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Abstract

Cilostazol, a type-3 phosphodiesterase (PDE3) inhibitor, has become widely used as an antiplatelet drug worldwide. A recent
second Cilostazol Stroke Prevention Study demonstrated that cilostazol is superior to aspirin for prevention of stroke after
an ischemic stroke. However, its precise mechanisms of action remain to be determined. Here, we report that cilostazol, but
not the PDE3 inhibitors cilostamide and milrinone, significantly potentiated nerve growth factor (NGF)-induced neurite
outgrowth in PC12 cells. Furthermore, specific inhibitors for the endoplasmic reticulum protein inositol 1,4,5-triphosphate
(IP3) receptors and several common signaling pathways (PLC-c, PI3K, Akt, p38 MAPK, and c-Jun N-terminal kinase (JNK), and
the Ras/Raf/ERK/MAPK) significantly blocked the potentiation of NGF-induced neurite outgrowth by cilostazol. Using a
proteomics analysis, we identified that levels of eukaryotic translation elongation factor eEF1A1 protein were significantly
increased by treatment with cilostazol, but not cilostamide, in PC12 cells. Moreover, the potentiating effects of cilostazol on
NGF-induced neurite outgrowth were significantly antagonized by treatment with eEF1A1 RNAi, but not the negative
control of eEF1A1. These findings suggest that eEF1A1 and several common cellular signaling pathways might play a role in
the mechanism of cilostazol-induced neurite outgrowth. Therefore, agents that can increase the eEF1A1 protein may have
therapeutic relevance in diverse conditions with altered neurite outgrowth.
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Introduction

Cilostazol, a potent inhibitor of phosphodiesterase type-3

(PDE3), is an antiplatelet/ antithrombotic agent used worldwide

for the treatment of chronic arterial occlusion and intermittent

claudication with peripheral occlusion and used in Japan and some

other Asian countries for the prevention of ischemic stroke [1–4].

The Cilostazol Stroke Prevention Study demonstrated that

cilostazol significantly reduced the incidence of secondary stroke

in patients with recent stroke or transient ischemic attack [5,6].

Furthermore, subgroup analysis of this study showed that

cilostazol is also useful in preventing the recurrence of vascular

events in patients with lacunar infarction, and is probably effective

in high-risk patients with diabetes and/or hypertension [7]. A

meta-analysis of placebo-controlled randomized trials of cilostazol

in patients with atherothrombosis demonstrated a significant risk

reduction for cerebrovascular events, with no associated increase

of bleeding risk [8]. Moreover, a randomized, double-blind study

of cilostazol and aspirin demonstrated that cilostazol might be

more effective and safe than aspirin for Chinese patients with

ischemic stroke [9,10]. The multicenter double-blind placebo-

controlled trial showed that cilostazol prevents the progression of

symptomatic intracranial arterial stenosis [11]. Very recently, the

second Cilostazol Stroke Prevention Study demonstrated that

cilostazol might be superior to aspirin for prevention of stroke after

an ischemic stroke [12]. Taken together, these findings suggest

that inhibition of PDE3 by cilostazol may contribute to its

beneficial effects in these diseases although the precise mechanisms

underlying the beneficial effects of cilostazol are not fully

understood.

Recently, we reported that cilostazol was effective for both N-

methyl-D-aspartate (NMDA) receptor antagonist phencyclidine-

induced cognitive deficits and NMDA receptor antagonist

dizocilpine-induced prepulse inhibition deficits in mice, suggesting

that cilostazol has potential antipsychotic activity [13,14]. There

are also case reports showing that augmentation therapy with

cilostazol improved the depressive symptoms in patients with

geriatric depression [15,16] and cognitive impairments in patients

with moderate Alzheimer disease [17]. These findings suggest that

cilostazol might have beneficial activity in the treatment of

neuropsychiatric diseases. By contrast, it has been reported that

mRNA levels of PDE3A and PDE3B were relatively low in the

human brain whereas mRNA levels of PDE3A were the highest in

the heart [18]. Thus, it is unlikely that PDE3 inhibition by

cilostazol would be a major contributing factor to its effects on the

brain.

The purpose of this study was to examine the precise

mechanisms underlying the beneficial effects of cilostazol. First,

we examined the effects of cilostazol and the other PDE3

inhibitors cilostamide and milrinone [19] on nerve growth factor

(NGF)-induced neurite outgrowth in PC12 cells, which has been

widely used as a model for studying neurite outgrowth [20–23].

In this study, we found that cilostazol, but not cilostamide or

milrinone, significantly potentiated NGF-induced neurite out-

growth. Second, we examined the precise cellular mechanisms

underlying the potentiation by cilostazol of NGF-induced
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neurite outgrowth. Finally, we identified that eukaryotic

translation elongation factor eEF1A1, one of the most abundant

protein synthesis factors [24], might be a novel target for

cilostazol.

Results

Effects of three PDE3 inhibitors on NGF-induced neurite
outgrowth in PC12 cells

Cilostazol (0.1, 1.0 or 10 mM) significantly increased the

number of cells with neurites induced by NGF (2.5 ng/ml), in a

concentration-dependent manner (Fig. 1). In contrast, cilostamide

(0.1, 1.0 or 10 mM) and milrinone (0.1, 1.0 or 10 mM) did not

increase the number of cells with NGF (2.5 ng/ml)-induced

neurites (Fig. 1). The microtubule-associated protein 2 (MAP-2)

immunocytochemistry showed that cilostazol (10 mM) but not

cilostamide (10 mM) increased the number of cells with NGF

(2.5 ng/ml)-induced neurites (Fig. S1). These findings suggest that

the inhibition of PDE3 does not contribute to the active

mechanism of cilostazol.

Role of signaling molecules proximal to TrkA in the
potentiation of NGF-induced neurite outgrowth by
cilostazol

We examined the effects of the specific inhibitors of PLC-c,

PI3K, Akt, p38 MAPK, and c-Jun N-terminal kinase (JNK), since

these signaling molecules are activated upon the addition of NGF

[20–23,25–27]. The PLC-c inhibitor (U73122; 1.0 mM), PI3K

inhibitor (LY294002; 10 mM), Akt inhibitor (1.0 mM), p38 MAPK

inhibitor (SB203580; 10 mM), and JNK inhibitor (SP600125;

10 mM) significantly blocked the potentiation of NGF-induced

neurite outgrowth by cilostazol (10 mM) (Fig. 2). In contrast, these

inhibitors alone did not alter NGF-induced neurite outgrowth in

PC12 cells (Fig. 2).

Role of the Ras/Raf/ERK/MAPK pathway in the
potentiation of NGF-induced neurite outgrowth by
cilostazol

The Ras/Raf/ERK/MAPK pathway is known to be involved

in NGF-induced neurite outgrowth [20,22,23,25,26]. Therefore,

we examined the effects of the pathway’s specific inhibitors. The

Ras inhibitor (GW5074; 1.0 mM), Raf inhibitor (lovastatin;

10 mM), MEK inhibitor (U0126; 10 mM), MEK1/2 inhibitor

(SL327; 10 mM), and MAPK inhibitor (PD98059; 10 mM)

significantly blocked the potentiation of NGF-induced neurite

outgrowth by cilostazol (10 mM) (Fig. 3). In contrast, U0124

(10 mM), an inactive analog of U0126, did not alter the

potentiation of NGF-induced neurite outgrowth by cilostazol

(Fig. 3). Furthermore, these inhibitors alone did not alter the NGF-

induced neurite outgrowth in PC12 cells (Fig. 3).

Role of IP3 receptors in the potentiation of NGF-induced
neurite outgrowth by cilostazol

Previously, we reported that the receptors of the endoplasmic

reticulum (ER) protein inositol 1,4,5-triphosphate (IP3) play a role

in the NGF-induced neurite outgrowth in PC12 cells [20–23]. To

investigate the role of IP3 receptors in cilostazol’s action on NGF-

induced neurite outgrowth, we examined the effects of xestos-

pongin C (a selective, reversible, and membrane-permeable

inhibitor of IP3 receptors) [28] on the effects of cilostazol on

NGF-induced neurite outgrowth. Co-administration of xestos-

pongin C (1.0 mM) significantly blocked the potentiation of NGF-

induced neurite outgrowth by cilostazol (10 mM) (Fig. 4).

Furthermore, administration of xestospongin C (1.0 mM) alone

Figure 1. Effects of cilostazol, cilostamide, and milrinone on NGF-induced neurite outgrowth in PC12 cells. Cilostazol, but not
cilostamide and milrinone, significantly increased the number of cells with neurite, in a concentration-dependent manner. Number is the
concentration (mM) of drugs. ***P,0.001 as compared with control (NGF (2.5 ng/ml) alone group). The data show the mean 6 SEM (n = 6–16).
doi:10.1371/journal.pone.0017431.g001

eEF1A1 as a Target of Cilostazol
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did not alter NGF-induced neurite outgrowth in PC12 cells

(Fig. 4).

Role of eEF1A1 in the potentiation of NGF-induced
neurite outgrowth by cilostazol

To determine the molecular target of cilostazol’s action on

NGF-induced neurite outgrowth, we performed two-dimensional

gel electrophoresis proteome analysis. We identified the eukaryotic

translation elongation factor eEF1A1 as showing different protein

levels in PC12 cells treated with cilostazol (10 mM) or cilostamide

(10 mM); namely, eEF1A1 protein was significantly increased by

the treatment with cilostazol but not by cilostamide (Fig. S2).

To determine whether eEF1A1 mediates the potentiation of

NGF-induced neurite outgrowth by cilostazol, we treated PC12

cells with eEF1A1 RNA interference (RNAi), which reduces the

expression of the eEF1A1 protein. As shown in Fig. 5A, the

increase of eEF1A1 protein by cilostazol (10 mM) was significantly

blocked by treatment with eEF1A1 RNAi, but not by the negative

control of eEF1A1 RNAi. In contrast, treatment with eEF1A1

RNAi or the negative control of eEF1A1 RNAi alone did not alter

the basal levels of eEF1A1 protein (Fig. 5A). Furthermore, the

potentiating effects of cilostazol (10 mM) on NGF-induced neurite

outgrowth were significantly antagonized by treatment with

eEF1A1 RNAi, but not by the negative control of eEF1A1

(Fig. 5B). In contrast, treatment with eEF1A1 RNAi or the

negative control of eEF1A1 RNAi alone did not alter the NGF-

induced neurite outgrowth in PC12 cells (Fig. 5B).

Discussion

The major findings of this study are that an increase in the

eEF1A1 protein by cilostazol might be involved in the mechanisms

of potentiation of NGF-induced neurite outgrowth by cilostazol.

First, we found that cilostazol, but not cilostamide or milrinone,

could potentiate NGF-induced neurite outgrowth in PC12 cells,

suggesting that inhibition of PDE3 by cilostazol might not be

involved in the active mechanism for potentiation of NGF-induced

neurite outgrowth by this drug. Second, the IP3 receptors and

several common cellular signaling pathways might be involved in

this action of cilostazol. Third, we identified eEF1A1 as a novel

target for cilostazol. To our knowledge, this is the first report

demonstrating that an increase in eEF1A1 protein by cilostazol is

required for cilostazol’s action on the neurite outgrowth.

Figure 2. Effects of the specific inhibitors of PLC-c, PI3K, Akt, p38MAPK, and JNK on potentiation of NGF-induced neurite
outgrowth by cilostazol. The potentiating effects of cilostazol (10 mM) on the NGF (2.5 ng/ml)-induced neurite outgrowth were antagonized by
co-administration of the PLC-c inhibitor (U73122; 1.0 mM), the PI3K inhibitor (LY294002; 10 mM), the Akt inhibitor (1.0 mM), the p38MAPK inhibitor
(SB203580; 10 mM), or the JNK inhibitor (SP600125; 10 mM). ***P,0.001 as compared with control (NGF (2.5 ng/ml) alone group). The data show the
mean 6 SEM (n = 6–25).
doi:10.1371/journal.pone.0017431.g002

eEF1A1 as a Target of Cilostazol
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NGF binds to the high-affinity tyrosine receptor TrkA, initiating

several signaling pathways affecting both morphological and

transcriptional targets [20,22,23,25,26]. The signaling molecules,

including PLC-c, PI3K, Akt, p38 MAPK, and JNK, are activated

upon the addition of NGF [29]. PLC-c catalyzes the hydrolysis

of phosphatidylinositol-4,5-bisphosphate (PIP2) to diacylglycerol

(DAG) and IP3. DAG activates protein kinase C, and IP3 promotes

transient release of Ca2+ from the ER via stimulation at the IP3

receptors. Thus, the pathway via PLC-c is responsible for NGF-

induced neurite outgrowth [20,22,23,30]. Furthermore, stimula-

tion of PI3K is reported to be involved in the promotion of neurite

outgrowth in PC12 cells [20,22,23,31]. In this study, we found that

the PLC-c inhibitor U73122, the PI3K inhibitor LY294002, and

an Akt inhibitor significantly blocked the potentiation of NGF-

induced neurite outgrowth by cilostazol. Moreover, we found that

both the p38MAPK inhibitor SB203580 and the JNK inhibitor

SP600125 significantly blocked the potentiation of NGF-induced

neurite outgrowth by cilostazol. Additionally, we found that the

specific inhibitors for the Ras/Raf/MEK/MAPK pathways

significantly blocked the potentiation of NGF-induced neurite

outgrowth by cilostazol. Taken together, these findings suggest

that common pathways, including PLC-c, PI3K, Akt, p38MAPK,

JNK and Ras/Raf/MEK/MAPK, are involved in the mecha-

nisms of cilostazol’s potentiation of NGF-induced neurite

outgrowth. The present results may be of special interest in

relation to the role of the PI3K/Akt/ERK/MAPK signaling

pathway in the control of protein synthesis-dependent learning

and memory [32].

It is known that IP3 is a ubiquitous second messenger

responsible for the release of Ca2+ from the ER, and that control

of Ca2+ by IP3 receptors on the ER is critically important in

maintaining a number of cellular functions, including cell growth,

neurite outgrowth [33,34]. Interestingly, it has been reported that

calcium signaling mediated by IP3 receptors resulted in neurite

outgrowth, suggesting that IP3-mediated Ca2+ release from

internal stores is necessary to maintain [Ca2+]i, within the

optimum range of neurite outgrowth [35]. In this study, we found

that the IP3 receptor antagonist xestospongin C significantly

blocked the potentiation of NGF-induced neurite outgrowth by

cilostazol, suggesting the role of IP3 receptors on NGF-induced

Figure 3. Effects of the specific inhibitors of Ras, Raf, MEK, MEK1/2, and MAPK on potentiation of NGF-induced neurite outgrowth
by cilostazol. The potentiating effects of cilostazol (10 mM) on the NGF-induced neurite outgrowth were antagonized by co-administration of the
Ras inhibitor (GW5074; 1.0 mM), the Raf inhibitor (lovastatin; 10 mM), the MEK inhibitor (U0126; 10 mM), the MEK1/2 inhibitor (SL327; 10 mM), and the
MAPK inhibitor (PD98059; 10 mM). In contrast, U0124 (10 mM), an inactive analog of U0126, did not alter the potentiation of NGF-induced neurite
outgrowth by cilostazol. **P,0.01, ***P,0.001 as compared with control (NGF (2.5 ng/ml) alone group). The data show the mean 6 SEM (n = 6–14).
doi:10.1371/journal.pone.0017431.g003

eEF1A1 as a Target of Cilostazol
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neurite outgrowth. Previously, we reported that IP3 receptors play

a role in the potentiation of NGF-induced neurite outgrowth by

sigma-1 receptor agonists (e.g., fluvoxamine, donepezil), the

ROCK inhibitor Y-27632 or the antibiotic drug minocycline

[20–23]. Together, it seems that stimulation at the IP3 receptors

on the ER is involved in the mechanism underlying the

potentiation of NGF-induced neurite outgrowth by cilostazol.

Protein synthesis (or translation) in eukaryotic cells is funda-

mental for gene expression and is tightly controlled by three

fundamental stages: translation, elongation, and termination

[24,36,37]. Translation elongation requires several proteins called

eukaryotic elongation factors (eEFs). Of these, eEF1A1 is one of

the most abundant protein synthesis factors, and is responsible for

the delivery of all aminoacyl-tRNAs to the ribosome, aside from

initiator and selenocysteine tRNAs [24]. In the present study, we

found that the increase in the levels of eEF1A1 protein by

cilostazol might play a role in the mechanism of potentiation of

NGF-induced neurite outgrowth by this drug although the precise

mechanisms underlying the cilostazol-induced increase of eEF1A1

are currently unclear. It has been reported that the levels of eEF1A

correlate with the rate of apoptosis upon serum withdrawal [38],

and that eEF1A promotes survival following growth factor

withdrawal [39], suggesting that eEF1A has neuroprotective

effects. Protein synthesis is also known to be necessary for neurite

outgrowth in PC12 cells [40]. Taken together, it is likely that

eEF1A families including eEF1A1 play a role in neurite

outgrowth, indicating that eEF1A1 may be a potential target for

developing therapeutic drugs for certain neurodegenerative and

psychiatric diseases. Therefore, agents that can increase the

eEF1A1 protein may have therapeutic relevance in diverse

conditions with altered neurite outgrowth.

Previously, we reported that an increase in the translation

initiation factors eIF4AI by the antibiotic drug minocycline might

play a role in the mechanisms of its action for NGF-induced

neurite outgrowth in PC12 cells [23]. However, we found that

cilostazol did not affect the levels of eIF4AI in PC12 cells

(Fig. S3). Therefore, it is likely that an increase of eEF1A1, but

not eIF4AI, by cilostazol plays a major role in the mechanism

of its action.

It is known that PDE3A had a strikingly selective distribution

with 10–15 fold higher levels in the human heart compared to any

other tissues and tenfold higher expression than any other PDEs in

the heart [18]. Furthermore, Sun et al. [41] reported that PDE3A

knockout mice were protected against collagen/epinephrine-

induced pulmonary thrombosis and death, and that these showed

an increased heart rate, suggesting that PDE3A plays a role in

regulating intracellular cAMP levels in the cardiovascular system.

Considering the beneficial effects of cilostazol on neurite

outgrowth, it is possible that cilostazol may have a potential

therapeutic activity in heart disease.

In conclusion, the present results suggest that cilostazol, but not

cilostamide and milrinone, could potentiate NGF-induced neurite

outgrowth in PC12 cells, and that interaction with IP3 receptors

and several cellular signaling pathways are involved in the

mechanism underlying the pharmacological action of cilostazol.

Furthermore, we identified eEF1A1 as a novel target for

mechanisms of action of cilostazol. These findings offer new

approaches to develop potential therapeutic drugs that can target

translation elongation factors including eEF1A1.

Materials and Methods

Drugs
The drugs were obtained from the following sources: cilostazol

(Otsuka Pharmaceutical Co., Ltd, Tokyo, Japan); cilostamide,

milrinone, xestospongin C (Wako Pure Chemicals Inc., Tokyo,

Japan); LY294002 (Sigma-Aldrich, St Louis, MO); NGF (Pro-

mega, Madison, WI); lovastatin, PD98059, GW5074, SB203580,

MEK 1/2 inhibitor (SL327), SP600125, U0126, U0124 (Calbio-

chem-Novabiochem, San Diego, CA), and Akt inhibitor (Bio

Vision Inc., CA). Other drugs were purchased from commercial

sources.

Cell culture
PC12 sells (RIKEN Cell Bank, Tsukuba, Japan) were cultured

at 37uC, 5% CO2 with Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 5% heat-inactivated fetal bovine

serum (FBS), 10% heat-inactivated horse serum, and 1%

penicillin. The medium was changed two or three times a week.

PC12 cells were plated onto 24-well tissue culture plates coated

with poly-D-lysine/laminin. Cells were plated at relatively low

density (0.256104 cells/cm2) in DMEM medium containing 0.5%

FBS, 1% penicillin streptomycin. Medium containing a minimal

level of serum (0.5% FBS) was used as previously reported [22–

23]. Previously, we examined the optimal concentration of NGF

for NGF-induced neurite outgrowth in PC12 cells. NGF (2.5, 5,

10, 20, 40 ng/ml) increased the number of cells with neurite

outgrowth in PC12 cells, in a concentration-dependent manner

[20]. In the present studies, 2.5 ng/ml of NGF was used to study

the potentiating effects of PDE3 inhibitors on NGF-induced

neurite outgrowth. Twenty-four hours after plating, the medium

was replaced with DMEM medium containing 0.5% FBS and 1%

penicillin streptomycin with NGF (2.5 ng/ml) with or without

several drugs.

Quantification of neurite outgrowth
Four days after incubation with NGF (2.5 ng/ml) with or

without the several drugs, morphometric analysis was performed

on digitized images of live cells taken under phase-contrast

illumination with an inverted microscope linked to a camera.

Images of three fields per well were taken, with an average of 100

cells per field. Differentiated cells were counted by visual

examination of the field; only cells that had at least one neurite

Figure 4. Effects of the IP3 receptor antagonist on potentiation
of NGF-induced neurite outgrowth by cilostazol. The potentiat-
ing effects of cilostazol (10 mM) on the NGF-induced neurite outgrowth
were antagonized by co-administration of the selective IP3 receptor
antagonist xestospongin C (1.0 mM). In contrast, xestospongin C
(1.0 mM) alone did not alter NGF-induced neurite outgrowth. The data
show the mean 6 SEM (n = 6–12). ***P,0.001 as compared with control
(NGF (2.5 ng/ml) alone group).
doi:10.1371/journal.pone.0017431.g004

eEF1A1 as a Target of Cilostazol
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with a length equal to the cell body diameter were counted, and

were then expressed as a percentage of the total cells in the field.

The counting was performed in a blinded manner.

Differential in two-dimensional gel electrophoresis and
MALDI-TOF MS analysis

In the presence of NGF (2.5 ng/ml), PC12 cells were treated

with cilostazol (10 mM), or cilostamide (10 mM). After four days,

cells were suspended in Laemmli lysis buffer, and two-dimensional

gel electrophoresis was performed. The spots of interest were

analyzed using MALDI-TOF MS (Voyager-DE STR, Applied

Biosystem, CA).

Western blot analysis
PC12 cells were washed with PBS and lysed in Laemmli lysis

buffer. Aliquots (30 mg) of the proteins were measured by DC

protein assay kit (Bio-Rad, Hercules, CA) and incubated for 5 min

at 95uC with an equal volume of 125 mM Tris/HCl, pH 6.8, 20%

glycerol, 0.1% bromphenol blue, 10% b-mercaptoethanol, 4%

SDS, and subjected to SDS-PAGE using 7.5% mini-gels (Mini

ProteanII; Bio-Rad, Hercules, CA). Proteins were transferred onto

PVDF membranes using a Trans Blot Mini Cell (Bio-Rad,

Hercules, CA). For immunodetection, the blots were blocked for

1 h in TBST (50 mM Tris/HCl, pH 7.8, 0.13 M NaCl, 0.1%

Tween 20) containing 5% nonfat dry milk at room temperature

(RT), followed by incubation with rabbit anti-eEF1A1 antibody

(1:250, ab37969, Abcam, Cambridge, UK) overnight at 4uC in

TBST/5% blocker. The blots were washed five times with TBST.

Incubation with the secondary antibody (GE Healthcare Biosci-

ence, UK) was performed for 1 h at RT. After extensive washing,

immunoreactivity was detected by ECL plus Western Blotting

Detection system (GE Healthcare Bioscience, UK). Images were

captured using a Fuji LAS3000-mini imaging system (Fujifilm,

Tokyo, Japan) with the Multi Gauge software (Ver.3.0; Fujifilm,

Tokyo, Japan) and immunoreactive bands were quantified. b-actin

immunoreactivity was used to monitor equal sample loading.

RNAi transfection
RNAi gene expression knockdown studies were performed using

the TriFECTa RNAi kit (Integrated DNA Technologies, Coral-

ville, CA) and corresponding protocol. Each 27 mer RNAi

duplex was transfected into cells using Lipofectamine 2000

reagent (Invitrogen, Carlsbad, CA) following the manufacturer’s

guidelines. RNAi was purchased from Integrated DNA

Figure 5. Increase in eEF1A1 protein is required for cilostazol-induced potentiation of NGF-induced neurite outgrowth in PC12
cells. (A) The potentiating effects of cilostazol (10 mM) on the eEF1A1 protein levels were significantly antagonized by treatment of eEF1A1 RNAi, but
not negative RNAi. In contrast, eEF1A1 RNAi or negative RNAi alone did not alter the levels of eEF1A1 protein in the control (NGF (2.5 ng/ml)-treated)
group. The data show the mean 6 SEM (n = 7–16). *p,0.05 as compared with cilostazol (10 mM) group. (B) The potentiating effects of cilostazol
(10 mM) on the NGF-induced neurite outgrowth were significantly antagonized by treatment of eEF1A1 RNAi, but not negative RNAi. In contrast,
eEF1A1 RNAi or negative RNAi alone did not alter NGF (2.5 ng/ml)-induced neurite outgrowth. The data show the mean 6 SEM (n = 8). ***p,0.001 as
compared with cilostazol (10 mM) group.
doi:10.1371/journal.pone.0017431.g005

eEF1A1 as a Target of Cilostazol
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Technologies (Coralville, CA). The following sequences:

Rattus norvegicus eukaryotic translation elongation factor

1A1 (Eef1a1), mRNA GenBank Accession No. NM_175838

(RNC.RNAI.N175838.10.1; IDT): sense, 59-AGGCUUCAAC-

GUAAAGAACGUGUCT-39; antisense, 59-AGACACGUU-

CUUUACGUUGAAGCCUAC-39 (RNC.RNAI.N175838.10.2;

IDT): sense, 59-CGAGCUUAAAGAGAAGAUCGAUCGT-39;

antisense, 59-ACGAUCGAUCUUCUCUUUAAGCUCGGC-39

(RNC.RNAI.N175838.10.3; IDT): sense, 59-CCACCAUACA-

GUCAGAAGAGAUACG-39; antisense, 59-CGUAUCUCUU-

CUGACUGUAUGGUGGCU-39.

Statistical analysis
Data are expressed as means 6 standard error of the mean

(SEM). Statistical analysis was performed by using one-way

analysis of variance (ANOVA) and the post hoc Bonferroni/Dunn

test. P values less than 0.05 were considered statistically significant.

Supporting Information

Figure S1 Effects of cilostazol and cilostamide on MAP-
2 immunocytochemistry in PC12 cells. Cells were fixed for

30 min at room temperature with 4% paraformaldehyde then

permeabilized with 0.2% Triton and blocked with 1.5% normal

goat serum, 0.1% bovine serum albumin (BSA) in 0.1 M

phosphate-buffer saline for 1 h to reduce nonspecific binding.

Cells were incubated overnight at 4uC with anti-microtubule-

associated protein 2 (MAP-2) antibodies (1:1000 dilution in

blocking solution, Chemicon International, Temecula, CA,

USA). The immunolabeling was visualized with secondary

antibodies conjugated to Alexa-488 (1:1000; Invitrogen, Carlsbad,

CA, USA). MAP-2 immuncytochemistry was visualized with a

fluorescence microscope (Axiovert 200, Carl Zeiss, Oberkocken,

Germany). Representative photographs of MAP-2 immunocyto-

chemistry in PC12 cells. (A) Control (NGF (2.5 ng/ml) alone) (B)

NGF+cilostazol (10 mM), (C) NGF+cilostamide (10 mM).

(EPS)

Figure S2 Effects of cilostazol and cilostamide on
eEF1A1 protein in PC12 cells. PC12 cells were treated with

control (NGF (2.5 ng/ml)), NGF (2.5 ng/ml)+cilostazol (10 mM)

or NGF (2.5 ng/ml)+cilostamide (10 mM) for four days. Then cells

were washed with PBS, and lysed in Laemmli lysis buffer. Western

blot analysis was performed using rabbit anti-eEF1A1 antibody

(1:250, ab37969, Abcam, Cambridge, UK). Levels of eEF1A1

protein in PC12 cells were significantly increased by cilostazol

(10 mM), but not cilostamide (10 mM). The data show the mean 6

SEM (n = 24). **P,0.05, ***p,0.001 as compared with cilostazol

treated group.

(EPS)

Figure S3 Lack of cilostazol on eIF4AI protein in PC12
cells. PC12 cells were treated with control (NGF (2.5 ng/ml)) or

NGF (2.5 ng/ml)+cilostazol (10 mM) for four days. Then cells

were washed with PBS, and lysed in Laemmli lysis buffer. Western

blot analysis was performed using rabbit anti-eIF4AI antibody

(1:250, ab31217, Abcam, Cambridge, UK) as reported previously

[23]. Levels of eIF4AI protein in PC12 cells were not altered by

cilostazol (10 mM). The data show the mean 6 SEM (n = 8).

(EPS)
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