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Abstract

Purpose of Review We provide an overview of the current knowledge regarding the natural history of human type 1 diabetes
(T1D) and the documented associations between virus infections (in particular the enteroviruses) and disease development. We
review studies that examine whether T1D-specific risk alleles in genes involved in the function of the immune system can alter
susceptibility to virus infections or affect the magnitude of the host antiviral response. We also highlight where the major gaps in
our knowledge exist and consider possible implications that new insights gained from the discussed gene-environment interac-
tion studies may bring.

Recent Findings A commonality between several of the studied T1D risk variants studied is their role in modulating the host
immune response to viral infection. Generally, little support exists indicating that the risk variants increase susceptibility to
infection and moreover, they usually appear to predispose the immune system towards a hyper-reactive state, decrease the risk of
infection, and/or favor the establishment of viral persistence.

Summary In conclusion, although the current number of studies is limited, this type of research can provide important insights
into the mechanisms that are central to disease pathogenesis and further describe how genetic and environmental factors jointly
influence the risk of T1D development. The latter may provide genetic markers that could be used for patient stratification and for
the selection of method(s) for disease prevention.
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Introduction
This article is part of the Topical Collection on Pathogenesis of Type 1

Diabetes Type 1 diabetes (T1D) is characterized by reduced insulin

production due to a loss of the insulin-producing pancreatic
{3 cells [1]. Disease onset typically takes place in childhood or
young adulthood and in some countries the incidence is as
high as 40—60 new cases per 100,000 children per year [2].
T1D is one of the most common chronic diseases in children
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The Natural History of Human T1D

Many observations point to the hypothesis that T1D is an
immune-mediated disease involving the actions or regulatory
failure of multiple compartments of the immune system. Prior
to clinical disease manifestation, autoantibodies directed
against 3 cell antigens are detectable in the blood of most
individuals for a period of months to several years [1]. At
disease onset, the pancreatic islets of most patients show
hyperexpression of MHC class I [6¢, 7] and many islets are
infiltrated by immune cells [8, 9]. The immune infiltrate is
mainly composed of CD8" T cells, although CD4" T cells, B
cells, and cells of the innate immune system are also present
[10-12]. Based on these observations, the most frequently
presented hypothesis regarding how T1D arises states that 3
cells are destroyed by autoreactive CD8" T cells and that the
appearance of autoantibodies in the prediabetic period marks
the initiation of the autoimmune disease process. However,
data from a large body of recent work assessing the human
pancreas near to or at disease onset have demonstrated that the
{3 cells are still present in many patients (recently reviewed in
[13¢]), including those individuals who have lived with the
disease for more than 50 years [14]. Moreover, the degree of
insulitis seems to differ between patients and variation even
exists in different lobes of a single patient’s pancreas [10, 15,
16]. Age-related differences in the immune cell composition
of the islet infiltrates have also been identified [11, 12], and,
intriguingly, the relative pancreas size is reportedly smaller
both at disease onset and in autoantibody-positive subjects
as well as first-degree relatives [17, 18]. These findings un-
derscore the fact that there is still much to be learned about the
natural history of human T1D.

The Genetic Background of T1D

While it is as of yet unclear what the exact triggers of 3 cell
damage and subsequent T1D development are, more is known
on the factors regulating the risk of disease development.
Family studies have revealed that T1D has a genetic compo-
nent and it is estimated that around 50% of the risk for T1D is
heritable. Epidemiological studies and research on monozy-
gotic twins have suggested that environmental exposure and
epigenetic modifications account for the rest [1, 19, 20]. As
reviewed by Jerram and Leslie, it is often hypothesized that
genetics determine the predisposition a person has for devel-
oping T1D, while the environment provides the trigger for
disease onset [19].

Different methods including linkage analyses have been
employed in the search for genetic determinants of T1D.
Genome-wide association studies (GWAS), which have the
power to identify single-nucleotide polymorphisms (SNPs)
associated with disease, have revealed around 60 different loci

@ Springer

associated with T1D. The contribution of most of these loci to
T1D risk is relatively modest (odds ratio <2.0) [21-23], and
for most of the loci, the risk-conferring SNP(s) remain unde-
fined. Many of the GWAS candidate genes have important
functions in the immune system and a majority of the genes
are also expressed by pancreatic islet cells, including the 3
cells [24, 25].

The increasing amount of available SNP data has facilitated
the development of algorithms to calculate so-called T1D ge-
netic risk scores (T1D-GRS), which are based on the combi-
nation of several risk alleles and by this are able to, with
increasing precision, predict who is at risk for developing
T1D [25, 26]. Even better predictions are achieved when the
T1D-GRS is combined with non-genetic information such as
autoantibody positivity, body mass index and age [26, 27].

Virus Infections as Triggers of  Cell
Autoimmunity and T1D

Various environmental factors including dietary components,
infections and gut microbial composition have been studied in
relation to T1D development [28]. Among infectious agents,
viral infections and in particular those from the enterovirus
family have been identified as likely triggers of the disease
[29, 30]. Several studies have reported a temporal association
between respiratory infections and the appearance of autoan-
tibodies [31, 32, 33e, 34]. Moreover, a recent meta-analysis
showed a significant association between infection with any
type of virus during pregnancy and T1D development during
childhood [35]. Yet another meta-analysis revealed a clear
association between enterovirus infections and either islet au-
toimmunity or T1D [36]. Given that most viral infections will
trigger the production of interferons (IFNs) [37], it is also of
interest to mention that two independent studies have reported
that the appearance of autoantibodies is preceded by a so-
called IFN-related gene transcriptional signature in blood
[38, 39]. Many additional observations have suggested a link
between enterovirus infections and the appearance of islet
autoantibodies or T1D (for extensive reviews, see [29, 30]),
including studies showing that children newly diagnosed with
T1D are more frequently seropositive for enteroviral RNA
than healthy controls [40—42] and reports suggesting that en-
terovirus infection in the gut is more common in patients with
T1D [43] or children with islet autoimmunity [44].

In addition to these observations, enterovirus proteins have
been found in the human T1D pancreas at disease onset by
immunohistochemistry and mass spectrometry [45, 46, 47],
and islets isolated from newly diagnosed T1D patients express
IFN-stimulated genes [48¢], with the latter being a potential
indication of a viral infection [49¢].

The epidemiological evidence and case studies are also
supported by in vitro. experiments and proof-of-concept
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studies in animal models. For example, pancreatic 3 cells
express several receptors used by enteroviruses to enter cells
[50e, 51] and numerous enterovirus species have been shown
to infect and have cytopathic effects in pancreatic (3 cells
[51-53]. Also, Coxsackie B viruses (CVBs) can trigger dis-
ease in genetically permissive SOCS-1-tg animals [52] and
accelerate the development of T1D in non-obese diabetic
(NOD) mice [54, 55].

It should also be noted that some questions exist regarding
the role of enterovirus infections in T1D. For example, coun-
tries with higher frequency of enterovirus infections seem to
have a lower incidence of T1D. Moreover, certain developed
countries report a rising incidence of T1D each year [2], de-
spite no increases in the number of enteroviral infections with
enterovirus [56]. In addition, some virus serotypes have been
directly correlated with a reduced risk of developing T1D
[57]. Besides these epidemiological observations, some cri-
tique has also been brought forward as to the usefulness of
certain methodological tools used to detect viruses in the
pancreata at disease onset and in long-standing T1D cases
[58, 59]. Finally, not all studies have been able to confirm
the presence of increased levels of enteroviruses in the human
T1D gut [60].

Despite these issues, there is ample support for a role for
virus infections in T1D [31, 32, 33, 34, 61], with evidence
suggesting that infections with enterovirus species are capable
of triggering 3 cell autoimmunity in predisposed individuals
[36]. From the data that has been published on examining the
link or missing link between enterovirus infections and T1D, a
reasonable conclusion is perhaps that enterovirus infections
contribute to some but not all cases of T1D.

Enteroviruses

Enteroviruses are small single-stranded RNA viruses that are
common all over the world. Although some species are known
to cause serious diseases, most infections do not lead to severe
symptoms in the general population. Examples of enterovi-
ruses include Coxsackievirus A (CVA) and CVB, echovi-
ruses, rhinoviruses, enterovirus 71 (EV71), and poliovirus
[62, 63]. Enteroviruses typically spread via the fecal-oral route
and from contaminated surfaces, although some viruses, in-
cluding the rhinoviruses, spread via respiratory droplet aero-
sols and direct person-fo-person contact. Shedding of the virus
in stool can occur for weeks, even in asymptomatic individ-
uals [64].

The key to survival following an enterovirus infection is an
intact innate immune response, with the early production of
type I IFNs being of critical importance (reviewed in [37]).
IFNs are important pro-inflammatory cytokines that induce
production of IFN-stimulated gene (ISG) products rendering
the cell less permissive to infection. Studies in knockout

animals have shown the importance of numerous ISGs with
direct or indirect antiviral activity that prevent early virus rep-
lication and dissemination prior to the activation of the adap-
tive immune response. In addition, IFNs upregulate antigen
presentation by human leucocyte antigen (HLA) class I and
induce the production of chemokines that attract immune cells
(reviewed in [37]). Neutralizing antibodies, which appear ear-
ly in the disease process and persist for life, are essential for
viral clearance and long-term immunity (e.g., [65]). CD4+ T
cells are likely to be of importance for initiating an adequate
antibody response, but the exact role(s) of CD8+ T cells re-
main to be defined [66, 67].

From Association to Functional Insight

in the Post-GWAS Era: Gene-Environment
Interaction Studies, with Focus on Genes
with Polymorphisms that Predispose to T1D

Gene-environment interaction studies aim to describe how
genetic and environmental factors jointly influence the risk
of developing a certain disease. They can also provide insights
as to how certain SNPs affect the host response to infection
both at the cellular and organism level. In relation to T1D and
for the identification of individuals developing T1D with a
possible enteroviral etiology, it may among other be useful
to identify loci/SNPs that increase the risk of infection,
enterovirus-induced inflammation, and/or enteroviral persis-
tence. These studies may also reveal mechanisms that are
central to disease pathogenesis and moreover provide mea-
sures to identify individuals who are likely to be at increased
risk for developing virus-triggered or virus-accelerated T1D,
allowing them to benefit from a preventive virus vaccine or
antiviral treatment.

In this review, we describe several T1D risk genes that
could be of interest in the context of virus-associated T1D
development. To assist in identifying such genes, we compiled
a disease-related gene list from GWAS data and an immuno-
genetic web resource through NHGRI-EBI Catalog [21] and
ImmunoBase (https://www.immunobase.org/), respectively.
Thereafter, we manually curated this list of genes to include
immunologically relevant gene entries, which altogether
resulted in a total of 118 genes. These genes could mainly be
categorized under Gene Ontology (GO) pathways related to
immune system processes, such as activation, proliferation,
and signaling of immune cells, reflecting the autoimmune na-
ture of the disease (Fig. 1a). We selected one of the major GO
terms, GO:0002376 (“Immune system process”), which
showed a highly significant enrichment in gene set enrichment
analysis (had the second highest adjusted p value of all GO
terms) and was among the terms that were comprised of the
highest number of genes (46 genes in total). By this, we
narrowed down our selection to these 46 genes and searched
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Fig. 1 Gene Ontology (GO) and
KEGG pathway analysis of T1D-
related genes. a 118 genes
obtained via the NHGRI-EBI
Catalog and ImmunoBase were
subjected to GO pathway
overrepresentation analysis (“GO
biological process”) using the
program g:Profiler (Reimand

et al., NAR, 2007) with default
settings at Benjamini-Hochberg
FDR of 0.05. The graph depicts
the top 20 GO Slim categories
(holding at least 1000 gene
annotations) selected according to
the lowest adjusted p value
(p.adj). The genes categorized
under GO:0002376 were used in
the literature search to identify
their involvement in viral
infections and further subjected to
KEGG pathway analysis (using
g:Profiler) to gain a refined
overview of their immune-related
biological role. b The Circos plot
depicts 23/46 of the genes
(denoted with gray boxes) under
GO0:0002376 that had a KEGG
pathway assigned (colored
boxes). Graphs generated using
the ggplot2 [143] and GOplot
[144] packages in R, images
modified using Inkscape 0.92
software
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for published data implicating their involvement in viral infec-
tions. By retrieving published studies from the PubMed data-
base (using the “virus OR enterovirus OR Coxsackievirus”
search terms), we were able to identify that 36 of the 46 genes
were related to viral infections, 15 of which had a connection
to enterovirus-associated disease development and 13 being
specifically associated with Coxsackievirus-related disease
pathogenesis (Table 1). KEGG pathway analysis provided a
glimpse of the biological pathways that several of the 36 genes
are involved in (Fig. 1b). As there seems to be a broader viral
element in T1D disease initiation and progression than merely
the enterovirus component [31, 32, 33¢, 34+, 35], we aimed to
provide an overview of a selected number of genes with pub-
lished virus-associated disease phenotypes and discuss their
potential involvement in T1D.

HLA class | and I

HLA class I and II molecules are involved in antigen presen-
tation to CD8+ and CD4+ T cells, respectively. Little is known
about the relationship between HLA class I risk alleles and
enterovirus infection. Some enteroviruses have been shown to
directly down regulate HLA class I on the surface of infected
cells, thereby protecting them from recognition by CD8+ T
cells [68-70]. Whether different HLA class I allelic variants
exhibit a different level of sensitivity to this mechanism re-
mains to be established. Individuals carrying the T1D low-risk
allele B*5701 have been reported to have very low risk for
progression of HIV-infection to AIDS (so-called elite
controllers) [71]. Whether certain HLA class I alleles could
provide similar protection from infections caused by viruses
associated with T1D remains to be investigated.

The strongest risk for T1D has been attributed to HLA class
IT genes [20]. Multiple attempts have been made to connect
HLA class II risk alleles to enterovirus infections [72-76].
Most groups have found no association between risk haplo-
types and the presence of enteroviral RNA or neutralizing an-
tibodies in the blood or stool, although one study has reported
higher levels of anti-enterovirus antibodies in children bearing

an HLA-DR risk allele, as compared to children that had a
protective haplotype [77]. A review by Zhou and Jensen sug-
gests that the mechanism behind the pathogenicity of HLA-DQ
alleles is based on a higher affinity to a broad range of self-
antigens [78]. A similar hypothesis was proposed by Marttila
et al., who found that T cells derived from T1D patients with the
high-risk allele DQB1*0302 responded to a broader range of
viral epitopes compared to other patients [79]. Another risk
allele, HLA-DR4, was found to be associated with a hyper-
responsiveness of T cells to CVB4 antigens in vitro in cursive
[80]. In contrast, Ellis et al. found no difference in binding of a
common CVB4 epitope to HLA molecules derived from dif-
ferent alleles [81]. Hence, more research is needed to clarify the
role of both HLA class I and II in enterovirus infections in
humans.

IFIH1 (MDA5)

IFN induced with helicase C domain 1 (/FIHI) encodes the
cytoplasmic pattern recognition receptor (PRR) melanoma
differentiation-associated protein 5 (MDAS), which is a com-
ponent of the innate immune system that recognizes double-
stranded RNA (dsRNA). Upon detecting dsRNA, a hallmark
of enterovirus replication, MDAS initiates a signaling pathway
that ultimately leads to the activation of the transcription factors
NF-kB and IRF3, the transcription of and the subsequent pro-
duction of type I IFNs [82]. Experimental studies have shown
that MDAS is an IFN-inducible gene (e.g., [83]) and an essen-
tial PRR for the detection of enterovirus infections [84, 85].
GWAS studies have identified common and rare gene var-
iants of /FIH1, which regulate risk for T1D development [86,
87]. Consequently, many studies have investigated the func-
tional aspect of /FIH!I in T1D and also in enterovirus infec-
tions [82]. For example, two case-control studies found that
IFIH] expression in peripheral blood cells was increased in
T1D patients with risk variants of /F/HI, as compared to
healthy controls and individuals without the risk allele [88].
Individuals heterozygous for the rs1990760 SNP, a common
nonsynonymous SNP which has been strongly associated

Table 1 TI1D-associated risk genes with a documented association with virus-associated traits
BAD BTNL2 CCR5 CCR7 CD226 CFB CLEC2D | COLEC10| CTLA4
CTSH GAB3 GPR183 |HLA-DQB1HLA-DRB1| IFIH1 IKZF1 IL10 L2
IL21 IL25 IL27 IL2RA IL7R INS ITGB7 MAPT NCR3
ORMDL3 | PGM1 PLEKHA1| PRKCQ | PRKD2 PTPN2 | PTPN22 RAC2 | RASGRP1
SH2B3 SIRPG SKAP2 TAP2 TNFAIP3 | TRIM31 TYK2 |UBASH3A| UMOD
ZFP36L1

Overview of genes within the immune system process (GO:0002376) term and the presence of virus-related disease pathogenesis. PubMed literature
search on the 46 genes within the GO:0002376 term revealed an importance of 36 genes in virus-associated pathogenesis (entries in bold). 15 of those
revealed a connection to enterovirus-associated disease development (entries on gray background) with all the aforementioned (except for ORMDL3 and

RAC?2) being specifically indicated in Coxsackievirus disease pathogenesis.
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with altered risk for T1D development, were reported to be
more often positive for enteroviral RNA in the blood, al-
though the association was not very strong [89]. A similar
study looking at enterovirus levels in the stool found no link
with any of the common polymorphisms in /F7HI [90]. Pang
et al. reported no association between the common SNP and
the risk for enterovirus infection, but instead found a link with
severe EV71 infection, indicating that the SNP may influence
host immune response without affecting viral clearance [91].
Jermendy et al. reported that the risk SNP rs1990760 is asso-
ciated with the seasonality of T1D disease onset, with summer
being the season when the proportion of individuals carrying
the homozygous risk genotype was highest over the calendar
year [92+¢]. This discovery is interesting considering that sum-
mer is also the season when enterovirus infections peak [93].

Experimental studies have shown that mice which lack
MDAS show an increased susceptibility to enteroviral infec-
tion and higher mortality than wild-type animals [84, 85]. In
contrast, heterozygous (MDAS+/-) NOD mice expressing
lower levels of MDAS than homozygous (MDAS+/+) NOD
mice are protected from virus-induced T1D [94]. A mouse
model with a knock-in mutation encoding IFIH1™*¢ showed
enhanced production of type I IFNs at steady state and im-
proved survival following lethal viral challenge but displayed
greatly increased risk for autoimmune disease [95]. In addi-
tion, experimental studies have demonstrated that MDAS
encoded by variants of IFIH1 associated with protection from
T1D development show loss of function [86, 87].
Collectively, these findings suggest that the presence of
MDAS is required for efficient antiviral defense, but that ex-
cess levels of MDAS (and increased production of IFNs) may
contribute to inflammation and autoimmunity.

PTPN22

Protein tyrosine phosphatase non-receptor type 22 (PTPN22)
contains risk polymorphisms that almost double the risk for
T1D. PTPN22, also known as Lyp, is a tyrosine phosphatase
expressed in hematopoietic cell lineages. PTPN22 plays an
inhibitory role in the activation of the immune system by
inhibiting T cell receptor signaling and preventing the expan-
sion of effector T cells [96]. In addition, PTPN22 has been
reported to positively regulate TLR-triggered IFN production
in myeloid cells [97], suggesting that it contributes both to
innate and adaptive immune functions.

The most well-studied polymorphism in PTPN22 is
rs2476601, which causes a substitution of an arginine by a
tryptophan at position 620 (R620W). This polymorphism
has been associated with T1D in most population groups, as
well as with other autoimmune diseases. The R620W poly-
morphism most likely causes a functional change in the
PTPN22 protein. Though there is currently no consensus
within the field which mechanism underlies the altered risk
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for autoimmunity in individuals carrying this polymorphism,
suggestions have been made that it may be context and/or cell
type dependent [96].

Interestingly, a few studies report the involvement of
PTPN22 in infections with viruses other than enteroviruses.
Wang et al. showed that the rs2476601 SNP is associated with
lower IFN production by macrophages in response to TLR
ligand stimulation and suggested that this may result in a
weakened antiviral response to infections [97]. Crabtree
et al. found that the T1D rs2476601 risk allele is associated
with reduced CD4+ T cell response and antibody affinity mat-
uration to influenza vaccination [98]. Maine et al. identified
PTPN22 as the key promoter of chronic infection with lym-
phocytic choriomeningitis virus (LCMV) by suppressing T
cell activation [99]. In contrast, Montes-Cano et al. did not
observe an effect of the 152476601 SNP on the outcome of
chronic hepatitis C infection [100]. Thus, it could be that by
suppressing the function of effector T cells, PTPN22 dimin-
ishes response to certain virus types, allowing the establish-
ment of a persistent infection. However, the suppressive effect
of the rs2476601 on the immune system as proposed by
Crabtree et al. [98] is in direct contradiction with the suggested
mechanism in T1D, i.e., reduced inhibition of effector T cells
or increased suppression of regulatory T cells (Tregs) [96].

The MIDIA study has looked at the relationship between
PTPN22 and enterovirus infection [101]. The study had an
epidemiological setup, in which a large group of Norwegian
children were screened for SNPs in T1D risk alleles. The
genotypes were then correlated to the presence of enterovirus
in stool samples. Although the rs2476601 SNP had one of the
highest correlations with enterovirus positivity, this associa-
tion was not strong enough to reach statistical power. Hence,
more research is needed to gain better insights into the func-
tional consequences of the rs2476601 SNP and its involve-
ment in T1D and enterovirus infection.

CTLA-4

Cytotoxic T lymphocyte-associated protein 4 (CTLA-4) en-
codes the CTLA-4 protein, also known as CD152. CTLA-4
is a molecule that is normally expressed in low levels on
CD4+ and CD8+ T cells. CTLA-4 is structurally related to
CD28, a stimulatory molecule that contributes to effector T
cell activation by binding the B7 ligand expressed on antigen-
presenting cells (APCs). This binding is necessary for the
activation to occur. CTLA-4 competes with CD28 for B7
molecules, and high expression of CTLA-4 leads to inhibition
of T cell activation [102].

A few studies have been published on the connection be-
tween CTLA-4 and enterovirus infections. Thus, a study by
Yang et al. found an association between a T1D risk associat-
ed SNP in CTLA-4 (rs231775) and the likelihood of develop-
ing severe meningoencephalitis after infection with EV71
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[103]. A similar finding was done by Han et al., who showed
that the administration of CTLA-4 fusion protein attenuated
Coxsackievirus B3-induced myocarditis in mice [104]. Since
viral myocarditis is for a large part caused by excessive in-
flammation rather than virus-induced cytopathology [105],
both studies are suggestive that CTLA-4 mostly affects the
immune response to the pathogen rather than the viral entry
or replication. These observations together with the demon-
stration that T1D-related CTLA4 polymorphisms are linked to
increased IFN-y production by peripheral blood mononuclear
cells in response to a broad range of different antigens, includ-
ing CVB4 [106], suggest that autoimmunity associated SNPs
in CTLA4 are coupled with impaired immunoregulation,
which may elevate the risk for immunopathology during en-
terovirus infection.

IL10

The interleukin-10 gene (/L10) encodes the cytokine IL-10,
which is produced predominantly by Tregs and has an anti-
inflammatory effect [107]. SNPs in the /L70 gene region have
been identified in GWAS studies as risk factors for T1D [23].

It has been reported that infections with CVB3 and CVB4
are associated with increased IL-10 production [108—111]. A
similar association has also been described for EV71
[112—114]. The relationship between SNPs in the /L0 gene
region and infections with enterovirus has also been examined
in several studies. The rs1800896 SNP—a nucleotide substi-
tution upstream of the /L0 gene—has been associated with
various inflammatory diseases, including autoimmune liver
disease [115] and systemic lupus erythematosus [116], and is
strongly correlated with susceptibility to EV71 infections in
Chinese children [117]. Another SNP in the promoter region
of IL10, rs1800872, was found to increase the risk of EV71-
caused hand, foot, and mouth disease [118].

Several studies suggest that IL-10 may promote viral per-
sistence [107]. For instance, Yeung et al. found that children
positive for enteroviral RNA usually had elevated serum
levels of IL-10. However, this did not correlate with their
T1D status [119]. Furthermore, an experimental study showed
that IL-10 production was induced in mice upon infection
with CVB and appeared to facilitate the development of
chronic pancreatitis, as IL-10 knockout animals resolved the
acute pancreatitis [120].

TNFAIP3

TNF-alpha-induced protein 3 (TNFAIP3), also known as A20,
is a cytoplasmic protein which mainly exerts anti-
inflammatory function by inhibiting NF-«B activation [121].
SNPs in TNFAIP3 have been associated with multiple auto-
immune diseases, including T1D [23]. Even prior to GWAS,
TNFAIP3 was identified as a T1D risk allele, and in vitro

studies discovered that A20 expression can be induced in f3
cells to protect them from cytokine-induced apoptosis. A sub-
sequent animal study reported that genetic therapy with A20
could protect against TID in a streptozotocin-induced T1D
mouse model [121]. In 2016, Fukaya et al. reported that the
noncoding rs2327832 polymorphism in 7NFAIP3 is associat-
ed with reduced residual 3 cell function and impaired glyce-
mic control in children with T1D [122]. This same polymor-
phism was later confirmed to have an association with a
higher susceptibility to T1D in a large cohort [123].

Very little research has examined the role of A20 in entero-
virus infections. It has been reported that A20 ameliorates
CVB3-induced myocarditis by inhibiting NF-«kB signaling
[124]. Interestingly, Doukas et al. reported that TNFAIP3 is
one of the few genes that escape transcriptional shutoff by the
poliovirus. In addition, the authors report that depletion of
A20 leads to increased virus replication [125]. In contrast,
some other virus types (e.g., influenza A), profit from high
A20 expression, since they can inhibit the expression of type |
IFNs [126, 127].

Interleukin-21 and IL-2

The interleukin-21 (/L21) gene encodes IL-21, a cytokine that
is mainly produced by T cells and natural killer T cells [ 128]. It
acts on both lymphoid and myeloid cells, and has been asso-
ciated with positive and negative immune regulation depend-
ing on the context. The /L2 locus is shared with the
interleukin-2 (/L2) gene, encoding a cytokine that is involved
in the activation of effector T cells and in the generation,
homeostasis, and function of Tregs [129]. Both genes have
been shown to play a role in autoimmunity; IL-21 by promot-
ing T follicular helper- (Tth) and Th17 cell differentiation, and
by inhibiting Treg generation, and IL-2 via altered Treg func-
tion and homeostasis [130—132].

As shown by Yeung et al., children infected with enterovi-
ruses generally have lower serum concentration of IL-21 than
those that are not infected, although this did not correlate with
their T1D autoantibody status (i.e., prediabetic or healthy)
[119]. Another study investigated IL-21 signaling in the con-
text of CVB3-induced myocarditis and concluded that IL-21
mediate excessive activation of CD8+ T cells, thereby contrib-
uting to inflammation [133]. Importantly, the increase in ef-
fector T cells does not lead to a reduced virus titer, which is
rather indicative of a hyper-reactive immune system without
increased functionality. Consistent with this finding, mice de-
ficient in the IL-21 receptor display lower inflammation of the
myocardium and fewer autoreactive B cells, lowering tissue
damage in virus-induced myocarditis [134].

1L2, the second gene in the IL-21 gene cluster, is predom-
inantly expressed in activated T cells. IL-2 binds to its recep-
tor, IL-2R, and stimulates proliferation of both effector and
regulatory T cells [129]. GWAS studies have also identified
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T1D associated SNPs in the /L-2RA gene and linked them to
altered IL-2R signaling in Tregs [131]. Serum IL-2 levels do
not differ between T1D and healthy controls [135], but it has
been reported that they are elevated in severe EV71-induced
hand, foot, and mouth disease [136]. In viral myocarditis, IL-2
has been shown to play a dual role, contributing to improved
viral clearance during the acute phase and prolonging inflam-
mation during the chronic phase [137].

Implications of Gene-Environment Interaction
Studies

GWAS have already revealed many important aspects of
T1D etiology. With the emergence of genome-editing tech-
niques, we have entered the post-genomic era with the pos-
sibility to introduce specific changes into cell lines and
primary cells, study the independent and combined effect(s)
of SNPs on biological functions, and also identify causal
SNPs. Such efforts may also provide insight into mecha-
nisms that are central to virus-triggered T1D and facilitate
the search for therapeutic targets.

Insights gained from gene-environment interaction
studies coupled with further genetic studies on phenotyp-
ically defined subgroups of T1D patients may also assist
in refining the current TID-GRS, and perhaps even more
importantly, open the option of stratification of individ-
uals based on disease endotypes. For this to become a
reality, further insights into the genetic, as well as non-
genetic, determinants of disease heterogeneity may be
needed. Moreover, we may need to consider that genes
and environmental factors of importance for the triggering
events (i.e., induction of islet autoimmunity) may not be
the same as those involved in precipitating disease in al-
ready autoantibody-positive individuals (i.e. clinical dis-
ease development). For the identification of an endotype
with an enteroviral etiology, we also need to learn more
about when and how the virus contributes to the disease.
While the occurrence of virus in the pancreas at disease
onset has led to the hypothesis that the virus causes a
persistent infection in the islets, it is as of yet unclear
whether unresolved infections, acute infections, or both
are accountable for the reported link between enterovirus
infection and T1D.

Another aspect to consider for the development of GRS
is population diversity. Currently, most of the GWAS
studies have been performed in the Caucasian populations
living in Europe or North America. We are just in the
beginning of understating how translatable the GRS are
to other regions in the world, or even to other ethnicities
living in Europe or North America [138]. Beyond this,
and to further improve the precision of the GRS,
genome-wide association interaction studies (GWAIS)
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will most likely be required to unravel functional relation-
ships between genes (epistasis) [139].

Among the non-genetic factors to be taken into ac-
count when calculating risk for T1D development, age
may be of importance as twin studies for example have
indicated that the heritable risk component declines with
age [140]. For predicting T1D with an enteroviral etiol-
ogy, gender may also play a small, yet non-negligible
role [41].

Due to these additional layers of complexity, SNP
genotyping and calculation of GRS might not prove to
be a feasible strategy for predicting the absolute risk of
developing T1D, although it might be useful for risk
assessment and patient stratification in case-control stud-
ies and clinical trials. Hence, these measures could also
be used to stratify prediabetic individuals who would
benefit from receiving an enterovirus vaccine, or divid-
ing recent onset T1D patients into subgroups that would
be more or less likely to respond favorably to antiviral
therapy. Enterovirus infections could be treated with an-
tivirals and many efforts are being made to develop
broadly acting antivirals (reviewed in [62, 129]). While
a vaccine against enteroviruses suspected to play a role
in triggering T1D is not yet available, prototype vac-
cines against CVBs have shown excellent safety, immu-
nogenicity, and efficacy in preventing infection and
enterovirus-associated disease [54, 141, 142].

Conclusions

This review summarizes current knowledge surrounding the
relationship between enterovirus infections and T1D, with a
special focus on T1D genetic risk alleles in genes related to
the host immune system and their possible role in altering
susceptibility to virus infection or the magnitude of the host
antiviral immune response. It is evident that these types of
study have so far been limited in number and few have exam-
ined the direct interactions between T1D-associated genes/
SNPs and the outcome of enterovirus infections. The studies
cited do not support that SNPs in the genes which have been
reviewed are increasing susceptibility to infection, more often
they seem to either decrease the risk for infection or favor the
establishment of viral persistence. This fits well with the chron-
ic nature of islet autoimmunity. The studies also point to the
fact that several T1D-associated genes modulate the im-
mune response to virus infection. Indeed, several risk vari-
ants appear to predispose the immune system towards hy-
per-reactivity, which may manifest itself upon encounter
with an exogenous pathogen, such as an enterovirus, and
thereby trigger autoimmunity.

Further research in this area will provide additional in-
sights into the etiology and pathogenesis of T1D. This may
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not only assist in defining therapeutic targets, but also pro-
vide measures to identify individuals at risk—such studies
can be translated into clinically useful advances in the per-
sonalization of T1D prevention by providing genetic
markers useful for patient stratification and the selection
of method(s) for disease prevention.
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