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In the unprimed immune system, the invaded antigens 
are typically poor as a stimulant of the specific immune 
response, especially in vaccines where the immunizing anti-
gen is an isolated individual DNA, RNA, and protein mol-
ecule or a synthetic polypeptide.

The organism’s harmful action induced by the invaded 
antigen stimulates an immediate reaction to generate strong 
protection. In response to the invasion, T lymphocytes, as 
a significant source of protective cells, start to create cyto-
kines. There are two main subsets of T lymphocytes, dis-
tinguished by cell surface molecules known as CD4+. A 
different pattern of cytokine release defines CD4 + helper 
cell subgroups. The Th1 subset produces a cytokine profile 
to induce cell-mediated immunity, and the Th2 subgroup 
makes a cytokine profile to induce antibody synthesis. Both 
subgroups act to secure and enhance a balanced immune 
response. In other words, the optimal scenario would seem 
to be that humans should produce a well-balanced Th1/Th2 
response suited to fight the immune challenge. (Gupta and 
Gupta 2020; Kool et al. 2008).

For effective vaccination, selecting the appropriate adju-
vant type for robust antibody generation and the desired anti-
gen-specific solid immune response is essential for vaccine 
development. The incorporation of a conventional adjuvant 
along with antigens in vaccine formulation is a well-estab-
lished practice in experimental immunology. Aluminum 
hydroxide-based suspensions are the most used adjuvants. 

Introduction

The pandemic situation with Covid-19 in the world has 
boosted the development and global use of the various pro-
phylactic vaccines. Modern approaches to the creation of 
effective and selective vaccines are developing in multiple 
directions - from the improvement of the manufacturing 
methods of traditional inactivated vaccines (Sinovac) (Zhao 
et al. 2020; Sadoff et al. 2021), vector-bearing vaccines 
(J&J, Sputnik) (Logunov et al. 2020), and mRNA-based 
matrix (Pfizer) (Walsh, E. et al. 2020), (Moderna) (Jackson, 
L. A. et al. 2020) technology vaccines. On the other hand, 
the COVID-19 is spreading worldwide and infecting many 
people due to inadequate prophylactic measures. Therefore, 
the demand for Vaccines is overwhelming. Furthermore, the 
Vaccine must induce immunity quickly with the minimum 
amount of the antigen required. Thus, selecting an effective 
adjuvant becomes vital for developing an efficient Vaccine.
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For example, the 2% Aluminum hydroxide (Alum) wet gel 
suspension Alhydrogel adjuvant has been approved as an 
adjuvant in multiple licensed vaccines for human use in 
many countries worldwide (Morefield GL. et al. 2005).

The mechanism of Alhydrogel action is complex. How-
ever, depot formation at the injection site has been shown, 
allowing for a slow antigen release. This technology pro-
longs the interaction time between the antigen and the anti-
gen-presenting cells (APCs) (Sutterwala FS, Flavell R.A, 
2008). In addition, Alhydrogel is generally known to pro-
voke a robust Th2 response, directly stimulating monocytes 
to produce pro-inflammatory cytokines (Kool et al. 2008). 
However, the use of Alum as an adjuvant has several limi-
tations. First, the Aluminum adjuvant-containing vaccines 
can cause post-immunization headaches, arthralgia, and 
myalgia (Lindblad 2004; Lew et al. 1988).

The number of modern adjuvants approved for clinical 
use in humans is limited. For example, no peptide adjuvants 
have been registered for human use.

Some main requirements for a new generation of adju-
vant activities are described in (Gupta and Gupta 2020).

Therefore, a novel adjuvant needs to be developed to pro-
duce vaccines that cannot currently be adjuvanted by Alum-
based vaccination strategies (Geerligs et al. 1989).

A new promising direction in developing a new gener-
ation of adjuvant is the use of immune- and hemopoietic 
peptides. A more intensive study of peptide preparations 
involved in regulating the immune response and hemato-
poiesis will pave a new prospect for its use as effective and 
safe adjuvants.

Isolation of the biologically active peptide Glu-Trp from 
the thymus gland (Morozov V.G. Khavinson, V.K, 1997) 
was followed by a series of structure-functional studies 
(SAR) of related linear and cyclic peptides (Deigin, V.I. et 
al. 1999, Deigin, V.I. et al. 2007, Deigin, V.I. et al., 2000, 
Semina, O.V. et al. 1997, Vinogradova, Yu et al. 1999).

As a result, an original tripeptide Ile-Glu-Trp, which 
showed hemostimulating activity, stimulating the prolifera-
tion of hematopoietic stem cells damaged by radiation or 
cytostatic action, has been discovered.

A study of the pharmacokinetics of H3-(Ile-Glu-Trp) 
showed that the intramuscularly administered peptide pre-
dominantly accumulates in bone marrow (45%) (Semina, 
O.V. et al. 1997). Therefore, a medicinal product based on 
this peptide is registered in Russia as an immune-and hemo-
stimulatory agent under the trade name Stemokin® (Deigin, 
V.I. et al. 2007).

Unlike the known peptide immunomodulators Zadax-
sen (E.Garachi. 2007), Immunox (Goldstein et al. 1979), 
Thymogen (Deigin, V.I. et al. 1999), Likopid (Meshch-
eryakova et al. 2007), Stemokin acts on earlier stages of 
hematopoiesis, including CD34 cells, at the same level as 

other hemoregulatory Granulocyte- and Granulocyte-mac-
rophage colony-stimulating factors (CSF, G-CSF, and GM-
CSF) (Semenets, T.N. et al. 2000).

The experimental and clinical information available for 
Stemokin (Deigin, V.I. et al. 1999, (Vladislav Deigin, et.al., 
2020, Deigin, V.I. et al. 2007, Deigin V. 2012, Deigin V.I et 
al 2016, Deigin, V.I. et al., 2000, Semina, O.V. et al. 1997, 
Vinogradova, Yu et al. 1999) is applied to undertake the first 
pilot proof of concept experiment directed to use Stemogen 
as a “modern adjuvant” (Gupta and Gupta 2020).

This study aims to compare the potential adjuvant activ-
ity of Stemokin versus the approved adjuvant Alhydrogel 
in a murine vaccination model with the approved VAXI-
GRIP® Vaccine (Hannoun 2013).

Vaxigrip vaccines (Vaxigrip®, IIV3, and VaxigripTetra™ 
IIV4) from Sanofi Pasteur are registered flu-preventing vac-
cines (Hannoun 2013); this Vaccine contains Alhydrogel as 
an adjuvant. In addition, in the 1980s, the trivalent Vaccine 
Vaxigrip™ – Inactivated Influenza Vaccine, Trivalent Types 
A and B, was developed (Viviane Gresset-Bourgeois et al. 
2017). Vaxigrip influenza vaccines provide an opportunity 
to reduce further the morbidity and mortality associated 
with annual influenza epidemics.

Materials & Methods

Animals

The procedures performed in this study followed the Guide 
for the Care and Use of.Laboratory Animals published by 
the National Institutes of Health and with the “Regulations.
for Studies with Experimental Animals” (Decree of the Rus-
sian Ministry of Health from.Aug 12, 1997, No. 755). The 
Institutional Ethics approved the protocol.Committee of the 
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry 
(Protocol No.161/2015). All efforts were taken to minimize 
suffering.Balb/c female mice are aged 9–11 weeks (Harlan 
Laboratories, Canada). The initial weight range for use in 
the study was 19–21 g. The mice were housed in micro iso-
lator cages. Mice were s.c. injected with 100 µl/mouse. All 
groups (10 mice in a group) received one administration on 
Day 1 and Day 28.

Test Article

Stemokin Sodium Chemical Name: L-Isoleucyl-L-Glu-
tamyl-L-Tryptophan Monosodium salt.

Purity: 99.8% (LCMS UPLC Waters Acuity System). 
(Immunotech Developments Inc. Canada).
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Influenza Vaccine

Vaxigrip is an inactivated influenza vaccine trivalent Types 
A and B (split virion), manufactured and distributed by 
Sanofi Pasteur Limited, Toronto, Canada. It is prepared 
from a virus grown in the allantoic cavity of embryonated 
eggs. The virus is purified by zonal centrifugation on a 
sucrose gradient, dissolved in the surfactant octoxinol 9 
(Triton® X100), inactivated in formaldehyde, and then 
diluted in phosphate-buffered saline. For the experiment, 
each 0.5 mL dose of Vaxigrip® contains 15  µg HA A/B 
(H1N1)-like strain and 15 µg HA A/B (H3N2)-like strain. 
Other Ingredients are ≤ 30 µg formaldehyde, up to 0.5 mL 
sodium phosphate-buffered, isotonic sodium chloride solu-
tion, 2 µg thimerosal as a preservative, and the surfactant 
Triton® X100. There is no adjuvant presented.

Adjuvant: Aluminum Hydroxide

Name: “Alhydrogel”; (Accurate Scientific, USA).

Scheme of the Experiment

Formulation of the Test Articles

Stock Solutions (20 mg/mL and 0.5 mg/mL) of Stemokin 
were prepared in sterile, non-pyrogenic saline. The solu-
tions were filtered through a sterile, non-pyrogenic PVDF 
membrane filter with porosity NMT 0.2 μm. 222 µL of Vax-
igrip suspension was diluted with the saline to make 2000 
µL solution (group 1) or diluted with to make 2000 µL of 
solution after adding the calculated amount of stock solu-
tions of Stemokin or Alhydrogel (groups 2–5).

Mice Treatment

Ten mice each were randomized into treatment groups. A 
100 µL of the appropriate Formulation for the allocated 

group was injected as a bolus subcutaneously on Day 1 and 
then again on Day 28.

Blood Collection

Blood was collected on days 14, 28, and 42 from the saphe-
nous vein without anticoagulants, and serum was separated 
and stored at − 700 C until use in serological assays.

IgG Isotype ELISAs (IgG)

Briefly, ELISA plates were directly coated with the Vaxi-
grip. Next, dishes were washed with PBS containing 
0.05% Tween 20 (T-PBS) and blocked with 1% bovine 
serum albumin (BSA) for one h at 37  °C. Next, antigen-
coated plates were washed with T-PBS and incubated with 
1:1.000-diluted individual mice serum samples overnight at 
4 °C. After washing with T-PBS, plates were incubated with 
goat anti-mice IgG1 or IgG2a horseradish peroxidase con-
jugates (Rockland Immunochemical) in a 1:10,000 dilution 
for 2 h at 37  °C. The reaction was developed by o-phen-
ylenediamine for 30  min and read the optical density at 
450 nm. Influenza-specific ELISA titers were extrapolated 
by linear regression from a standard curve and expressed as 
ug/ml. Averages were presented for both IgG isotypes.

Hemagglutinin Inhibition (HI) test

Mouse serum samples were treated with receptor destroying 
enzyme (RDE) at 37 °C overnight. Fresh turkey red blood 
cells (TRBC) were washed and diluted in PBS to a concen-
tration of 0.5% (vol/vol). The mice sera were diluted in PBS 
in 96-well V-bottom cell culture plates. The serially diluted 
pool sera from each mice group were incubated with the 
H3N2 Influenza strain for 15 min. Fifty microliters of 0.5% 
TRBC were then added, and the plates were incubated at 
room temperature for 30 min. The hemagglutination inhi-
bition (HI) titer was the reciprocal of the highest serum 
dilution to prevent agglutination completely. The log2 trans-
formed geometric mean titers for each group are presented.

Statistical Analysis

The student’s t-test has been used to compare data differ-
ences in antibody concentrations and titers for each mice 
group vs. V and V + Alum groups. The data presented as x̄ 
± SEM.

Table 1  The distribution of the treatment groups
Group Treatment on each dosing day*
1 Vaxigrip alone (V)
2 Vaxigrip + Stemokin (1 µg) (V + S1 µg)
3 Vaxigrip + Stemokin (25 µg) (V + S25 

µg)
4 Vaxigrip + Stemokin (100 µg) 

(V + S100 µg)
5 Vaxigrip + Alhydrogel (10 µg) 

(V + Alum)
*In all groups Vaxigrip contains 0,33  µg HA(H1N1) and 0,33  µg 
HA(H3N2)
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At the same time, it was no difference in the concentration 
of IgG1 on day 42 for all groups. The different response 
was with IgG2a amounts; on day 42, the concentration of 
the IgG2a in all groups received (V + S) was higher than 
for the (V + Alum) group. Thus, the mice group received 
(V + Alum) demonstrated an early IgG1 response, while 
the induction of IgG2a antibodies can only be stimulated 
by animals that received V with Stemokin at various doses.

The Alhydrogel treated group showed early stimula-
tion of a Th2 response, consistent with promoting humoral 
immunity in preference to a cellular response. Successively 
high Stemokin dose in the vaccine composition produced 
progressively higher Vaxigrip + Alhydrogel IgG2a response.

This pilot experiment shows that Stemokin has the 
potency of a vaccine adjuvant favoring a balanced Th1/Th2 
response represented as IgG1 and IgG2a in the combined 
Vaccine/Stemokin group compared to the Vaccine + Alhy-
drogel group (Fig. 2).

To evaluate the Hemagglutinin Inhibition (HI) ability 
by the Stemokin (V + S100) and Alhydrogel (V + Alum) 
groups, we tested mouse serum samples against the H3N2 
Influenza strain. The HI titer was the reciprocal of the high-
est serum dilution to prevent agglutination completely. The 
log2 transformed geometric mean titers for each group are 
presented in Fig. 3. All studied groups on day 42 showed 
high HI activity, and there was no significant difference 
between the sera of all studied groups; however, the high 
dose of the Stemokin adjuvant group (V + S 100 µg) on Day 
42 tends to inhibit the HI titers compared to Vaccine + Alhy-
drogel (V + Alum) group.

Results

Pilot experiments to evaluate the adjuvant potential of Ste-
mokin have been performed in an experimental murine 
model with Influenza Virus Vaccine (Vaxigrip™) as an 
immunogen (Hannoun 2013). The approved Alhydrogel 
adjuvant has been used as a comparison preparation (Kool 
et al. 2008).

Mice were immunized in three variants with Vaxigrip - 
without adjuvants, Alhydrogel adjuvant, and three doses (1, 
25, and 100µ) of Stemokin as an adjuvant. (Fig. 1).

This experiment estimates anti-influenza antibodies of 
IgG1 and IgG2a isotypes and Stemokin adjuvanticity com-
pared to Alhydrogel in inducing specific anti-hemagglutinin 
antibodies after Vaccine immunization.

At a different time, the data shows that Stemokin treated 
groups boosted the IgG2a antibody response two weeks ear-
lier than the Aluminum (V + Alum) group.

As shown in Fig.  1, on day 28 after the first immuni-
zation, the (V + Alum) mice group stimulated significantly 
higher IgG1 levels than the V and (V + S100 µg) groups. 

Fig. 2  The comparison of IgG1 and IgG2a antibodies to Vaxigrip at 
day 42
+ p < 0.05 vs. (V + Alum) group

 

Fig. 1  Antibody response to Vaxigrip antigen after immunization
* p < 0.05 vs. V group, + p < 0.05 vs. (V + Alum) group
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et al. 1975). Peptidoglycan MDP and most analogs enhance 
humoral antibody production, demonstrated with classi-
cal laboratory antigens and conventional vaccines against 
viral, bacterial, or parasitic pathogens (Siddiqui, W.A. et al. 
1978). In addition, it is reported that MDP (Girardin et al. 
2003) and their disaccharide derivative GMDP (Meshch-
eryakova et al. 2007) confer their adjuvanticity by activat-
ing the NF-κB pathway through the NOD2 receptor.

Another application of peptide adjuvants is peptide 
amphiphile micelles (PAMs). These compounds have 
been studied as vaccine carriers, inducing strong antibody 
response  (Barrett J.C. et al. 2017, Trent et al. 2015).

The literature (Zhang R 2018) shows that a single 
immune agonist is not always sufficient to elicit an effica-
cious immune response. Usually, Aluminum hydroxide-
based adjuvant vaccines are directed to prime the Th2 
immune response rather than a Th1-biased response.

Composite adjuvants containing Aluminum and immu-
nomodulatory peptides could be used to enhance the 
immune response (Chang T.Z. et al. 2017, Deng et al. 2018) 
synergistically. According to the specific immune response 
generated by different adjuvants, several composite adju-
vant systems might find clinical applications (Wang et al. 
2017, Sutherland D.R. et al. 1996).

Discussion

The critical factor in vaccine design is ensuring the Vac-
cine’s efficacy while reducing the potential risks associated 
with it.

The immune response induced by antigenic or genetic 
immunization can thus generally be distinguished by these two 
subtypes: Th1/Th2. Successful vaccines for most pathogens 
will require enhanced immune responses, including Th1-cellu-
lar-mediated immunity and robust Th2-humoral response. It is 
necessary to vaccinate twice or three times to obtain an intense 
and long-lasting immune response. An essential mechanism in 
the immune regulation involves homeostasis between the Th1 
and Th2 activity of CD4 + T helper cells expressing different 
cytokine patterns. (Gupta and Gupta 2020; Kool et al. 2008).

Adjuvants may exhibit their immunostimulatory effects 
via various mechanisms: providing antigen depot; activation 
of innate immunity through pathogen recognition receptors 
engagement; co-stimulation of immune cells; and immuno-
modulation, e.g., maturation of particularly dendritic cells 
(Joffre O.P. et al. 2012).

Various experimental studies are performed with pep-
tides as potential adjuvants.

In 1975, the active subunit of bacterial cell walls in 
Freund’s complete adjuvant was identified and synthe-
sized (Audibert et al. 1982; Ellouz et al. 1974, Kotani, S. 

Fig. 3  Hemagglutinin inhibition (HI) оf mice sera after immunization with Vaxigrip (V), Stemokin (V + S100 µg), and Alhydrogel (V + Alum) 
group
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Conclusion

This first proof-of-concept pilot experimental study pro-
vides evidence that a pharmaceutical preparation Stemokin 
has the potency of a vaccine adjuvant favoring a balanced 
Th1/Th2 response.

Following Stemokin treatment, anti-HA IgG2a response 
was enhanced, revealing a Th1- favoring balanced Th1/Th2 
immunomodulation. In other words, Stemokin promotes a 
more rapid protective response.

The optimized Stemokin concentration in the specific 
immunogen/adjuvant composition can generate a higher 
IgG2a (Fig. 1) response and balance the Th1/Th2 ratio more 
efficiently than a traditional vaccine adjuvant.

More detailed studies of Stemokin and its analogs as adju-
vants are planned with various types of modern vaccines.
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