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This article explores the implications for human health of local interactions

between disease, ecosystems and livelihoods. Five interdisciplinary case

studies addressed zoonotic diseases in African settings: Rift Valley fever

(RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe,

Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how

ecological changes and human–ecosystem interactions affect pathogen

dynamics and hence the likelihood of zoonotic spillover and transmission,

and how socially differentiated peoples’ interactions with ecosystems and ani-

mals affect their exposure to disease. Cross-case analysis highlights how these

dynamics vary by ecosystem type, across a range from humid forest to semi-

arid savannah; the significance of interacting temporal and spatial scales;

and the importance of mosaic and patch dynamics. Ecosystem interactions

and services central to different people’s livelihoods and well-being include

pastoralism and agro-pastoralism, commercial and subsistence crop farming,

hunting, collecting food, fuelwood and medicines, and cultural practices.

There are synergies, but also tensions and trade-offs, between ecosystem

changes that benefit livelihoods and affect disease. Understanding these can

inform ‘One Health’ approaches towards managing ecosystems in ways that

reduce disease risks and burdens.

This article is part of the themed issue ‘One Health for a changing world:

zoonoses, ecosystems and human well-being’.
1. Introduction
Health is a critical aspect of human well-being, interacting with material and

social relations to contribute to people’s freedoms and choices. Globally, the

interaction between human health and the health of the environment is increas-

ingly recognized, along with acknowledgement that healthy ecosystems and
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healthy people go together [1]. ‘One Health’ discourse and

practice integrates animal health into the equation. In this con-

text, zoonotic diseases, emerging or re-emerging as public

health problems at the people–wildlife–livestock interface,

have become a major focus of scientific and policy attention.

While much concern is driven by their capacity to result in

global disease outbreaks, from pandemic influenzas to Ebola

and Zika virus epidemics, there is growing attention to

(once) neglected tropical diseases. In many parts of Africa,

for instance, evidence is accumulating of the major impacts

of zoonotic diseases, especially on people who are already

poor [2].

Much research examines zoonotic disease emergence and

impacts at a global scale, tracking and modelling large-scale

relationships between ecosystem change, populations and

animal and vector habitats, and the relationships with disease

outbreaks [3]. There has been relatively less attention to the

detailed local interactions between people, disease, animals

and ecosystems, untangling the complex dynamics of local

systems. Yet it is these local disease–ecosystem–livelihood

dynamics that underlie and add up to wider patterns of

change, as they interact with larger-scale drivers whether in

environment, economy or demography [4]. Evidence and

understanding of local system interactions is also a critical

basis for informing scenarios and decision-making processes

around policy, practice or institutional change geared to

improving policy and practice, designing and implementing

‘One Health’ interventions that work in real-world settings.

Research by the Dynamic Drivers of Disease in Africa Con-

sortium during 2012–2016 sought to fill this critical gap.

A series of case studies focused on local system contexts and

interactions in relation to particular zoonotic diseases in

African settings. Each asked: how do ecological changes (e.g.

in biodiversity, vegetation and habitat, water) and human–

ecosystem interactions affect pathogen dynamics and hence

the likelihood of zoonotic spillover and transmission? How

do different peoples’ interactions with ecosystems and ani-

mals, in the context of their daily lives, livelihoods and

socio-economic activities, affect their exposure to disease?

How do social differences—by gender, age, wealth, occu-

pation—affect these interactions? What are the synergies, but

also tensions and trade-offs, between ecosystem interactions

that are important for livelihoods, and those that put people

at risk of disease?

We investigated these interactions through case studies

focusing on four diseases in five local systems: Rift Valley

fever (RVF) in Kenya, human African trypanosomiasis in

Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipa-

viruses in Ghana. These cases were chosen because, in common,

the diseases all require persistent animal reservoir host(s) and

zoonotic spillover to cause human disease (unlike viruses of

longer zoonotic origin such as HIV/AIDS); yet they involve

contrasting transmission routes, ecosystem types and environ-

mental–livelihood dynamics, facilitating a fuller and more

comparative understanding. The modes of animal–human

transmission considered cover those that are direct (from bats

in the case of henipavirus, rodents in the case of Lassa fever

and domestic livestock in the case of RVF) and indirect, via

insect vectors (mosquitoes in the case of RVF and tsetse flies

in the case of trypanosomiasis). The cases also involve a range

of non-human vertebrate hosts (both wild and domestic) and

degrees of reliance on them. Case study sites are located

across ecological zones associated with rainfall gradients and
dominant vegetation types, from semi-arid savannah in

Kenya, through wooded miombo savannah in Zambia and

Zimbabwe and forest–savannah transition in Sierra Leone, to

humid forest in Ghana (figure 1). The cases therefore enable a

comparative exploration of a range of disease–ecosystem

dynamics. The case studies also represent different local con-

texts of people–livelihood–ecosystem interaction, from a rural

and urban contrast in Ghana for the henipavirus case; a vil-

lage–garden–farm landscape in Sierra Leone for the Lassa

case; a contrast between a dry pastoral rangeland and irrigated

agriculture in Kenya for the RVF case; and an ecotone between

plateau and valley, correlated with changing agricultural

and wildlife dynamics in Zambia and Zimbabwe for the

trypanosomiasis case.

Each of these case studies was investigated by an inter-

disciplinary team bringing together medical, veterinary,

environmental and social scientists. Methods included ecologi-

cal and animal population surveys; pathogen/antibody

sampling in animal and human populations, with laboratory

analysis; socio-economic and livelihood surveys; narrative

interviews and focus group discussions (FGDs); ethnographic

observations; participatory mapping, ranking and scoring exer-

cises, and the use of secondary data sources—including

published literature, government and health centre records, sat-

ellite data and spatially referenced databases. Methodological

applications, combinations and sequences were adapted to the

specificities of each case, as described briefly below. Space con-

straints in a multi-case paper mean that not all methodological

details are able to be presented here, but are cross-referenced

to other publications. Notably and in common, however, each

case study team combined and triangulated among methods

to gain a multi-dimensional picture of disease–ecosystem–

livelihood dynamics, including as perceived and experienced

by different local people themselves.

The article first presents the setting, specific problem

focus and key findings of each of the case studies. It then

looks across them to draw out cross-cutting insights around

several themes: the relationship between disease and ecosys-

tem dynamics across space and time; interactions between

differentiated livelihoods, ecosystems and disease risk; and

synergies and trade-offs in using and managing ecosystems

for livelihoods and disease. The analysis in turn suggests a

number of implications for policy and practice.
2. Local disease – ecosystem – livelihood
dynamics: five case studies

(a) Rift Valley fever in Kenya
Rift Valley fever (RVF) is a disease of sheep, goats, cattle and

camels caused by a virus carried by Aedes mosquitoes. It can

also be transmitted to people through the body fluids of

infected animals. Outbreaks occur episodically every 5–15

years following periods of above-normal precipitation, often

associated with the El Niño/Southern Oscillation (ENSO)

weather phenomenon [5]. The virus (RVFv) is thought to be

maintained during the inter-epidemic periods in eggs of

infected Aedes mosquitoes, which can survive for several

years in dry soil [6] but require heavy rainfall and/or floods

to emerge. Ecosystem change, particularly the introduction of

flood irrigation and dams in areas that already harbour
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Figure 1. Case study sites in contrasting African ecosystems.
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RVFv, is thus likely to provide conditions for RVFv occurrence

and endemicity.

In livestock, RVF causes abortions, stillbirths and the death

of young animals, and so severely affects livestock productivity

and herd viability, and hence pastoral livelihoods. In people, it

causes a flu-like illness which can on occasion be severe or fatal.

Much attention has focused on large epidemic occurrences of

RVF. In contrast, low-level endemic transmission of RVF is

known to be common in rural areas of semi-arid Kenya. The

case study investigated how ecosystem changes linked

especially to the expansion of irrigation were affecting RVF

transmission, and the impacts on people and animals in the

context of their interactions with these ecosystems.

The study focused on riverine and irrigated areas (Bura

and Hola, Tana River County) and pastoral areas (Ijara and

Sangailu, Garissa County) in north-east Kenya (figure 2),

among people from multiple ethnic communities including

the Pokomo, Orma and Somali. It compared land cover and

land-use changes, types of mosquitoes present and their den-

sities, peoples’ livelihoods, knowledge and disease control

practices, and seroprevalence of the virus in people and

livestock in irrigated and pastoral areas.

The study found a major increase in the area under irriga-

tion in the Tana River site compared to Ijara, the area that was

being used for pastoral production. Analysis of land-use and

land-cover changes between 1975, just before one of the irri-

gation schemes (Bura) was developed, and 2010 showed a

shift from a landscape of mainly open trees, open shrubs, her-

baceous vegetation on flooded land and bushlands. By 2010,

a number of key habitats had been lost including closed trees

(100%), open to closed herbaceous vegetation (100%), bush-

lands (236%) and open trees (230%). A large increase in

land cover was in cropland/irrigation where there was an
increase of more than 1,400%, followed by open trees on tem-

porally flooded land (50%) and herbaceous vegetation on

flooded land (48%).

The study also demonstrated an increase in mosquito abun-

dance in the irrigated areas. Mosquito sampling was carried out

in four repeated cross-sectional surveys in irrigated and non-irri-

gated areas that took a period of 1 year to cover all the seasons.

Mosquito larvae were also collected from all the open water

bodies within the irrigation scheme and transported to the labora-

tory where they were reared to adults, identified and screened for

viruses. Both primary and secondary vectors of RVFv, including

Aedes mcintoshi, Ae. ochraceus, Ae. tricholabis and Culex pipiens,
were sampled in the irrigated farms. Multivariate models fitted

to the data showed that controlling for season and humidity,

the irrigated farms had significantly higher densities of

mosquitoes than the pastoral areas (table 1). The study also

demonstrated that drainage canals in the irrigated area supported

the breeding of many mosquito species. When these mosquitoes

were screened for arboviruses using standard molecular charac-

terization techniques, eight Ndumu viruses were identified.

These viruses also cause febrile illnesses in humans.

Focus group discussions were held to identify and character-

ize wealth categories and determine livelihood practices that

predisposed people to mosquito-borne infections. A total of 42

FGDs involving 411 people (194 women and 217 men) were con-

ducted: 14 in irrigated sites, 12 in agro-pastoral sites and 16 in

pastoral sites. Wealth categories were described based on criteria

and thresholds defined by the participants themselves. These

included: types of livestock kept, education level achieved,

type of housing used, household items owned, source of

energy, livelihood sources, and access to food, water and

health services. Overall, the median percentages and the 10th

and 90th percentile of households that were classified under
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Figure 2. RVF case study site in north-east Kenya.

Table 1. Outputs of a geostatistical model illustrating the effects of land use, season and humidity on mosquito population densities. The regression parameters
are mean and percentile ranges (2.5 – 97.5%) of posterior distributions of fixed and random effects (Deviance Information Citerion estimates for models with
and without spatial effect: 702.50 verses 726.96; LULC, land use/land cover).

variable levels mean

percentile range

2.5% 97.5%

site/LULC farm—riverine area 20.16 21.08 0.77

village—riverine area 20.45 21.25 0.34

village—irrigation scheme 20.86 21.19 20.53

pastoral rangeland 22.27 22.99 21.55

irrigated farm 0.00

season very wet 1.84 1.23 2.46

wet 0.20 20.17 0.57

dry 0.00

humidity 0.03 0.03 0.04

model hyperparameters:

precision for the Gaussian 1.23 1.01 1.48

Theta1 26.30 28.89 23.99

Theta2 4.42 3.06 5.92
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poor, moderate and rich categories were 56% (15.0–88%), 29.5%

(10–61) and 12.5% (2–30%), respectively. This trend was

consistent across sites. Notably, however, irrigated areas had a

much higher proportion of households in the ‘poor’ category

compared to the other sites (74% compared with 38.5% in
agro-pastoral and 56.5% in pastoral areas). This could reflect

the importance of livestock ownership as a local signifier of

wealth, and its absence in the irrigated areas—as well as the

high proportion of people in the irrigated areas working as

relatively low-paid or casual labourers.



Table 2. Association between land use and seroprevalence of RVFv in
people. (Outputs of a geostatistical model. The regression parameters are
mean and percentile ranges (2.5 – 97.5%) of posterior distributions of fixed
and random effects.)

variable

posterior

percentile range

mean 2.5% 97.5%

fixed effects—land use

irrigation scheme 0.29 20.34 0.94

riverine area 0.12 20.70 0.92

pastoral area 0.00

random effect—SPDE2 Model

Theta1 for i 22.12 23.12 21.09

Theta2 for i 0.68 20.40 1.69
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Complementing the focus group discussions, participatory

mapping was used to determine ways in which people in pas-

toral and irrigated areas interacted with their ecosystems as

they pursued their livelihood activities. Households in the

pastoral sites engaged in livestock husbandry and sale of

fodder, trees, firewood and water. In the agro-pastoral sites,

crop farming, livestock husbandry and charcoal burning, in

that order, were identified as the key livelihood activities

while in irrigated areas, livelihood activities entailed crop

farming, paid employment (formal/casual), charcoal burning

and the sale of firewood and water. These activities varied by

wealth; in all three sites, wealthier households either had

formal employment or ran profitable businesses, while those

in the middle- and low-wealth categories worked as labourers

in irrigated farms, herded animals for pay or fetched water,

firewood, grass and building materials including poles for

sale. Ecosystem interactions and livelihood activities also

varied by gender. In irrigated agriculture, women were more

engaged in planting and weeding, while men were mainly

involved in watering and spraying of the crops against pests.

In agro-pastoral and pastoral sites, there was a clear separation

of the various livestock activities implemented by women,

men, young boys and girls.

These ecosystem interactions in turn brought differentiated

vulnerability to RVF. A sero-epidemiological survey showed

that the risk of exposure to RVFv was higher in people in

irrigated areas compared to pastoral and riverine areas.

This is illustrated in table 2, although the difference was not

statistically significant.

Thus irrigation, as a major form of ecosystem and land-

use change in semi-arid Kenya, has brought increases in

wealth for a few. However, these benefits have not been

widely shared and the majority of women and men remain

engaged in livelihood activities that keep them in poverty.

At the same time, irrigation has contributed to reductions

in well-being by increasing vulnerability to RVFv infection.
(b) Trypanosomiasis in Zambia
Human African trypanosomiasis (HAT) is a zoonotic disease

caused by the protozoan parasite Trypanosoma brucei rhodesiense,
transmitted by the tsetse fly (Glossina species). The Luangwa

Valley in Eastern Zambia (figure 3) is a well-recognized focus

for disease outbreaks which occur sporadically as a spillover

from a widespread reservoir in both domestic and wild animals

[7,8]. It is an area of high biodiversity with four national parks

which are bounded by game management areas (GMAs) in

which regulated utilization of natural resources (primarily

through professional safari hunting) is permitted. Human

population densities in these GMAs are relatively low. Tsetse-

transmitted trypanosomes also cause disease in animal

populations, with several pathogenic species recognized as caus-

ing African animal trypanosomiasis (AAT) in domesticated

animals. There has been an almost complete absence of livestock

keeping due to the high trypanosomiasis challenge, and liveli-

hood and cultural practices focus on wildlife utilization.

Agricultural activities are permitted, but land and resource use

systems have remained relatively consistent over the last century.

Over the last few decades there has been an influx of

people into the mid-Luangwa Valley around the tourist

centre of Mfuwe and south towards Katete (figure 3) on the

eastern plateau bounding the valley [9]. New settlements

have been created and livestock have been introduced in

large numbers. Cotton production has become widespread

along with other forms of cultivation with resultant changes

in land cover. As the distribution of tsetse species is largely

determined by climatic and environmental factors such as

temperature, vegetation cover and availability of vertebrate

hosts, these changes could have a profound impact on

tsetse populations and trypanosomiasis transmission. Simi-

larly, changes in human demographics and behaviour

could result in many more people becoming at risk of infec-

tion with HAT. Areas such as this where livestock have

recently been introduced and where they exist at the interface

with wildlife and tsetse populations have been identified as

being at particular risk of epidemics [10]. This case study

investigated the effect of these ecological and social changes

on the epidemiology of HAT, and on the livelihoods and

well-being of local communities.

The study area consisted of a transect approximately 75 km

long between Mambwe and Katete. Field research included a

census in 2012 of all human and domestic animal inhabitants

residing along this transect and the surrounding area. A cross-

sectional survey to estimate the prevalence of trypanosomiasis

(HAT and AAT) in humans, cattle, sheep, goats, pigs and dogs

was conducted in 2013 using molecular methods for diagnosis

[11,12], and data were compared to a similar study in 2005 [10].

A detailed human livelihoods and well-being survey in 211

households, as well as a smaller human movements survey,

were completed [13]. Participatory methods, including 28

key informant interviews, nine focus group discussions and

19 participatory mapping sessions and transect walks, were

used to assess local community knowledge and practices.

Tsetse surveys were conducted in June and November 2013

using standard tsetse sampling techniques for the region (Epsi-

lon traps and black screen fly rounds). Remotely sensed

satellite imagery was used to characterize and quantify land-

cover change in the study area from 1990 to 2013. Geostatistical

modelling is being used to investigate how environmental cov-

ariates influence the prevalence of trypanosomiasis in cattle

and the density of Glossina morsitans tsetse populations.

The census identified 3717 households within the studyarea,

supporting 17 656 people, showing an increase in the popu-

lation, although more modest than expected. Ethnic groups
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Figure 3. Trypanosomiasis study site in the Luangwa Valley, Zambia.
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represented included Kunda, Chewa, Ngoni, Nsenga, Bemba,

Tumbuka and Bisa people. Local migration is common with

62% of households reporting that they had moved location,

including 37% within Mambwe District. In-migration was less

common than expected, with 17% migrating from other parts

of Eastern Province and 8% from other parts of Zambia or neigh-

bouring countries. The main driver for in-migration has been

poor soil fertility on the eastern plateau and pressure on land

due to the high human population density.

Livelihood practices have also changed. Livestock are

now kept in large numbers with 14 914 domestic animals in

the study area including 3169 cattle. Agricultural activities

have become increasingly important. Cotton is the main

cash crop, grown by 85% of households; maize and ground-

nuts are the main food crops. Land cover was found to have

changed significantly, largely due to the clearing of new areas

for cultivation. Within a 5 km zone around the households

studied, the proportion of agricultural land has increased

from 10% to a third in the past 25 years. The main source

of energy is wood; harvesting it also contributes to the loss

of woodland (table 3).

The overall prevalence of trypanosomiasis in livestock

(HAT and AAT) declined from 16.99% (95% CI: 15.23–18.86)

in 2005 to 8.44% (95% CI: 6.98–10.10) in 2013 (figure 4). In con-

trast, the prevalence of T. brucei s.l. (which includes the human

infective T. b. rhodesiense sub-species) increased from 0.35%
(95% CI: 0.13–0.77) in 2005 to 0.94% (95% CI: 0.49–1.63) in

2013 (figure 5). Survey data are not available for other years,

so it is possible that these changes may reflect annual variation

in prevalence, rather than a long-term trend. No human-

infective T. b. rhodesiense was identified in the human or

animal populations sampled, but test sensitivity is a diagnostic

constraint and occasional cases are reported locally. The appar-

ent density of tsetse detected was relatively low and the

majority of flies sampled were G. morsitans morsitans with

very few G. pallidipes, most probably reflecting the relative

resilience of G. m. morsitans to ecosystem modification.

As land cover and livelihoods have changed towards agri-

culture, it is probable that this has contributed to the relatively

low apparent density of tsetse and a reduction in the combined

prevalence of all trypanosome species in livestock. However,

this reduction in prevalence was due to a reduction in

the species causing AAT rather than T. brucei s.l. Due to dif-

ficulties inherent in the diagnosis of the human-infective

T. b. rhodesiense subspecies in animals, T. brucei s.l. is often

used to investigate potential HAT infection. Therefore, the eco-

system changes appear to have been beneficial in terms of AAT,

but have not reduced the risk of HAT transmission. Given that

the number of livestock (and therefore the size of the potential

livestock reservoir for HAT) has also increased, the risk to

human health could potentially increase in the future despite

the reduction in the overall trypanosomiasis prevalence.



Table 3. Change in the area of agricultural land in the Zambian study site.

year

study area Mambwe District

land area under
agriculture (ha)

percentage of total area
under agriculture

land area under
agriculture (ha)

percentage of total area
under agriculture

1990 10 000 12 20 000 3

2000 14 000 16 26 000 4

2013 26 000 30 55 000 10
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50
pr

ev
al

en
ce
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%

)
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35
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10
5
0

cattle goats pigs sheep

livestock species

2003

Figure 4. Estimated prevalence of all pathogenic trypanosome species
detected in 2013 compared with 2005 (this includes both HAT and AAT).
Error bars display 95% confidence intervals.
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Figure 5. Estimated prevalence of T. brucei s.l. in 2013 compared with 2005
(T. brucei s.l. includes the human-infective subspecies T. b. rhodesiense). Error
bars display 95% confidence intervals.
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Migration patterns are complex with people often moving

over short distances. Those who in-migrate and settle at the

edge of intact vegetation are more likely to be exposed to

the risk of infection through contact with tsetse. In particular,

tsetse were primarily detected in the northwest of the study

area towards the South Luangwa National Park and Lower

Lupande GMA, which still largely contains woodland savan-

nah vegetation; the growing numbers of people living in this

interface area, or entering to gather fuelwood and other

resources, may be at a heightened risk of contracting HAT,

when compared with people living in the centre of settled

areas. These important human movement patterns have

been captured in an agent-based model currently under

development, which predicts two human infections over a

six-month simulation period. This is in keeping with the

sporadic nature of the disease in the Luangwa Valley.

Thus changing livelihood and ecosystem dynamics linked

to population growth, in-migration and a shift from wildlife-

based to agricultural activities have been associated with a

decline in overall trypanosomiasis risk in animal populations,

but the risk of zoonotic trypanosomiasis persists. Those

who inhabit and visit the interface areas with woodland and

wildlife—interfaces whose location is shifting as land-cover

change proceeds—are particularly vulnerable. For in-migrants

and others dependent on these zones, positive benefits for

livelihoods and well-being from making use of woodland

resources also bring the corresponding risk of disease. If

tsetse persist in sufficient numbers within the interface zone,

people and livestock will continue to be at risk of infection.
(c) Trypanosomiasis in Zimbabwe
A case study of trypanosomiasis was also conducted

in Zimbabwe, revealing a slightly different set of disease–
ecosystem–livelihood dynamics in a broadly similar ecological

setting. Until the 1990s, the Zambezi Valley—the area between

Zambia and Zimbabwe—hosted high tsetse fly populations and

experienced frequent trypanosomiasis outbreaks. These were

the focus of major, widespread quasi-military control cam-

paigns, initially focused on eradicating wildlife hosts [14],

later on eradicating the fly using chemical sprays, baits and

traps, and the Sterile Insect Technique (SIT), and more recently

drugs and vaccines [15]. The same time period has also seen

major changes in vegetation and land cover linked to human

population growth, in-migration and settlement, and the

expansion of agriculture, especially cash-cropping. It seems

likely that these ecosystem–livelihood changes have—perhaps

more than official tsetse control efforts—brought about a

reduction in tsetse populations and trypanosomiasis cases, in

a similar dynamic to that experienced in the Luangwa Valley

in Zambia. Nevertheless, the problem persists. Eleven cases of

HAT were reported in 2010, three in 2013 and 2014, and one

in 2015. It is likely that numbers in reality are much higher

since villagers rarely report sleeping sickness, cases reported

to local clinics are often missed [16] and some choose to

manage the disease traditionally instead [17]. The Zimbabwe

case study sought to understand the ecosystem–livelihood

dynamics accounting for this persistence of trypanosomiasis

risk, and who is vulnerable to it.

The study focused on Hurungwe District (figure 6), charac-

terized by highly biodiverse wooded miombo savannah.

A large part of the site is classified as protected areas established

in the 1960s including Mana Pools (in the north), Chewore and

Sapi Safari areas, in the northeast, and Hurungwe Safari area in

the northwest, while others are classified as communal areas

and commercial farms. Methods combined Geographic Infor-

mation System mapping and use of secondary data to map

landscape changes with entomological surveys and trapping



points of interest

N

0 10 20 km5

landuse

Zambezi Escarpment

game fence

roads

rivers

project boundary

commercial farms

communal lands

protected area

settlement

Lake Kariba

Figure 6. Trypanosomiasis study site in Hurungwe District, Zimbabwe.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160163

8

to map the distribution of tsetse flies. Interviews and participant

observation were used to explore socially differentiated inter-

actions with ecosystems and how this related to livelihood

and cultural practices. Local knowledge derived from participa-

tory methods was also used to guide the positioning of tsetse fly

traps, in order to follow up inhabitants’ own hypotheses about

fly prevalence.

The District has undergone fundamental changes in popu-

lation and land cover over the last few decades. In the 1980s

the population was less than 20 000. Settlement was discour-

aged by the prevalence of trypanosomiasis, and later by

protracted guerrilla warfare [18,19]. Since the 1980s, there has

been significant in-migration, resulting in a differentiated mix

of people pursuing different livelihood activities. First, there

are the Korekore people, who still engage in foraging and hunt-

ing, with some moving into agriculture. Second, there are long-

term migrants, attracted to Hurungwe by land and firewood for

commodity production [20]. These migrants dominate the pro-

duction of tobacco and cotton, threatening Korekore land

control [21]. Third, there are ‘squatters’, a disparate group

seeing Hurungwe as a refuge—whether fleeing the state, dis-

placed from commercial crop farming areas or retrenched

from mining towns following the collapse of the economy.

Whatever their origin, squatters are very poor and vulnerable.

While human settlement, in-migration and the intro-

duction of cotton and tobacco farming have generally

transformed land cover, there nevertheless remain many

patches of woodland, locally termed tumasango. These include

steep valleys that cannot be accessed for settlement or develop-

ment. They also include river banks, sacred hills and wetlands

where territorial spirits are considered to dwell. In contrast to

the cleared homesteads and farmlands, these patches carry

wooded vegetation, providing ideal habitats for the tsetse
fly. Figure 7 shows these changes in the suitable habitat

for tsetse, from widespread woodland cover in 1986, to its

concentration in patches in 2008.

Entomological surveys confirmed that these patches are

not just ideal habitats, but actually contain tsetse flies.

Twelve [11] fly traps were deployed over seven [6] months

(February to August) in a transect in the Zambezi Valley.

The results are shown in figure 8, which suggests a gradient,

with tsetse found in transect traps on the wooded valley floor

(FT1–3), peaking at the highly wooded escarpment (FT4) and

dropping to zero in the settled areas above it (FT6–12). FT4

gave the highest standard deviation, indicating that there

was a huge variation in the monthly trap catches in FT4 com-

pared to the other traps.

Epidemiological surveys found a corresponding patchy

pattern to disease prevalence. Trypanosomiasis infections

were found primarily in livestock inhabiting such patch

areas. Where infections were reported in settled areas, they

were the result of animal movements. Finally, participatory

analysis revealed the same picture. When asked to indicate

places where tsetse flies were found, villagers pointed to the

Mushagizhe Valley and Chewore River, where as one put it:
These have more tsetse than any other area. Chitindiva (settled
area) there is no fly at all, and all you have are mosquitoes.
As far as we know, these valleys and river banks are maternity
areas of tsetse. The flies are found there anytime of the year
(Interview, 2014).
Notably, these woodland patches are also rich in terms of

resources. As figure 9 illustrates, based on a participatory

map of Mukwichi in the communal area, there is always

water, due to the perennial rivers and streams in the valleys.

There are opportunities for both browsing, grazing and water

for livestock, especially valuable between September and
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early December, the dry season. In some patches there is also

high wildlife presence, encouraged by a controversial commu-

nity conservation project [17]. This brings opportunities for
subsistence hunting and, in the dry season, for sport hunting

of big game such as elephants and buffaloes. Woodland patches

also present opportunities for foraging (fruits, tubers, insects),
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as well as sites for cultural practices such as pilgrimages to these

as sacred places where spirit mediums, central in land fertility

and dispute settlement, dwell.

As people seek to access these resources in the context of

their livelihoods, they are vulnerable to tsetse fly exposure

and HAT risk. The most vulnerable groups include cattle

herders, women who gather forest products, hunters and

pilgrims. Also vulnerable are recent migrants because they

are the main groups to access woodland interfaces, where

they seek land for tobacco farming, as well as squatters who

sometimes seek to live deep in woodlands where the state

authorities cannot reach them.

Thus tsetse and trypanosomiasis persist in Hurungwe, in

spite of a history of massive control attempts and a general

transformation of land cover away from suitable tsetse habi-

tats. Key are the woodland patches found within a wider

dynamic ecosystem, which provide continued habitats for

the tsetse fly and a source of exposure to disease for those

people who access these patches in their livelihoods.
(d) Lassa fever in Sierra Leone
Lassa fever (LF) is a haemorrhagic human disease caused by

Lassa virus. The disease has a broad spectrum of severity ran-

ging from fever and sore throat, to haemorrhaging, organ

failure and death. Humans are incidental hosts and the virus

is maintained by transmission and asymptomatic infection of

the Natal multimammate rat, Mastomys natalensis [23–25].

This rodent is commonly found in agricultural communities

throughout sub-Saharan Africa and is responsible for signifi-

cant crop loss and transmission of a number of pathogens
including those that cause plague, leishmaniasis and leptos-

pirosis [26–28]. Despite the rodent’s pervasive distribution in

Africa, LF appears to be endemic only in West Africa. Recent

studies by the Dynamic Drivers of Disease in Africa Consor-

tium (DDDAC) associate the virus with a genetically distinct

subgroup, confined by geographical barriers [29].

Within West Africa, LF has a patchy distribution indicative

of epizootic cycles in agricultural communities. While human-

to-human transmission can occur particularly in clinical

settings, another DDDAC study estimated that the majority

of LF cases are acquired from rodents [30]. The current case

study aimed to assess the impact of land-use variation on

small mammal abundance, livelihoods and hence increased

exposure to Mastomys species.

Centuries of settlement in the region have created a

mosaic landscape of villages or towns, surrounded by back-

yard gardens and anthropogenic forest islands, beyond

which lie upland rice fields and fallows, swamps used for

rice and vegetables, and forest regrowth. Previous studies

have shown that the rodent is most abundant in villages

and surrounding backyard gardens, rather than in more dis-

tant farmland or forest [31,32]. Few studies have identified an

age- or gender-associated risk for LF [33–36], yet research has

not been fine grained and suffers from poor incidence and

prevalence data. Exposure to the virus is believed to occur

through contact with rodent urine/faecal contamination of

food, water and surfaces. Most speculation about Lassa

exposure has centred on rodent–human interactions in and

around homes, while the only recognized rodent-associated

risk factor for LF is hunting of rodents for food consumption

[37]. However, in Sierra Leone, reported LF incidence fluctuates



Table 4. Seasonal agricultural activity cycles for Lassa fever case study time
points.

time
point

activities

upland mixed
crop cycle swamp rice cycle

Nov 2013 harvest harvest

Mar 2014 soil prep—clearing and

burning land

vegetable gardening

May 2014 soil prep, planting minimal activity

Aug 2015 weeding weeding
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seasonally, with peaks in the dry season (February–March) and

a smaller peak in the rainy season (June/July) [36], suggesting

that climatological factors and agricultural labour patterns

may impact rodent–human contact. Anthropological literature

from the region suggests that exposure in homes and agri-

cultural activity could be differentiated by gendered and

age-specific labour and livelihood activities [38], and that villa-

gers prefer to consume ‘bush’ rather than ‘town’ rodents [39].

This raises the likelihood of differentiated but widespread

exposure to LF shaped by livelihood-related ecosystem

interactions beyond the village.

The case study examined Mastomys abundance and

human activities in different agricultural land-use types

over seasonal time points tied into major agricultural activi-

ties. It took place in eastern Sierra Leone in the districts of

Kenema and Kailahun, dominated by Mende-speaking

people, where there is a high level of LF incidence. Four com-

munities of varying size were selected, each having a history

of LF activity, with subsistence farming as the primary liveli-

hood activity for most residents. We originally planned to

collect ecological and social science data in all communities

at eight time points over 2 years, but activities were disrupted

from June 2014 to July 2015 due to the Ebola epidemic. As a

result, collections were reduced to four separate time points,

each coinciding with key agricultural activities (table 4).

Small mammal trapping was carried out in all land-use

areas as identified by agricultural/environmental researchers

and information from villagers (table 5). A standard number

of live-capture traps were set in each area (excluding villages

and nearby backyard gardens) for three nights and the GPS

location of each trap recorded. All small mammals captured

were identified to genus level, marked with an ear tag dis-

playing a unique identifier and released. In subsequent data

collection periods, traps were set in approximately the same

location, even if the land-use type changed (i.e. cultivated

field to fallow land). Only our final data collection period

(August, 2015) included village and backyard garden

sampling. In this period, all collected animals were euthanized

after sample collection.

Mastomys rodents were most abundant in villages and

backyard gardens when compared to surrounding cultivation

and forested areas. In land-use types with multiple samplings

(all areas except villages and backyard gardens), no Mastomys
were found in forests, tree crop or mining areas. The rodents

were most abundant during the dry season (February/March

2014), which coincides with historical peaks in LF incidence

in this area (figure 10, also [36]). Land-use types with larger

numbers of Mastomys include recently cleared land and

swamp rice areas. This is at a time of extreme human

activity-related perturbation of the soil, with implications for

transmission. In cleared land, trees are felled by men and the

land is cleared by men and boys with machetes and then

burned, probably displacing rodents that have burrowed into

the soil in these fields. The swamp rice fields are dry during

this time and are the site of intensive hands-on work. The

soil is ploughed by hand into mounds, by men, sometimes

as paid labourers, where additional vegetable gardens are

cultivated by women.

Mastomys abundance was lowest at the peak of the rainy

season (August 2015) across all land-use types. This time

period is known locally as the ‘hungry season’, where crops

are maturing and little food is available. It is likely there

are significant population crashes for rodents during this
time. During the harvest, the rodent was found only in rice

swamps, where grains are being harvested, and rodents are

probably feasting on dropped grains.

The division of labour during these peak times is quite

gender- and age-specific. Adult men traditionally form collec-

tive work parties to fell trees and clear fallow bush, while

women and children gather and bundle wood for cooking

fires or sale. They are also responsible for feeding the men’s

work parties and usually prepare food in the fields. Women

are also preparing the vegetable mounds in dried rice

swamps. This is a critical livelihood activity for many women,

who can sell their vegetables at markets for personal profit.

Certain livelihood activities therefore increase the risk of

contact between Mastomys rodents and humans and therefore

the potential for gendered and age-specific routes of trans-

mission. Notably, these peak times for contact in the

agricultural cycle coincide with what have been identified

as peaks of LF incidence in this region [35]. There are, more-

over, potentially important links—and trade-offs—between

gendered livelihood activities and vulnerability to LF which

require further investigation.

Vulnerability to LF also relates to rodent consumption,

which is in turn shaped by local perceptions and consumption

practices. Villagers most commonly identified the ‘long-nosed’

rat, which is found in the town and is said to have a repugnant

odour, as the spreader of LF; however, this is a misconception.

Based on villagers’ identification of photos, this animal is most

probably a shrew belonging to the Crocidura genus, and not

associated with Lassa virus infection or transmission. It seems

that local perceptions of rodents pertain more to where they

are observed than to species [38]. Although some people avoid

eating ‘town’ rodents or the ‘long-nosed’ rat, such restrictions

do not apply to bush rodents, which include Mastomys.
(e) Henipavirus in Ghana
In many rural and urban towns in Ghana, large roosts of bats

are found near human habitation. Bats provide important eco-

system services such as seed dispersal, pollination and

suppression of arthropod species that would otherwise

become pests [40,41]. Bats are also an important source of

protein in many parts of Africa, and have been shown to con-

stitute a significant element in the bushmeat commodity chain

in Ghana [42–44]. However, bats are known to be reservoirs of

several zoonotic pathogens and have been implicated in the

transmission of deadly filoviruses such as Ebola and Marburg,



Table 5. Land-use areas in Lassa fever case study.

land-use category description

rice swamp low-lying area with seasonal flooding for rice crops

upland mixed farm sloped area with good drainage used for growing a variety of crops including rice, maize, groundnuts, cassava, okra and

sorghum

young fallow formerly upland mixed farm left unattended for 1 – 4 years

old fallow formerly upland mixed farm left unattended for 5 – 10 years

cleared land formerly fallow area that has been cleared of vegetation and possibly burned in preparation for planting

tree crop heavily shaded cultivated area for cacao and coffee crops

palm plantation shaded area for palm trees of varying height; crops include palm oil and palm wine

small holder mining secluded, forested area with extreme land perturbance due to upturning soil, pit digging and panning for diamonds

forest primary, uncultivated area, often used as cemetery and left mostly unperturbed

backyard garden area within 10 – 15 metres of a house where vegetables such as peppers, spring onions, yams and cocoyams, groundnuts and

tomatoes are grown

village clearly delineated with few trees, houses mostly constructed of earth and sticks, metal or thatched roofs
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Figure 10. Mastomys trap success (number of rodents captured) by agricultural use and time point. Note: no Mastomys rodents were captured in tree crop, mining
or forest areas.
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lyssaviruses (rabies-like viruses), coronaviruses (e.g. SARS)

and paramyxoviruses such as Hendra and Nipah viruses

[45–51]. Henipaviruses have been isolated from bats in Austra-

lia and Asia, and evidence of infection has been reported in

bats from Africa [48,52–55]. Henipaviruses cause encephalitic

disease in humans and domestic animals with extremely high

case fatality rates [56,57].

Evidence of henipaviruses in human populations has not

been established as yet in Ghana; however, there is evidence

of henipavirus circulation in bats within the country [48],

suggesting the potential for a disease spillover from bats to

humans, although no formal risk assessments have yet been

carried out. The case study sought a better understanding

of possible points of disease risk by exploring the prevalence

and location of bats in Ghana, how people interact with bats

in the context of their livelihoods and use of ecosystems, how

this differed by social group and between rural and urban

areas, and people’s perceptions of bats and disease.

The focal study sites comprised two rural (Golokuati and

Tanoboase) and one urban (37 Military Hospital, Accra)

localities (figure 11), described in detail by Lawson et al. [58].

Their common characteristic was the presence of large roosts

of fruit bats. The 37 Military Hospital is situated in the centre
of Accra near a transport terminal, and people living and work-

ing there are from a mixture of ethnic groups. Large numbers of

fruit bats roost on mahogany trees along the main road in front

of the hospital and within the hospital compound, thus expos-

ing patients, hospital visitors and the general public using the

transport terminal to bat urine and faeces. Bat roosts could also

be found on trees in residential areas and on the grounds of the

Parks and Gardens department located near the hospital. The

Tano sacred grove is located in Tanoboase, a small farming

community along the Techiman–Kintampo road in the

Brong-Ahafo Region, dominated by people speaking the

Bono version of Akan, but also with migrants from the north

of the country speaking other languages. Sacred groves are

patches of forest set aside by local communities and protected

by traditional norms for a variety of religious and sociocultural

purposes [58]. The site is estimated to support over 2 million

bats during the peak season. The inhabitants are mainly

small-holder farmers cultivating food and cash crops such as

yam, maize, plantain and cashew. Ve-Golokuati, whose

people are primarily Ewe, is located along the Tema–Jasikan

Road, within the forest–savannah transition zone. A large

population of bats roosts in mango (Mangifera sp), fig

(Ficus sp) and neem (Azadirachta indica) trees in the town,



Figure 11. Henipavirus study sites in Ghana.
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within school and church compounds, market places and

people’s homes.

For the ecological studies, primary data were collected

through direct field observations and a nation-wide survey

using citizen science approaches and literature to map fruit-

bat distribution. Ecological data on bat species were collected

through mist-netting and radio-tracking. Focus group discus-

sions, participatory landscape mapping, transect walks and

semi-structured interviews (a total of 340; 164 women and 176

men) were used to document livelihood practices, human–

bat interactions, and people’s perceptions of bats and disease

(see [59] for details). The study also involved surveillance of

bats, domestic animals and human populations for evidence

of henipavirus seroprevalence.

Thirteen species of fruit bats have been recorded in Ghana;

they occur across the country in all ecological zones. Nearly

6000 individual fruit bats, belonging to ten species, were
captured in mist-nets. The two species Eidolon helvum and

Epomophorus gambianus were the most abundant, account-

ing for over 75% of captures. Other common bat species

encountered were Micropteropus pusillus, Rousettus aegyptiacus
and Epomops franqueti. Bat roosts were reported from 86

locations all over the country, commonly in densely populated

areas (figure 12). Of the total roosts investigated, 95% occurred

within 50 m of buildings/homes and farmlands. Several of the

large bat roosts occurred in cities and towns.

Livelihood activities centred around farming in the rural

sites, while in all sites people were variously involved in

petty trading, artisanal/construction work, food proces-

sing/trading as well as government work (teaching/health

service/military service). In their livelihoods and everyday

life and work, people interacted with bats in diverse ways,

directly and indirectly. Direct exposure to the possibility of

disease spillover involved bat hunting, which was common,
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particularly at Tano and the 37 Military Hospital area, as well

as processing fresh bat meat for consumption, selling fresh

bat meat and consuming undercooked bat meat.

Indirect exposure to disease risks resulted from regular

exposure to bats, bat faecal droppings, bat urine and bat

saliva through livelihood activities such as farming and fruit

collection (e.g. handling of fruits half-eaten by bats), domestic

animal husbandry, where domestic animals such as pigs are

housed under bat roosts and often feed on fruits half-eaten

by bats, and trading and selling of wares under bat roosts—a

common occurrence at the 37 Military Hospital and the Golo-

kuati township where the town market was held under a

huge bat roost. Indirect exposure to bats also occurred through

social activities including recreation and community meetings

under trees on which bats roost. In the Golokuati township,

people actually lived with bats in their homes. Bats roosted

on trees in people’s courtyards and people went about their

daily household chores, such as food preparation, washing

and social activities (e.g. women gathering to plait their hair),

under bat roosts. The system of rainwater harvesting in open

containers for domestic use and drinking at Golokuati also

posed potential risk, as the water could be contaminated

easily with bat faeces.

Four particularly high-risk groups with potential exposure

to henipavirus emerged, linked to where and how they interact

with rural and urban ecosystems and bats. These are, first, fruit
farmers (especially cashew farmers); more farmers than others

hunted bats and also handled fresh bat meat. Second are hun-

ters; third, traders; and fourth, people who live or work close to

bat roosts (such as residents living with bats in Ve-Golokuati

and health professionals and hospital maintenance staff

working at the 37 Military Hospital).

There is evidence that bat hunting occurred at all three sites,

mainly as a secondary occupation, but only a small number

(5%) of respondents actually indicated that they hunted bats.

Bat hunting was primarily a male activity and the associa-

tion between gender and bat hunting was highly significant

(x2 test, p , 0.002). Men were also more likely to butcher and

handle fresh bat meat. Approximately 40% of respondents con-

sumed bat meat and there was a significant association

between gender and bat meat consumption, with a higher pro-

portion of men eating bat meat than women (x2 test, p , 0.05).

However, the study showed that other factors such as the size

of the bats as well as the level of protection by the local auth-

orities also played a role in bat hunting and consumption.

For example, E. helvum is more highly preferred by hunters

because of its bigger size, while bats roosting at the 37 Military

Hospital were more strongly protected, as hunting within the

hospital premises was strictly prohibited unless specifically

authorized and organized by the soldiers.

Interestingly, people’s perception of disease risk associ-

ated with bats was very low (table 6). As many as 62% of



Table 6. Perception of degree of risk associated with bat-related activities.

activity

perceived degree of risk posed

none or small risk significant/serious risk

frequency percentage frequency percentage

butchering/preparing 83 15.26 59 10.85

eating poorly prepared meat 81 14.89 55 10.11

hunting 82 15.07 71 13.05

cooking 91 16.73 22 4.04

total 337 61.95 207 38.05
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respondents perceived no risk or ‘small risk’ from hunting,

butchering, cooking and eating poorly prepared bat meat.

Indeed a number of people associated eating of bat meat

with a range of health benefits.

Thus close proximity of bat roosts to human dwellings

and intense human–bat interactions linked to people’s liveli-

hood activities and social and cultural interactions with

ecosystems present multiple opportunities for disease spil-

lover from bats to humans—even if this is not currently

widely understood by local residents.

The study has established widespread distribution of

E. helvum and other fruit bats in the country (figure 12),

and the team has found evidence of high seroprevalence of

henipavirus in E. helvum colonies [61]; therefore it seems

reasonable to postulate that zoonotic spillover of henipavirus

occurs. The absence of detected disease outbreaks in these com-

munities so far may be the result of challenges in diagnostic

surveillance, as well as of unknown or variable pathogenicity

of African henipaviruses for humans. The ongoing analysis

of human blood samples should enable further interrogation

of this proposition.
3. Comparative and cross-cutting insights
The case studies reveal a variety of ways in which disease–

ecosystem–livelihood dynamics are unfolding in local systems,

with implications for the risks of zoonotic spillover to different

groups of people.

First, ecosystem dynamics and land-cover change affect

the prevalence of animal reservoirs, vectors and their habitats,

influencing the possibilities for disease transmission. These

dynamics involve diverse, interacting temporal scales. Thus,

in the case of trypanosomiasis in both Zambia and Zimbabwe,

a timescale of several decades has seen the transformation of

wooded miombo savannah to farmed landscapes with

reduced tsetse fly prevalence. A similar timescale in semi-

arid Kenya has seen a major expansion of irrigated land,

increasing the prevalence of RVF-transmitting mosquitoes.

Demographic changes (increasing populations and in-

migration) have been important drivers of land use change in

all these cases, as have been the expansion of commercial

farming and cash-cropping.

In contrast, the Sierra Leone and Ghana cases show more

overall ecosystem continuity, in mosaics of forest, savannah,

fallow and settlement land that have characterized Upper Gui-

nean ecosystems for decades, if not centuries [62]. These present
a relative degree of stability in habitats for disease-reservoir

wildlife (rodents and bats), coexisting with settlements and

farmed land in long-established anthropogenic landscapes.

However, changes within this continuity include the expansion

of small-scale horticulture (in Sierra Leone) and tree cropping

(in both Ghana and Sierra Leone), and the growth of towns

and peri-urban landscapes. In different ways both trends

have increased the availability of peri-domestic habitats for

disease-carrying rodents and bats.

Such long-term landscape change can be punctuated by

shorter-term shocks. Several of the case study diseases show

both endemic patterns of continuous spillover, combined

with outbreaks, which in turn can be related to sudden or epi-

sodic ecosystem changes. Thus RVF outbreaks are associated

with episodes of above-normal rainfall linked to El Niño
cycles. Outbreaks of haemorrhagic fevers (such as Lassa

fever, as well as Ebola) have elsewhere been associated with

exceptionally sudden-onset dry season conditions, although

our study timescales were insufficient to identify such outbreak

dynamics in the case studies themselves. Conducted over a 2–3

year timescale, however, the case studies have been able to

reveal seasonal changes in the prevalence of animal disease

reservoirs and vectors. Both the Zimbabwe and Zambia

study sites have one rainy season with quite pronounced seaso-

nal effects on both tsetse and wildlife populations. In Kenya,

populations of RVF-carrying mosquito populations vary

annually across the seasonal cycle, while in the case of Sierra

Leone, rodent habitats shift with seasonal cycles of upland

farm–fallow and swamp rice–vegetable garden dynamics.

Notably, in these latter cases the key seasonal dynamics with

respect to disease depend on seasonally varying agricultural

and agro-pastoral land use as well as climate.

Second, spatial dynamics intersect with these temporal

ones. All the case studies involved a spatially identified local

system, although bounded in different ways in keeping with

the problem to be addressed: contrasting urban/rural settle-

ments and their surrounding landscapes in Sierra Leone and

Ghana; a pair of districts with contrasting levels of irrigation

in Kenya; and contiguous wildlife/pastoral/agricultural

areas in Zambia and Zimbabwe. Within each, though, spatial

dynamics are a key part of the unfolding story of ecosystem–

animal–disease interactions. In Zambia, these relate mainly

to land use differentials along a gradient in altitude; in

Zimbabwe, to the patch dynamics of woodland amidst agro-

pastoral land use; in semi-arid Kenya, to contrasts between

irrigated commercially farmed areas, and those dominated by

rangelands; and in Ghana and Sierra Leone, to the location



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160163

16
and size of settlements, and patches of different types of land

use within shifting mosaics, in ecological settings where rodents

and bats occupy peri-domestic spaces. Whatever the details, all

the cases highlight the importance of micro-differences within

local systems, and of mosaic and patch dynamics, as ecological,

human and animal population factors interact.

Third, the critical question with respect to human vulner-

ability to zoonotic spillover concerns how people interact

with these dynamic ecosystems, and the extent to which these

interactions expose them to pathogen-carrying wildlife, live-

stock or vectors. The case studies reveal a wide array of

ecosystem interactions that are central to people’s livelihoods

and well-being. Shaped by varied political economies and

social relations, and with local variation in the resources avail-

able, valued and used, these include pastoralism and agro-

pastoralism (Kenya, Zimbabwe, Zambia); commercial and

subsistence farming (all cases); hunting (all cases); and the

collection of food, firewood and medicines (all cases). As the

examples of sacred forests in Ghana and pilgrimage sites in

Zimbabwe illustrate, particular sites within ecosystems are

also visited as part of cultural and ritual practices. Everyday

living and movement in a settlement or landscape, for social

and non-directly ecosystem-dependent livelihood purposes

such as trade, can also bring people into contact with

pathogen-carrying animals—as in the cases of bat roosts in

Ghana and Lassa-carrying rodents in Sierra Leonean villages.

While revealing the multiplicity and diversity of livelihood-

related ecosystem interactions, however, the cases also point to

significant social differences in livelihood profiles and ecosystem

use, which in turn can suggest particular, socially differentiated

vulnerabilities to disease. The examples of women gardeners’

vulnerability to Lassa fever, or the vulnerability of squatters

and hunters drawn to tsetse-inhabited woodland patches to try-

panosomiasis in Zimbabwe, exemplify the broader point that

‘who gets sick and why’ depends on social and livelihood

difference as these intersect with ecologies [63].

A close understanding of the interactions between eco-

system, livelihood and disease dynamics in turn reveals

synergies, but also tensions and potential trade-offs, between

patterns of system change that are positive in terms of ecosys-

tems, of livelihoods and of disease. For instance in Zambia

and Zimbabwe, landscape transformation for commercial farm-

ing has been synergistic with a reduction of trypanosomiasis

risk. The retention and use of woodland patches is vital for

some people’s livelihoods—but brings the trade-off of tsetse

exposure. In Kenya, irrigation has brought commercial agricul-

tural profits and employment, at least to some people; but it has

also enhanced RVF transmission. In Sierra Leone, dry season

vegetable gardening is a vital addition to women’s livelihoods

and economic independence, but also exposes them to Lassa

fever. In Ghana, the use of bats for bushmeat is a valuable

source of livelihood and well-being for many people—but

also brings disease risk. Such synergies and trade-offs can

be helpfully clarified in the concepts and language of ecosystem

services [64,65]. People interact with and make use of a variety

of ecosystem services in the course of their lives and livelihoods,

which may be provisioning, regulating, supporting or cultural

services. Yet in so doing, they may also experience the ‘ecosys-

tem disservice’ of disease. Interventions that enhance some

ecosystem services may also increase the ecosystem disservice

of disease risk (as in irrigation which enhances the service of

hydrological regulation, but increases the disservice of RVF

transmission). Disease regulation can also be conceptualized
as an ecosystem service; framed thus, the land-use changes in

the RVF case, for instance, can be seen to have reduced the wild-

life and dryland vegetation conditions that kept RVF

transmission to people and livestock at a relatively low level,

and irrigation has disrupted such disease regulation.
4. Conclusion and implications
Such tensions and trade-offs are not amenable to simple sol-

utions, precisely because multiple interactions and values are

at stake. To take one example, a proposal simply to cull bats in

Ghana because they carry disease would rightly be (and

indeed has been) met with objections because of the value of

bats as a source of vital ecosystem services—from pollination

to provision of bushmeat and other livelihood resources. Instead,

a detailed understanding of such interactions, synergies, tensions

and their implications for different people should be seen as the

basis for a more informed approach towards managing ecosys-

tems in sustainable ways that reduce disease risks and burdens.

This could include, first, a more differentiated, targeted

approach to interventions. Disease control, surveillance and

monitoring need not always take a full system, landscape-

level approach, but will often be more effective—and efficient

and cost-effective—if focused on the parts of systems where

problems exist—such as patches with high tsetse populations,

or particular field types linked to Lassa fever exposure.

Equally, interventions and monitoring can be time-targeted,

focused on the seasons or weather events that pose most risk.

Second, an understanding of local ecosystem–animal–

livelihood–disease interactions provides both a justification

and basis to look beyond single-sector approaches, to locally

attuned ‘One Health’ approaches. Thus addressing Lassa

fever in Sierra Leone, our analysis suggests, could benefit

from joined-up thinking and action between health and agri-

cultural practitioners, in identifying potential solutions that

link disease control with the management of rodents as agricul-

tural pests. Likewise, the RVF case study points to the value of

improved irrigation technologies and better management of

water (e.g. better drainage) to prevent vector-borne zoonoses

in addition to the standard RVF interventions.

Finally, approaches need to be informed by local knowl-

edge. Understanding and acting on local disease–ecosystem–

livelihood interactions, and taking account of the distribution

of risks and impacts across different groups of people, requires

collaboration between scientists, policymakers, practitioners

and crucially the users of ecosystems themselves. This is a

vital basis not just for understanding how these interactions

are unfolding with what implications, but also for deliberat-

ing on potential solutions, in ways that bring a nuanced

appreciation of who will gain or lose.
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