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Abstract

Chicken repeat 1 (CR1) retroposons are long interspersed elements (LINEs) that are ubiquitous within amniote genomes and con-

stitute the most abundant family of transposed elements in birds, crocodilians, turtles, and snakes. They are also present in mam-

malian genomes, where they reside as numerous relics of ancient retroposition events. Yet, despite their relevance for understanding

amniote genome evolution, the diversity and evolution of CR1 elements has never been studied on an amniote-wide level. We

reconstruct the temporal and quantitative activity ofCR1subfamilies viapresence/absenceanalysesacross crocodilian phylogenyand

comparativeanalysesof12crocodiliangenomes, revealing relativegenomic stasisof retropositionduringgenomeevolutionofextant

Crocodylia. Our large-scale phylogenetic analysis of amniote CR1 subfamilies suggests the presence of at least seven ancient CR1

lineages in theamnioteancestor; andamniote-wideanalysesofCR1successionsandquantities revealdifferential retention (presence

of ancient relics or recent activity) of these CR1 lineages across amniote genome evolution. Interestingly, birds and lepidosaurs

retained the fewest ancient CR1 lineages among amniotes and also exhibit smaller genome sizes. Our study is the first to analyze CR1

evolution in a genome-wide and amniote-wide context and the data strongly suggest that the ancestral amniote genome contained

myriad CR1 elements from multiple ancient lineages, and remnants of these are still detectable in the relatively stable genomes of

crocodilians and turtles. Early mammalian genome evolution was thus characterized by a drastic shift from CR1 prevalence to

dominance and hyperactivity of L2 LINEs in monotremes and L1 LINEs in therians.
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Introduction

More than three decades ago, chicken repeat 1 (CR1) ele-

ments were the first transposable elements (TEs) to be identi-

fied in a genome of a nonmammalian land vertebrate

(Stumph et al. 1981, 1984). CR1 elements are a family of

long interspersed elements (LINEs) (Burch et al. 1993) that

mobilize via an RNA intermediate and retropose via target-

primed reverse transcription (Haas et al. 1997) similar to

other LINEs (Luan et al. 1993). Full-length elements contain

two open reading frames (ORFs) that encode the Gag-like

ORF1p protein with a zinc finger-like motif (Haas et al.

1997, 2001; Kajikawa et al. 1997; Kapitonov and Jurka

2003), as well as the Pol-like ORF2p protein with endonucle-

ase and reverse transcriptase (RT) domains (Burch et al. 1993;

Haas et al. 1997, 2001; Kajikawa et al. 1997). The vast ma-

jority of CR1 insertions are heavily 50-truncated elements

(Vandergon and Reitman 1994; Hillier et al. 2004; Wicker

et al. 2005) and thus functionally “dead on arrival” (Petrov

and Hartl 1998), which hampers the reconstruction of full-

length CR1 subfamilies and the confident determination of

their exact 50-UTR sequences (Kajikawa et al. 1997; Haas

et al. 2001; Wicker et al. 2005). The extent of 50-truncations

appears to be more severe than in L1 LINEs and implies a lower

processivity of CR1 reverse transcription (Hillier et al. 2004).

On the other hand, the 30-UTR of CR1 elements has been

suggested to serve as a recognition site for the CR1-encoded

RT (Kajikawa et al. 1997; Haas et al. 2001) and its hairpin

structure and octamer microsatellite motif are highly con-

served across various amniote CR1 subfamilies (Suh, Paus,

et al. 2011).

CR1 retroposons are a ubiquitous genomic component

that is present in all lineages of amniotes (Shedlock 2006;

Suh, Paus et al. 2011), including mammals (Lovšin et al.

2001; Kapitonov and Jurka 2003; Shedlock 2006; Suh,

Paus, et al. 2011) (but contra [Kordiš 2009]), and appear to

constitute a Metazoa-specific, ancient clade of LINEs (Lovšin

et al. 2001). In birds, many studies have shown that multiple

lineages of CR1 elements were active in parallel, and some of

them throughout long timespans of avian evolution (Hillier

et al. 2004; Wicker et al. 2005; Kriegs et al. 2007; Abrusán

et al. 2008; Liu et al. 2009; Suh, Paus, et al. 2011; Suh et al.

2012). On the other hand, the total CR1 element sequence

from nonavian amniotes was only under 12 million basepair

(Mb) of genomic data (Shedlock 2006; Shedlock et al. 2007),

neglecting mammalian CR1 subfamilies. This paucity of com-

parative analyses is surprising, given that CR1 retroelements

are “the major genome component” (Kordiš 2009) in birds

(Hillier et al. 2004; Warren et al. 2010), crocodilians (Green

et al. 2014), snakes (Castoe et al. 2013) and other lepidosaurs

(Shedlock 2006), and turtles (Shaffer et al. 2013), and are thus

crucial for understanding the genome evolution within

Amniota.

Here, we present the first genome-wide study of CR1 retro-

elements across all major lineages of amniotes. First, we in-

ferred the presence or absence of CR1 insertions across the

crocodilian phylogeny. These data provided another important

line of evidence that was able to resolve crocodilian phylog-

eny, a classic example of conflict between phylogenetic recon-

structions using molecular versus morphological data (e.g.,

[Harshman et al. 2003; Janke et al. 2005]). Then we used

whole-genome data to conduct a de novo characterization

of crocodilian CR1 subfamilies in three genomes and comple-

mented the whole-genome data by survey sequencing eight

additional crocodilian species. Finally, phylogenetic reconstruc-

tion of the relationships among amniote CR1 lineages permit-

ted us to infer the CR1 diversity in the ancestral amniote

genome and reconstruct the subsequent events of CR1 ex-

pansion or inactivation that led to the pronounced differences

among the repetitive landscapes of extant amniote genomes.

Materials and Methods

TE Subfamily Prediction

As part of the collaborative efforts to annotate crocodilian

genomes (St John et al. 2012; Green et al. 2014), consensus

sequences of CR1 and other TE subfamilies from American

alligator (Alligator mississippiensis), saltwater crocodile

(Crocodylus porosus), and gharial (Gavialis gangeticus) were

generated in the laboratories of DAR, JJ, and AFS. All subfa-

milies were predicted de novo using complementing methods

implemented in RepeatModeler (http://www.repeatmasker.

org/RepeatModeler.html last accessed January 13, 2015), fol-

lowed by procedures that are described in detail elsewhere

(Dasmahapatra et al. 2012; Green et al. 2014). Briefly,

RepeatModeler was initially used to analyze the A. mississip-

piensis genome draft, after which manual work was necessary

to confirm or extend the consensus sequences for each repeat

by first querying the entire A. mississippiensis draft using

BLAST (version 2.2.23 [Altschul et al. 1990]). Up to 50 of the

top hits for each putative consensus were extracted along with

up to 1,000 bp of flanking sequence. The extracted sequences

were aligned with their respective RepeatModeler-generated

partner using MUSCLE (version 4.0 [Edgar 2004]) and a ma-

jority-rule consensus sequence was created. To be considered

“complete”, a consensus sequence must exhibit highly vari-

able flanking sequences at the 50- and 30-termini of the puta-

tive consensus, indicating insertion of an element at multiple

distinct loci. If this condition was not met, the process was

repeated by extending the flanking sequences.

RepeatModeler analysis of Cr. porosus was followed by com-

parison to the resulting A. mississippiensis library to identify

elements predicted from both genomes. Unique putative re-

peats from C. porosus were used to query the C. porosus as-

sembly and the BLAST/extract/align process was repeated.

Finally, the process was repeated once more for G. gangeticus
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elements. After combining all three crocodilian repeat libraries,

UCLUST (Edgar 2010) was used to group consensus sequences

of potential subfamilies at 95% sequence identity thresholds.

Consensus sequences with more than 95% identity were

merged into a single subfamily consensus, whereas the re-

maining were defined as consensus sequences of separate

subfamilies and named according to the UCLUST groupings.

Presence/Absence Analyses

We extracted a total of approximately 12 million retroposon

loci from the genome assemblies of saltwater crocodile, gha-

rial, and American alligator, and selected approximately

30,000 cases with TE-free flanking sequences of 750 bp.

These loci were BLASTn screened against a set of 26,637

short introns (<1.5 kb) from anole lizard and 28,713 short

introns from chicken, yielding 122 TE candidate loci in alliga-

tor, 112 loci in crocodile, and 56 loci in gharial. Three-way

alignments of the three crocodilians were compiled for all

these loci in order not to bias the outcome of our experimental

screening toward one of the two competing hypothesis

regarding the position of the gharial. After we found no

conflict among those three-way presence/absence patterns,

we generated oligonucleotide primers (supplementary table

S2, Supplementary Material online) for a total of 73 retropo-

son loci for subsequent experimental presence/absence

screening.

We experimentally screened our marker candidate loci

using standard procedures previously used in avian retroposed

element (RE) presence/absence screenings (Suh, Paus, et al.

2011) across a taxon sampling comprising all crocodilian

genera and the key species within the Crocodylus radiation

sensu Oaks (2011). Briefly, we amplified all samples via touch-

down polymerase chain reaction (PCR), followed by PCR prod-

uct purification and direct sequencing (Suh, Paus, et al. 2011).

All sequences were aligned per locus using MAFFT (Katoh and

Toh 2008) (E-INS-I, version 6, http://mafft.cbrc.jp/alignment/

server/index.html last accessed January 13, 2015), manually

realigned, and presence/absence states carefully scored fol-

lowing the strict criteria of Suh, Paus, et al. (2011). That is,

orthology of a phylogenetically informative retroposon inser-

tion requires identity of RE target site, RE orientation, RE sub-

type, and (if present) target site duplication, as well as a clear

absence (empty RE insertion site) in other species. In total, this

was the case for 36 RE insertion loci (supplementary table S1,

Supplementary Material online) that are all available as sup-

plementary material (supplementary data S1, Supplementary

Material online). As part of analyzing these loci, we also noted

five non-TE indels that were phylogenetically informative and

supplemented our phylogeny.

Transposition in Transposition Analyses

We estimated chronologies of CR1 activity probabilities using

the transposition in transposition (TinT) method (Kriegs et al.

2007; Churakov et al. 2010) (http://www.compgen.uni-

muenster.de/tools/tint/ last accessed January 13, 2015; default

parameters for CR1 elements) on 6,752 nested CR1 in

Chinese alligator, 8,816 nested CR1 in American alligator,

9,100 nested CR1 in saltwater crocodile, and 8,628 nested

CR1 in gharial. The resultant graphs contain successions of

probable retroposon activity periods on a relative timescale,

where ovals represent 75%, vertical lines 95%, and horizontal

lines 99% of the normal distribution.

Survey Sequencing

Our survey sequencing sampling comprises Alligator sinensis,

Caiman latirostris, Caiman yacare, Crocodylus acutus,

Crocodylus niloticus, Mecistops cataphractus, Melanosuchus

niger, Osteolaemus tetraspis, and Tomistoma schlegelii. We

isolated DNA from blood and generated standard TruSeq

Illumina libraries with insert sizes of 263 bp and bar codes

for each taxon. All nine libraries were sequenced as 100-bp

reads on a single lane of an Illumina GAIIx genetic analyzer

and yielded an average of approximately 0.2� coverage per

genome. We then applied the strategy from Diez et al. (2014)

and conducted BLASTn searches of the resultant unassembled

reads against a library of all crocodilian CR1 subfamilies. After

selecting hits longer than 29 bp, cumulative quantities of CR1-

derived reads were calculated for each CR1 subfamily and

survey sequencing library. We then compared the CR1 repre-

sentation in the Chinese alligator survey sequences with the

recently published genome assembly (Wan et al. 2013) and,

for each CR1 subfamily, derived coefficients for conversion of

the remaining eight survey sequencing libraries into genome-

wide estimates of CR1 quantities. This was possible because

CR1 TinT patterns (fig. 2A) and CR1 landscapes (fig. 4) from

the four genome assemblies (together spanning the breadth

of crocodilian diversity) suggest similar age distributions (and

quantities) for most CR1 subfamilies, which implies that old,

diverged CR1 elements are probably equally abundant in the

survey sequenced species due to subfamily activity in the last

common ancestor of Crocodylia. Consequently, the detection

of not only young (i.e., elements with near-identical sequence

and thus high detectability), but also these older CR1 frag-

ments is probably equivalent across the survey sequenced spe-

cies. The resultant CR1 quantities (fig. 2B) support this

assumption, as many CR1 subfamilies have nearly equal

amounts of masked bases in all 12 sampled crocodilians.

Phylogenetic Analyses

We compiled a sampling of 119 CR1 subfamilies from various

amniote genomes in RepBase (Jurka et al. 2005) (http://www.

girinst.org/repbase/index.html last accessed January 13,

2015), including the crocodilian CR1 consensus sequences

generated for this study. As many of these subfamily predic-

tions feature 50-truncations, we focused on analyzing the

30-part of the ORF2 RT domain together with the adjacent

Retroposons Shaped Genome Evolution of Amniotes GBE
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30-UTR. Note that we only used Xenopus CR1 subfamilies as

our outgroup, because nontetrapod CR1 elements (e.g., from

zebra fish) could not be aligned unambiguously at the nucle-

otide level. We also did not sample L2 LINEs, as they are closely

related to nontetrapod CR1-like elements (Kapitonov and

Jurka 2003) and likewise problematic for unambiguous align-

ment to amniote CR1 elements. All sampled sequences were

first aligned using MAFFT (E-INS-I, version 6), manually re-

aligned, and then ambiguously aligned sites at the boundary

of ORF2 and 30-UTR were excluded from the alignment. We

then conducted maximum likelihood-based sequence analysis

using RAxML (8.0.0 [Stamatakis et al. 2008], GTRCAT model,

1,000 bootstrap inferences) on the CIPRES Science Gateway

(Miller et al. 2010) (https://www.phylo.org/portal2/login!in-

put.action last accessed January 13, 2015). The full alignment

is available as supplementary material (supplementary data S2,

Supplementary Material online).

Landscape Analyses

We created per-taxon custom CR1 libraries and used these for

masking genomes of amniote representatives in a local instal-

lation of RepeatMasker (Smit et al. 1996-2014). Distances

from the consensus sequence were calculated using

the Kimura 2-parameter model (Kimura 1980) in the

calcDivergenceFromAlign.pl script that is part of the

RepeatMasker program package (Smit et al. 1996-2014).

This Perl script removes hypermutable CpG sites during

the calculation of Kimura 2-parameter distances between

sequence pairs and converts the RepeatMasker “.align” out-

put file (containing per-sequence pair transition–transversion

ratios) into a table file (Pagán et al. 2010). We then

generated CR1 landscape plots using the total base pairs of

CR1-annotated sequence per CR1 group in bins of size 1% in

the range of 0–50% divergence.

Results and Discussion

CR1 Markers Resolve the Early Branches of the
Crocodilian Tree of Life

To reconstruct the temporal impact of CR1 LINEs on crocodil-

ian genomes, we first studied CR1 presence/absence patterns

among different crocodilian species. In addition to providing

direct evidence for the timing of a TE insertion event, pres-

ence/absence patterns of CR1 and other REs constitute pow-

erful, nearly homoplasy-free phylogenetic markers (Shedlock

et al. 2004; Ray et al. 2006; Han et al. 2011). As they have

been successfully used to resolve long-standing phylogenetic

controversies among avian relationships (Kaiser et al. 2007;

Kriegs et al. 2007; Suh, Kriegs, et al. 2011; Suh, Paus, et al.

2011; Haddrath and Baker 2012; Liu et al. 2012; Suh et al.

2012; Baker et al. 2014; Jarvis et al. 2014), they promised to

be equally valuable markers for reconstructing the phylogeny

of crocodilians, the extant sister taxon of birds. Using the

genome assemblies of saltwater crocodile (C. porosus), gha-

rials (G. gangeticus), and American alligator (A. mississippien-

sis) as starting points for retroposon marker search (see

Materials and Methods), we experimentally tested 73 loci via

high-throughput PCR on a set of taxa comprising all extant

crocodilian genera and the most distantly related species

within Crocodylus (Oaks 2011). We sequenced all PCR ampli-

cons of the sampled taxa and obtained 32 RE presence/ab-

sence patterns that span crocodilian phylogeny (fig. 1 and

supplementary table S1, Supplementary Material online) and

constitute the hitherto first RE presence/absence analysis in

this amniote taxon. Most of these insertions (29 of 32; sup-

plementary table S1, Supplementary Material online) corre-

spond to CR1 insertions, although there were also two

insertions of Penelope LINEs and one of an endogenous ret-

rovirus. We also identified four CR1 markers that constitute

unequivocal insertion events in the common ancestor of

Crocodylia, as we could determine that the insertion was

absent (i.e., empty insertion site) in the avian outgroup.

Notably, all RE markers are fully congruent with each other

and also conflict-free when compared with the sequence-

based multilocus phylogeny of Oaks (2011). This suggests

that, in sharp contrast to the situation for the early divergences

of neoavian birds (Suh, Paus, et al. 2011; Jarvis et al. 2014) and

placental mammals (Churakov et al. 2009; Nishihara et al.

2009), incomplete lineage sorting has not confounded the

inference of crocodilian phylogeny.

We obtained three or more markers for most of the early

branches in the crocodilian tree, thus constituting statistically

significant support for each branch, respectively, according to

the Waddell et al. (2001) likelihood ratio test for retroposon

data. This includes six retroposon markers that provide a third,

independent perspective on the long-standing “molecules

versus morphology conflict” (Harshman et al. 2003) regarding

the phylogenetic position of the gharial. In this conflict, virtu-

ally all morphological analyses place the gharial as the basal

taxon to the remaining extant crocodilians (e.g., Gatesy et al.

2003; Delfino et al. 2008; Sereno and Larsson 2009; Holliday

and Gardner 2012; Scheyer et al. 2013). In contrast, molecular

sequence-based analyses suggest Alligatoridae (alligators and

caimans) as sister to all other crocodilians and support a gha-

rial + false gharial clade (e.g., Gatesy et al. 2003; Harshman

et al. 2003; Janke et al. 2005; Meganathan et al. 2011; Oaks

2011). Our conflict-free retroposon markers add to the reso-

lution of this controversy by unequivocally substantiating the

latter hypothesis that includes the grouping of true crocodiles,

gharial, and false gharial as “Longirostres” (Harshman et al.

2003).

Low Diversity of Active CR1 Elements during Lineage-
Specific Crocodilian Evolution

We assigned our CR1 markers to specific CR1 subfamilies

sensu Green et al. (Green et al. 2014) and most belong to
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subfamilies CR1-2/2C, CR1-5B, and CR1-7/7B (fig. 1). This

provides direct evidence for the activity of these CR1 subfa-

milies through large parts of crocodilian evolution, with CR1-

7/7B activity having the widest temporal extent. This is be-

cause, in figure 1, CR1-7/7B activity can be identified in

almost all branches since the last common ancestor of

Crocodylia (>87 Ma [Oaks 2011]), including species-specific

activity as recent as less than 9 Ma (Oaks 2011) in the saltwa-

ter crocodile. We independently verified these observations

with an estimation of CR1 activity in the TinT model that con-

siders relative frequencies of insertions of different RE sub-

types nested within each other (Kriegs et al. 2007;

Churakov et al. 2010). The resulting TinT chronology of CR1

succession (fig. 2A and supplementary fig. S1, Supplementary

Material online) corroborates that the aforementioned CR1

subfamilies exhibit a long period of activity, including recent

activity in the genomes of saltwater crocodile, gharial, Chinese

alligator, and American alligator. Furthermore, the TinT

FIG. 1.—CR1 retroposons resolve the early branches in the crocodilian tree of life. Retroposon markers (colored balls) and non-TE indel markers (triangles

with number of inserted/deleted nucleotides) are mapped on Oaks’s (Oaks 2011) dated tree of crocodilians (colors on the time axis correspond to the

respective geological epoch in the International Stratigraphic Chart; http://www.stratigraphy.org/ICSchart/StratChart2010.pdf last accessed January 13,

2015). Presence/absence states (supplementary table S1, Supplementary Material online) are based on per-locus alignments (supplementary data S1,

Supplementary Material online) and species-specific autapomorphic retroposon insertions are depicted as colored circles. Statistically significant retroposon

support sensu Waddell et al. (2001) is highlighted with asterisks. Since we did not observe any conflict, this corresponds to those branches with at least three

insertions. Species names in bold letters are the three genome assemblies that were used as starting points for CR1 presence/absence screenings; names in

red letters refer to higher-ranking taxa. Note that despite the fact that crocodilians diverged from their avian outgroup more than 219 Ma (Shedlock and

Edwards 2009), making it difficult to align neutrally evolving DNA, we identified four CR1 markers for crocodilian monophyly. These could be aligned with

chicken and zebra finch sequences, where they exhibit an orthologous insertion site without the CR1 insertion.
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FIG. 2.—Activity of CR1 elements in 12 crocodilian genomes. (A) Estimates of CR1 activity in genome assemblies of saltwater crocodile, gharial, Chinese

alligator, and American alligator using the TinT model (Kriegs et al. 2007; Churakov et al. 2010). Congruent successions of predicted activities of merged CR1

subfamilies (see supplementary figure S1, Supplementary Material online, for unmerged TinT patterns) between the four genomes suggest that the core

activity periods of most subfamilies lie in the common ancestor of crocodilians. Normal distributions of activity period estimations are shown as ovals

(Churakov et al. 2010). (B) Comparison of CR1-derived base pair quantities in four assembled genomes (bold names) and eight unassembled survey

sequence libraries. All CR1 subfamilies with the exception of CR1-7B appear to be present across the breadth of the sampled crocodilian species diversity.

Nevertheless, quantitative differences within several subfamilies suggest differential activities in crocodilian genomes; for example, an extended activity of

CR1-2 in Longirostres (all crocodilians except alligators and caimans (Harshman et al. 2003)) and of CR1-5B in T. schlegelii. Note that some of the lineage-

specific differences in CR1 quantities might either be accounted to potential differences in rate of neutral sequence evolution or cryptic CR1 subfamilies that

were not identified in our CR1 predictions (as they are based on the genome assemblies of saltwater crocodile, gharial, and American alligator). English

names of the 12 genomes are (in the order of their appearance in the legend) Chinese alligator, American alligator, Yacare caiman, broad-snouted caiman,

black caiman, gharial, false gharial, slender-snouted crocodile, dwarf crocodile, saltwater crocodile, American crocodile, and Nile crocodile.
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patterns are largely congruent among these four genomes,

suggesting activity of most CR1 subfamilies in the common

ancestor of crocodilians, while only few subfamilies were

active since the divergence of Alligatoridae and Longirostres.

The same observation is evident when comparing the average

intrasubfamily sequence divergence among CR1 copies (sup-

plementary fig. S2, Supplementary Material online) among

saltwater crocodile, gharial, Chinese alligator, and American

alligator.

To test whether this trend of low lineage-specific CR1 di-

versity is a common feature of extant crocodilians, we con-

ducted survey sequencing in Chinese alligator (A. sinensis) and

eight additional species that span the breadth of crocodilian

diversity, namely three caimans (Ca. yacare, Ca. latirostris, Mel.

niger), false gharial (T. schlegelii), and four crocodiles

(C. acutus, C. niloticus, M. cataphractus, Osteolaemus tetra-

spis). Given that TE identification in short sequences (e.g.,

survey data, see Materials and Methods) likely has a reduced

reliability than in long sequences, we estimated the whole-

genome CR1 content in these species (fig. 2B) by normalizing

our unassembled survey sequencing libraries with a set of

coefficients that was derived from comparing the representa-

tion of each CR1 subfamily in our own Chinese alligator survey

sequences with the corresponding CR1 subfamily content of a

recently published conspecific genome assembly (Wan et al.

2013). We emphasize that these are rough estimates com-

pared with the CR1 quantities measured in the three assem-

bled genomes. Nevertheless, direct comparison of the number

of bases assigned to specific CR1 subfamilies in the total of 12

crocodilian genomes (fig. 2B) yields many subfamilies with

similar amounts of annotated bases among all sampled spe-

cies. This suggests that the survey sequences are comparable

estimates of CR1 quantities and again reveals that most CR1

subfamilies were likely active before the divergence of extant

lineages of Crocodylia. On the other hand, subfamilies such

as CR1-2, CR1-7B, and CR1-10 appear to exhibit an

increased or extended activity common to Longirostres

(Crocodylidae + Gavialidae [Harshman et al. 2003]), and we

even find evidence for lineage-specific expansion of a CR1

subfamily in the false gharial (CR1-5B), as well as in the

black caiman (e.g., CR1-13). These lineage-specific CR1 activ-

ities in unassembled genomes might potentially constitute

novel subfamilies, given that our de novo predictions of CR1

subfamilies are based on the assembled genomes of saltwater

crocodile, gharial, and American alligator.

In addition to our findings, reduced TE diversity within

Crocodylia since the divergence of Longirostres from

Alligatoridae (~87 Ma [Oaks 2011]) is also suggested by

other collaborative efforts within the International

Crocodilian Genomes Working Group. Green et al. (2014)

estimated that only approximately 5% of all TE copies were

deposited in crocodilian genomes within that timeframe, sug-

gesting an overall decline of both the rate as well as the di-

versity of TE activity. This applies not only to CR1 activity as

described in this study, but also to the activity of DNA trans-

posons that has declined to an even more extreme degree

(Green et al. 2014). Instead, retrovirus-like elements constitute

about two-thirds of the younger TE-derived DNA in crocodil-

ian genomes (Green et al. 2014) and Chong et al. (2014)

suggest that this is the result of multiple infection events of

various unrelated retroviral lineages.

Phylogeny of CR1 Elements Suggests Multiple Ancient
Lineages within Amniotes

We reconstructed the phylogenetic relationships of crocodilian

CR1 subfamilies based on maximum likelihood analyses of

part of the ORF2 RT domain + 30-UTR of all amniote CR1 sub-

family consensus sequences available in RepBase (Jurka et al.

2005). These consensus sequences represent an approxima-

tion of the (most often long extinct) master genes that gave

rise to the paralogous TE copies visible in genomes. The resul-

tant CR1 tree (fig. 3) was rooted to an amphibian outgroup

and exhibits a topology with crocodilian, mammalian, and

turtle CR1 subfamilies grouping not according to their hosts,

but with many highly diverged species groups which are dis-

persed among multiple CR1 lineages. Considering this topol-

ogy together with the phylogenetic relationships among

amniotes (Shedlock and Edwards 2009; Shaffer et al. 2013;

Green et al. 2014) and assuming vertical transmission as the

usual mode of RE inheritance among hosts, the most parsi-

monious explanation for this is that at least seven CR1 lineages

were present in the common ancestor of amniotes (CR1

groups A–G), although it is possible that this cautious estimate

could expand with further sampling of host genomes and CR1

subfamilies. It is likely that the complex branching pattern of

crocodilian and turtle CR1 subfamilies within CR1 groups D

and G is the result of ancient activity in their common ances-

tor, a hypothesis consistent with their high intrasubfamily di-

vergence levels, the highest among CR1 elements in

crocodilian genomes (supplementary fig. S2, Supplementary

Material online). On the other hand, the topology within CR1

group C suggests that L3 elements of placental and marsupial

mammals (therians) are most closely related to lepidosaurian

CR1 subfamilies or even nested within these, which might be

the result of multiple independent extinctions of multiple an-

cient CR1 lineages in most amniote genomes.

Our study is the first genome-scale exploration of CR1 di-

versity across the breadth of amniote phylogeny. The phylo-

genetic relationships among amniote CR1 lineages have been

previously studied only by Shedlock (2006) and Shedlock et al.

(2007) who analyzed 1.5–3.7 Mb of genomic sequences per

bacterial artificial chromosome (BAC) library from three birds,

one crocodilian, and two lepidosaurs. Those studies suggested

that the genomes of nonmammalian amniotes exhibit several

ancient CR1 lineages. Our analyses suggest that the same is

also the case for mammalian genomes, while our CR1 phy-

logeny (fig. 3) contains no evidence for nonmonophyly of
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detectable CR1 subfamilies in birds, which is contrary to BAC-

scale analyses that sampled about two dozens of CR1 copies

per amniote genome (Shedlock 2006; Shedlock et al. 2007).

This is striking because the avian CR1 consensus sequences

sampled herein were predicted in the two independent, high-

quality TE annotations of chicken (Hillier et al. 2004) and zebra

finch (Warren et al. 2010), yet all form a monophyletic clade

within the CR1 group A. To explain this discrepancy, we as-

sumed that CR1 elements unrelated to group A have ex-

tremely low copy numbers in birds and were thus not

detected as distinct TE subfamilies in the aforementioned TE

annotations. To test this, we conducted BLASTn (Altschul et al.

FIG. 3.—Phylogenetic relationships among amniote CR1 elements. Maximum likelihood nucleotide sequence analysis (RAxML 8.0.0 (Stamatakis et al.

2008), GTRCAT model, 1,000 bootstrap inferences) of part of the ORF2 RT domain + 30-UTR of all CR1 subfamily consensus sequences available in RepBase

(Jurka et al. 2005) suggests a complex tree topology of avian (red), crocodilian (green), turtle (orange), lepidosaurian (blue) and mammalian (purple) CR1

elements. Given this topology and the parsimonious assumption that CR1 retroposons are inherited vertically, we infer a minimum number of seven ancient

CR1 lineages (groups A–G; see also supplementary table S3, Supplementary Material online, for a group classification of all analyzed CR1 subfamilies) that

were present in the common ancestor of amniotes. The tree was rooted using amphibian CR1 subfamilies from Xenopus as outgroup, as they were the only

nonamniote CR1 elements alignable to ingroup CR1s on the nucleotide level. Note that, in contrast to the merged CR1 subfamily definitions of figures 1 and

2, we included all CR1 consensus sequences generated in the individual TE annotations of the saltwater crocodile, gharial, and American alligator genomes.

Given the short internodes and high sequence similarity among the unmerged crocodilian CR1 subfamilies of group E, we refrain from renaming these CR1

subfamilies according to the topology of the present tree, until additional crocodilian genome assemblies are available. The present nomenclature of

crocodilian CR1 subfamilies is therefore solely based on the UCLUST grouping of their consensus sequences (see Materials and Methods). Unlabeled nodes

received a bootstrap support of less than 50%.
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1990) searches of representative crocodilian or turtle CR1 con-

sensus sequences from groups B to G against the chicken and

zebra finch genomes and analyzed the phylogenetic affinities

of all sequence hits in the framework of the CR1 tree of figure

3. The resultant tree (supplementary fig. S3, Supplementary

Material online) groups most of these hits within CR1 group A,

yet three hits from chicken and three hits from zebra finch

cluster within CR1 group F. We therefore propose that, while

the sampled bird genomes contain only CR1 group A ele-

ments in large copy numbers, there are a handful of CR1

group F elements (supplementary fig. S3, Supplementary

Material online) still detectable as remnants of ancient group

F activity in the last common ancestor of Archosauria. The

high intrasubfamily divergence of CR1 group F copies in croc-

odilian genomes (supplementary fig. S2, Supplementary

Material online) suggests that these elements might have

been inactive in Crocodylia for an equally long time, but

many copies are still discernible due to the much slower rate

of molecular evolution in crocodilians compared with birds

(Shaffer et al. 2013; Green et al. 2014).

Ancient CR1 Lineages Were Differentially Retained within
Amniotes

Our classification of amniote CR1 elements into groups A–G

according to their aforementioned phylogenetic relationships

permitted us to study the impact of these ancient CR1 lineages

during amniote evolution. This was accomplished by analyzing

their temporal successions and quantitative distributions in the

genomes of four crocodilians (Wan et al. 2013; Green et al.

2014), two birds (Hillier et al. 2004; Warren et al. 2010), four

turtles (Shaffer et al. 2013; Wang et al. 2013), three lepido-

saurs (Alföldi et al. 2011; Castoe et al. 2013; Vonk et al. 2013),

and three mammals (Lander et al. 2001; Mikkelsen et al.

2007; Warren et al. 2008). The resultant CR1 landscape

plots (fig. 4, right panel; supplementary fig. S4,

Supplementary Material online) illustrate the cumulative quan-

tities of CR1 bases plotted against the level of divergence to

their respective consensus sequences, which roughly corre-

sponds to a relative time axis, and suggests differential reten-

tion of CR1 lineages throughout early amniote evolution

(fig. 4, left panel). The four crocodilian genomes have retained

all ancient CR1 lineages except group B and the crocodilian

CR1 landscapes are almost identical, which suggests that only

CR1 group E was active after the onset of the diversification of

extant Crocodylia. This is in line with the large amount of

closely related CR1 subfamilies within group E, and the fact

that all of our CR1 markers for crocodilian phylogeny belong

to group E (fig. 1 and supplementary table S1, Supplementary

Material online). On the other hand, the avian sister group of

crocodilians retained only CR1 group A activity (but see

supplementary fig. S3, Supplementary Material online, for

low-copy relics of CR1 group F). Similar to the situation in

crocodilians, turtle genomes appear to exhibit all CR1 lineages

but group E, yet their genomes show a diversity of several

ancient CR1 lineages that were active during the evolution

of extant turtles. Specifically, CR1 groups A, B, and G were

active in the painted turtle and sea turtle lineages, whereas

groups B and G were recently active in softshell turtles.

Notably, the CR1 landscapes of lepidosaurs contain only

CR1 group C elements, and thus bear resemblance to therian

mammal genomes that exhibit a predominance of group C

elements and low levels of group B and G activity. In contrast

to this, CR1 retention in monotreme mammals only comprises

detectable elements from CR1 groups B and G.

Our CR1 landscape analyses illustrate contrasting fates of

CR1 activity among amniote lineages (fig. 4 and supplemen-

tary fig. S4, Supplementary Material online). Although CR1

elements have probably been long extinct since the early evo-

lution of mammals, several of the nonmammalian genomes

studied herein suggest ongoing, very recent CR1 activity in

some amniote lineages. Evidence for this has so far been lim-

ited to the anole lizard (Novick et al. 2009; Alföldi et al. 2011)

and one bird lineage, grebes (Suh et al. 2012). In-depth studies

of chicken CR1 retroposons suggest that the lineage leading

to the chicken recently lost CR1 activity (Hillier et al. 2004;

Wicker et al. 2005; Abrusán et al. 2008), which is corrobo-

rated by our chicken CR1 landscape (fig. 4) and is similar to the

fate of CR1 activity in the lineage leading to the zebra finch

(supplementary fig. S4, Supplementary Material online). Our

amniote-wide genome analyses suggest extant, “ongoing”

CR1 activity in several lineages, as we detected the presence

of more than 0.1 Mb of very young CR1 elements (i.e., no

sequence divergence from the consensus) in the genomes of

anole lizard, painted turtle, sea turtle, and four crocodilians,

respectively. Notably, the gharial lineage exhibits the highest

extant activity of crocodilian CR1 retroposons with a total of

approximately 2 Mb of virtually identical CR1-derived se-

quences in the gharial genome (supplementary fig. S4,

Supplementary Material online). This could be a major part

of the explanation of why the gharial genome assembly ex-

hibits the lowest scaffold N50 value of all four assembled

crocodilian genomes (Wan et al. 2013; Green et al. 2014).

Thus, availability of the gharial genome promises to provide

full-length, intact CR1 retroposon sequences for future in vitro

studies of the mechanism of amniote CR1 proliferation.

Conclusions

This study is the first to infer crocodilian RE presence/absence

patterns and demonstrates that these cladistic markers pro-

vide a conflict-free resolution of deep crocodilian phylogeny,

including the unambiguous grouping of gharial and false gha-

rial and the placement of that clade sister to the crocodiles.

We provide comparative genomic evidence from 12 crocodil-

ian genomes that, while there was some degree of recent CR1

diversification and succession of activity of CR1 subfamilies

throughout crocodilian evolution despite their relative
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genomic stability (Green et al. 2014), most CR1 diversity and

activity was present before the diversification of extant

Crocodylia. Our genome-wide analyses of CR1 retroposons

across amniote phylogeny revealed that both crocodilians

and turtles contain a rich repertoire of ancient CR1 integra-

tions that provide unique insights into the early genome evolu-

tion of amniotes. We conducted the hitherto first amniote-

wide analyses of CR1 subfamilies and inferred that the

genome of the amniote ancestor was impacted by the activity

of at least seven CR1 subfamilies that subsequently gave rise

to the CR1 groups that are detectable in extant amniotes.

Both crocodilians and turtles have retained six of these an-

cient, mostly long-extinct CR1 groups, respectively. This prob-

ably reflects the exceptional genome stability and slow

molecular evolution in turtles and crocodilians (Shaffer et al.

2013; Green et al. 2014) that makes these and other

nonfunctional sequences (e.g., endogenous hepadnaviruses

[Suh et al. 2014]) recognizable even after>200 Myr of neutral

decay.

CR1 retroelements are the most abundant, dominant

group of TEs in some of the major lineages of amniotes

(Shedlock et al. 2007). This applies to the genomes of birds

(Hillier et al. 2004; Warren et al. 2010), crocodilians (Green

et al. 2014), turtles (Shaffer et al. 2013), and snakes (Castoe

et al. 2013), whereas mammalian genomes exhibit domi-

nance of L1 or L2 LINEs (Lander et al. 2001; Mikkelsen et al.

2007; Warren et al. 2008) and the anole lizard genome con-

tains various nearly equally dominant TEs (i.e., CR1 LINEs, L1

LINEs, L2 LINEs, LTR retroposons, DNA transposons) (Novick

et al. 2009; Alföldi et al. 2011; Tollis and Boissinot 2011).

Considering the phylogenetic relationships among CR1 line-

ages as well as their abundance in most amniote genomes, it

is parsimonious to assume that dominant CR1 activity already

FIG. 4.—Differential retention of ancient CR1 lineages during amniote evolution. Considering the consensus phylogeny of amniotes (Shedlock and

Edwards 2009; Shaffer et al. 2013; Green et al. 2014) (left panel), comparison of divergence landscape plots (right panel; species designations are in bold

letters on the left panel) of CR1 groups A–G from figure 3 (see also supplementary table S3, Supplementary Material online) suggests retention of ancient

CR1 diversity in crocodilian and turtle genomes, while most CR1 lineages became extinct in the ancestors of other amniote taxa, in particular birds and

Lepidosauria (anole and python). We used the distribution of relics of CR1 groups among amniote genomes to parsimoniously infer durations of CR1 lineage

retention (branches not to scale). These approximate durations are illustrated using colored lines corresponding to the respective CR1 group (from the right

panel). Divergences of CR1 copies to their respective consensus sequences were calculated excluding CpG dinucleotide sites. See supplementary figure S4,

Supplementary Material online, for CR1 landscape plots of those species not shown here.
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existed in the ancestral amniote genome (Janes et al. 2010)

(i.e., >320 Ma [Shedlock and Edwards 2009]) and subse-

quently persisted throughout early amniote evolution. We hy-

pothesize that the diversity and copy numbers of ancient CR1

lineages in the genomes of crocodilians and turtles reflect this

ancestral genome organization which therefore must have

been preserved in their common ancestor that lived more

than 230 Ma (Shedlock and Edwards 2009). This is congruent

with studies on amniote genome size evolution that recon-

struct an ancestral amniote genome size comparable to that

of crocodilians and turtles (Organ et al. 2007, 2011).

Consequently, we propose that the smaller genomes of

birds and lepidosaurs are the result of genome size reduction

in their respective common ancestor via purging of ancient TE

copies through rapid molecular evolution, accompanied by

reduced TE expansion via inactivation of all but one of the

multiple ancestral CR1 lineages. On the other hand, during

early evolution of mammals, CR1 activity was replaced by a

massive expansion of L2 LINEs in monotremes (Warren et al.

2008) and L1 LINEs in therians (Kordiš et al. 2006), which led

to a drastic change in noncoding genome organization and a

slight increase in genome size as the result of accumulation of

hundreds of thousands of L1/L2 LINEs and L1/L2-mobilized

SINEs after decay of ancient TE copies. We therefore conclude

that the stable genomes of crocodilians and turtles constitute

unique windows into the distant past of early amniote

genome evolution and the processes that gave rise to the

dissimilar genomic landscapes of mammalian and nonmam-

malian TEs.

Supplementary Material

Supplementary data S1 and S2, tables S1–S3, figures S1–S4

are available at Genome Biology and Evolution online (http://

www.gbe.oxfordjournals.org/).
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