform 
between yeasts and hyphae based on the environmental condi-
tions (70). These two forms have different virulence and elicit 
different immune responses due to structural changes in their cell 
wall (70, 71). Immune cells recognize the presence of pathogens 
through innate receptors called pattern recognition receptors 
(PRRs). PRR can be free circulating in body fluids (e.g., pentraxin, 
collectins, or ficollins) or cell associated. Cell-associated PRRs 
include toll-like receptor (TLR), C-type lectin receptors (CLRs), 
and the intracellular (cytoplasmic) NOD-like receptors (NLRs) 
and RIG-I-like receptors (RIRs). Several PRR are involved in the 
immune recognition of Candida, including TLR2, TLR4, TLR6, 
and CLRs and in the recognition of Candida DNA (e.g., TLR3 and 
TLR9) (72–74). Recognition of fungi by multiple PRRs triggers a 
cascade of immune activation events including the production of 
cytokines, reactive oxygen species, and the activation of phago-
cytosis. These multiple levels of immune recognition enhance 
immune protection in healthy individuals.
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In newborns, PRR functionality develops early in the third 
trimester of gestation, beginning with endosomal/cytoplasmic 
PRR around 20–24  weeks, followed by extracellular PRR until 
about 33  weeks of gestation when the PRR functionality com-
pares to that of full-term infants (7, 75, 76) [reviewed in Ref. (4, 
5)]. These maturational changes are likely to play an important 
role in preterm infants’ increased vulnerability to infections. 
Indeed, cytokine responses (TNF-α, IL-6, IL-1β, and IFN-γ) are 
decreased and skewed toward an anti-inflammatory phenotype 
early in gestation (5). Reduced cytokine responses have been 
linked to reduced downstream signaling, in part due to decreased 
expression of the main MyD88 signaling molecule, as well as a 
gestational age-dependent reduction in phosphorylation of p38 
and ERK1/2 (65, 77–81). The S-type lectin receptor Galectin-3 is 
expressed on neutrophils, monocytes, macrophages, endothelial 
cells, and epithelial cells, can be secreted, and confers protection 
in Candida infection leaving galectin-3-deficient mice more 
susceptible to Candida infection (82, 83). However, conflicting 
results have been published regarding whether Galectin-3 levels 
are higher (84) or lower (83) in cord vs. adult blood and whether 
the levels increase (85), decrease (86), or remain constant (83) 
with decreasing prematurity.

Dectin-1 Receptor
Dectin-1 is a CLR and main extracellular PRR mediating the rec-
ognition of β-glucan in the Candida cell wall. Reduced Dectin-1 
receptor function naturally occurs in ~1% of the general popula-
tion due to a genetic polymorphism that introduces a stop-codon 
in the CLEC7A gene encoding this receptor. Humans with this 
polymorphism may display a marginally increased susceptibility 
to cutaneous fungal infections (87). However, these infections 
are generally mild due to a high degree of functional redundancy 
with other PRRs such as Dectin-2 (88, 89). Upon recognition of 
β-glucan at the surface of Candida, a phagocytic synapse con-
taining Dectin-1, active Src, and Syk kinases is formed (90). The 
intracellular signaling molecule Syk becomes phosphorylated, 
resulting in the cytosolic colocalization of the signalosome com-
plex composed of CARD9, MALT1, and Bcl-10 (see Figure 1). 
Assembly of this protein complex leads to two main sequences 
of events: (1) nuclear translocation of the transcription factor 
and main inflammatory regulator NF-κB, which then leads to 
induction of pro-inflammatory cytokine gene transcription (91) 
and (2) activation of the caspase-8 enzyme, which cleaves pro-
IL-1β into its mature, secreted IL-1β form. Because of the central 
importance of the signalosome complex in antifungal immune 
defenses, a deficiency in CARD9 or MALT1 results in a marked 
increased risk for invasive fungal infections in humans (8, 92, 
93). The function of Dectin-1 signaling has not been studied in 
premature newborns, requiring further studies to understand 
how this pathway may increase their susceptibility to fungal 
infections.

ADAPTive iMMUne ReSPOnSeS

Adaptive immune responses, mediated through dendritic cells, 
B and T lymphocytes, are essential to limit a Candida invasion. 
Following penetration of C. albicans through epithelial surfaces, 

dendritic cells become activated through PRR, resulting in 
their uptake and presentation of antigen fragments to CD4 
T  lymphocytes (also called “helper lymphocytes”). CD4 T cells 
producing the cytokine interleukin-17 (termed Th17  cells) 
are particularly important for controlling the proliferation of 
Candida, as evidenced by increased chronic mucocutaneous 
candidiasis in humans with genetic mutations in cytokines (e.g., 
IL-17A, IL-17F), receptors (e.g., IL-12β1R), or transcription fac-
tors (e.g., RORC, GATA2, STAT1, APS-1, and ACT1) along these 
pathways (94). In newborns, T cells are largely naïve and display 
reduced activity against microbial antigens as they have not been 
exposed during gestation (95). Moreover, neonatal CD4 T cells 
are intrinsically less able to differentiate into Th17  cells due to 
reduced expression of the transcription factor RORC (96). Adults 
with genetic mutations impairing RORC or STAT3 function have 
increased susceptibility to chronic mucocutaneous candidiasis 
due to diminished Th17 function (97, 98). STAT3 phosphoryla-
tion occurs in neonatal T cells although whether reduced expres-
sion may limit Th17 differentiation in this age group is unclear 
(99). Neonatal T  lymphocytes also have a reduced ability to 
differentiate into interferon-γ-producing CD4 lymphocytes (5), 
which play a role protecting against fungi, through the activation 
of other cellular immune components (e.g., phagocytes) (9).

The role of innate immune cells in promoting the develop-
ment of Th17 responses has been studied in newborns. In term 
newborns, antigen-presenting cells produce high levels of Th17-
polarizing cytokines (i.e., IL-1β and IL-23) (100). However, the 
production of these cytokines and antigen presentation are 
profoundly reduced in dendritic cells and monocytes of preterm 
infants below 29 weeks of gestation (7, 101), which may further 
contribute to their susceptibility for invasive fungal infec-
tions. Other T  lymphocyte subsets such as γδ T cells develop 
early during fetal life and are able to produce interleukin-17, 
naturally, in an innate-like manner in the absence of effector 
differentiation (102). In mice, these cells are an important 
source of interleukin-17 (103). However, their functional role 
in preventing fungal invasions in premature newborns remains 
to be determined.

LiMiTATiOnS OF IN VITRO STUDieS

An important limitation of studies investigating fungal immune 
responses by human primary immune cells in vitro is that this situ-
ation may not reflect the complex life cycle of this microorganism 
during an infection in vivo. For example, heat-killed C. albicans, 
which is commonly used as a model in in vitro assays, exposes more 
β-glucan on its surface than live yeast (104). Dectin-1 specifically 
recognizes β-glucan structures in the cell wall of yeast, but not 
hyphae forms of C. albicans, where the β-glucan is less accessible 
to immune cells. As such, filamentous growth of C. albicans is not 
recognizable by Dectin-1, resulting in deficiency of ROS produc-
tion and a reduction in Th17 differentiation of T cells (104, 105). 
However, Candida hyphae, but not yeast, induce a strong immune 
response in macrophages (71). Hyphae can specifically activate 
the NLRP3 inflammasome, which is important for production of 
IL-1β (106). Moreover, these changes can be strain specific (107). 
These limitations may significantly restrain interpretation of data.
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Likewise, experimental conditions influence the interaction 
between immune cells and Candida. Sasse and colleagues showed 
that neutrophils can phagocytose yeast Candida in a suspension 
(3D-setting) but fail to phagocytose opaque cells on a surface, 
2D-setting (i.e., glass slide) (108). Moreover, it has been sug-
gested that yeast are important for colonization and hyphae are 
responsible for invasion and that the switching between the two 
forms itself is responsible for activation of the immune system 
[reviewed in Ref. (109, 110)]. Unfortunately, this is not accounted 
for in most in  vitro studies as live fungal pathogens are rarely 
used. To mitigate these problems, animal models have been 
developed (111) [reviewed in Ref. (112)]. However, it is impor-
tant to remember that mice are not a natural host for Candida and 
that considerable differences in immune functions across species 
warrant validation in humans (113).

enHAnCinG neOnATAL AnTiFUnGAL 
iMMUne DeFenSeS

Basic science research findings need to be translated into clini-
cal practice. Systemic antifungal drugs reduce the incidence of 
colonization and invasive fungal infections (114). However, the 
applicability of these approaches is somewhat limited by concerns 
of increasing antimicrobial resistance (115). Also, the microbial 
flora of preterm infants differs considerably from adults, or term 
infants, suggesting a role for a bacterial dysbiosis in promoting 
Candidemia in preterm neonates (116). Indeed, one study showed 
high fungal diversity in stool samples from very low-birth weight 
infants (117). In light of these findings, altering the gastrointes-
tinal flora of preterm infants through the use of probiotics may 
represent a more viable approach to reduce the risk of invasive 
infections in the neonatal intensive care unit (118). Reciprocally, 
a better understanding of the immune response to Candida in 
newborns could help design vaccine interventions (119).

More research is required to understand how immune responses 
can be modulated specifically in the very preterm infant. Innate 

immune training using ultra-low exposure to β-glucan enhances 
responses to Candida in vitro (120). In support of the application 
of this concept to newborns, TLR and Dectin-1 co-stimulation 
induced strong Th1-polarizing conditions in neonatal dendritic 
cells in  vitro (121). However, without a clear knowledge of 
whether these pathways are functional in premature neonates, the 
applicability of this strategy in preventing systemic infection in 
the youngest age group of neonates remains speculative. Research 
in this area has been traditionally hard to pursue due to obvious 
ethical and logistical factors (4, 122). Indeed, blood volumes are 
extremely limited in these small infants even using non-invasive 
sources such as the placenta. The challenge of enrolling a large 
enough number of premature neonates into clinical trials is also 
a major limitation (3). In the absence of interventional studies, 
basic science research remains crucial to lay the foundation for 
more evidence-based medicine in our approach to neonatal 
fungal infections.
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