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Abstract 

Background: An increase in the incidence of central venous catheter (CVC)-associated deep venous thrombosis 
(CADVT) has been reported in pediatric patients over the past decade. At the same time, current screening guidelines 
for venous thromboembolism risk have low sensitivity for CADVT in hospitalized children. This study utilized a multi-
modal deep learning model to predict CADVT before it occurs.

Methods: Children who were admitted to intensive care units (ICUs) between December 2015 and December 2018 
and with CVC placement at least 3 days were included. The variables analyzed included demographic characteristics, 
clinical conditions, laboratory test results, vital signs and medications. A multimodal deep learning (MMDL) model 
that can handle temporal data using long short-term memory (LSTM) and gated recurrent units (GRUs) was proposed 
for this prediction task. Four benchmark machine learning models, logistic regression (LR), random forest (RF), gradient 
boosting decision tree (GBDT) and a published cutting edge MMDL, were used to compare and evaluate the models 
with a fivefold cross-validation approach. Accuracy, recall, area under the ROC curve (AUC), and average precision 
(AP) were used to evaluate the discrimination of each model at three time points (24 h, 48 h and 72 h) before CADVT 
occurred. Brier score and Spiegelhalter’s z test were used measure the calibration of these prediction models.

Results: A total of 1830 patients were included in this study, and approximately 15% developed CADVT. In the 
CADVT prediction task, the model proposed in this paper significantly outperforms both traditional machine learning 
models and existing multimodal deep learning models at all 3 time points. It achieved 77% accuracy and 90% recall 
at 24 h before CADVT was discovered. It can be used to accurately predict the occurrence of CADVT 72 h in advance 
with an accuracy of greater than 75%, a recall of more than 87%, and an AUC value of 0.82.
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Background
Central venous catheters (CVCs) have revolutionized 
the care of patients requiring long-term venous access. 
The introduction of CVCs in pediatric intensive care 
units (ICUs) has been an important modality in the 
improved quality of care in critical patients [1]. Despite 
these advantages, more than 15% of patients receiving a 
CVC could develop complications [2], such as catheter 
malfunction, bloodstream infection, chylothorax, and 
CVC-associated deep venous thrombosis (CADVT) 
[3], which prolong the hospital stay and increase medi-
cal costs. CADVT constitutes 10% of all deep venous 
thromboses (DVTs) in adults and 50–80% of all DVTs 
among children [4], and nearly all DVT-related deaths 
in children are associated with CVCs [5]. In newborns, 
approximately 90% of venous thromboses are related 
to CVCs [6]. In pediatric patients, the presence of a 
CVC is the single most common risk factor for venous 
thromboembolism (VTE) [7, 8]. With the increasing 
use of CVCs, the incidence of CADVT has been on the 
rise. A significant increase in the rate by 30–70% has 
been reported among hospitalized children over the 
last 2 decades [9, 10]. Predicting CADVT events before 
they occur and taking necessary blood clot prevention 
measures in advance can help reverse this trend. How-
ever, current screening guidelines for venous thrombo-
embolism risk, which are developed from incomplete 
pediatric data and extrapolated from adult data, have 
low sensitivity for CADVT in hospitalized children 
[11].

Machine learning is a form of artificial intelligence 
(AI) in which a model learns from examples rather than 
preprogrammed rules. Machine learning approaches 
can provide accurate predictions based on large, struc-
tured datasets extracted from electronic health records 
(EHRs) and have been applied in many clinical areas 
[12, 13]. Many machine learning methods have been 
rapidly developed to model complex and nonlinear 
effects and thereby improve prediction rules developed 
using standard statistical methods [14]. The advantage 
of completely data-driven learning without reliance on 
rule-based programming is that machine learning con-
stitutes a reasonable approach. Therefore, this study 
applied machine learning methods to develop a model 
to accurately predict CADVT before it occurs.

Methods
This retrospective study was approved by the Institu-
tional Review Board of the Children’s Hospital of Zheji-
ang University School of Medicine, and the requirement 
for informed consent was waived. In this study, data were 
collected on pediatric patients who were admitted to the 
ICU of the 1900-bed Children’s Hospital, Zhejiang Uni-
versity School of Medicine, between December 2015 and 
December 2018. The clinical data from a total of 11,814 
patients were recorded in a public pediatric intensive 
care (PIC) database [15]. Additional daily catheter assess-
ment records and CVC-related adverse event reports 
were aligned with the PIC database. The inclusion crite-
ria for this study were that patients received CVC place-
ment for at least 3  days during the study period in one 
of the 4 ICUs of this children’s hospital. The exclusion 
criteria were incomplete patient-related data or patients 
with thrombosis either present before hospital admis-
sion or unrelated to CVC placement. The thrombus was 
confirmed with Doppler ultrasound at most time or com-
puted tomography in very rare cases and recorded in the 
adverse event reports.

Data collection and preprocessing
Patient-specific clinical data were collected from the PIC 
database, and CVC-related records were collected from 
different clinical information systems. The primary out-
come of interest in the present study was the occurrence 
of CADVT. The variables included age, sex, primary 
diagnosis, surgery before CVC insertion, ICU, duration 
of CVC insertion, catheter-related characteristics (type 
and size) and administration of 6 types of drugs. Many 
dynamic temporal data, such as vital signs and labora-
tory test items, were also repeatedly collected, usually 
at different time intervals. For temporal data with mul-
tiple repeated measurements, statistical values such as 
the mean, standard deviation, minimum, median, and 
maximum are used as static feature and the original data 
were divided by 12-h windows to generate a time series. 
As a case–control design with three different lookback 
periods, only dynamic data collected 72  h before the 
CVC was removed were retained, and then the data were 
divided into three parts at 24-h intervals to test how far 
in advance a CADVT event can be predicted, as shown 
in Fig. 1. It is important to note that some time sensitive 

Conclusion: In this study, a machine learning method was successfully established to predict CADVT in advance. 
These findings demonstrate that artificial intelligence (AI) could provide measures for thromboprophylaxis in a pediat-
ric intensive care setting.
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static data, such as the CVC dwell time and statistics gen-
erated from temporal data, differed at the 3 prediction 
time points. The details of these variables are shown in 
Additional file 1.

Machine learning model
The traditional logistic regression (LR) model and two 
superior performance machine learning models, random 
forest (RF) and gradient boosting decision tree (GBDT), 
were used as three benchmark models that only use 
static data. Another benchmark model is a deep learning 
framework called the multimodal deep learning model 
(MMDL), which was recently proposed [16]. For sim-
plicity, MMDL treats all the temporal dynamic features 
as one modality and all nontemporal static features as 
another modality using different deep learning models. 
In this study, we propose a novel multimodal deep learn-
ing model. The detailed architecture of the proposed 
model is shown in Fig. 2. Briefly, it accepts dynamic data 
using multiple recurrent neural network (RNN) models, 
including both long short-term memory (LSTM) and 
gated recurrent units (GRUs). The static features were fed 
into a standard feedforward neural network (FNN), and 
then the outputs of the FNN and dynamic feature model 
(LSTM + GRUs) were combined in a shared latent repre-
sentation layer to predict CADVT. The positive patients 
(with CADVT) in the dataset accounted for approxi-
mately 15% of the total. The phenomenon of class imbal-
ance or class skew can cause an unreasonable evaluation 
of the two-class classifier. The SMOTE method [17] was 
adopted as a processing method for unbalanced data 
before training. A fivefold cross-validation approach in 
which the dataset were randomly partitioned into 5 sub-
sets of roughly equal size and each subset will be used 

as the testing set for a model trained on other 4 subsets 
in 5 rounds [18], was used in the evaluation. We used 
accuracy, recall, area under the ROC curve (AUC), and 
average precision (AP) to evaluate the discrimination of 
the prediction model. Brier score and Spiegelhalter’s z 
test were used measure the calibration of these predic-
tion models [19]. All these experiments were conducted 
under the scikit-learn Python module.

Statistical analysis
All statistical analyses were performed using packages 
in the Python and R programming environments. The 
patients were categorized according to whether they had 
experienced the primary outcome (i.e., CADVT). All dif-
ferences in continuous data between patients with and 
without CADVT are reported as the mean ± standard 
deviation and were compared using the Mann–Whitney 
U test. All categorical data are reported as counts (per-
centages) and were compared using the chi-square test. 
For statistical hypothesis testing purposes, we considered 
a p value less than 0.05 to indicate significance.

Results
Of 11,287 patients who were admitted to ICUs between 
December 2015 and December 2018, 3927 ICU admis-
sions received CVC placement, but only 1830 children 
who met our inclusion criteria were included in this 
study. The detailed patient characteristics and CVC 
information are shown in Table  1. The mean age of the 
cohort was 24.3 ± 37.5 months, and 1046 (57.2%) patients 
were male. The spectrum of primary diagnoses included 
various cardiac, oncologic, infectious, gastrointestinal, 
and neurologic conditions. These were broadly catego-
rized as congenital heart disease (CHD) [n = 595(32.5%)], 

Fig. 1 Flowchart for the study populations and methods
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Fig. 2 Structure of the proposed multimodal deep learning model
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infection or inflammation [n = 311(17.0%)], other con-
genital disease [n = 126(6.9%)], cancer [n = 121(6.6%)], 
nonmalignant pathology [n = 125(6.8%)], intracra-
nial space-occupying lesion [n = 69(3.8%)], bleeding 
[n = 23(1.3%)], and other [n = 441(24.1%)] (detailed defi-
nitions of these disease groups are provided in Additional 
file 1: Table S2). Of these enrolled patients, 282 (15.4%) 
experienced CADVT, which was confirmed by duplex 
ultrasound or computed tomography. The average CVC 
dwell time was 147.22 ± 153.7 h.

Patients with thrombosis were older, with a mean 
age of 41.1 ± 48.4  months versus 21.3 ± 34.3  months 

for those without thrombosis. CADVT occurred more 
frequent in boys than in girls. The odds of experienc-
ing CADVT were significantly higher for patients 
with intracranial space-occupying lesions, bleeding, 
and infection/inflammatory diseases than for patients 
with other diseases. Many rare and risky diseases were 
classified as “other”, which accounted for more than 
one-third of CADVT events. The patient’s ICU type, 
history of surgery, catheter dwell time, and types and 
sizes of catheters were significantly associated with 
the occurrence of CADVT. Many vital signs and labo-
ratory test items also showed significant differences 
between patients with and without CADVT (a detailed 

Table 1 Patient characteristics stratified by CADVT status

Characteristic Patients with CADVT
n = 282 (15.4%)

Patients without CADVT
n = 1548 (84.6%)

P value

Sex  < 0.001

 Male 173 (61.3%) 873 (56.4%)

 Female 109 (38.7%) 675 (43.6%)

Age (months) 41.1 ± 48.4 21.3 ± 34.3  < 0.001

Diagnosis  < 0.001

 Bleeding 5(1.8%) 18 (1.2%)

 Cancer 14 (4.9%) 107 (6.9%)

 CHD 52 (18.4%) 543 (35.1%)

 Intracranial space-occupying lesion 22 (7.8%) 47 (3.0%)

 Nonmalignant pathology 6(2.1%) 119 (7.7%)

 Premature infant 0 (0.0%) 19 (1.2%)

 Infection/inflammation 75(26.6%) 236 (15.2%)

 Other congenital disease 8 (2.8%) 118 (7.6%)

 Other 100 (35.5%) 341 (22.0%)

ICU admission  < 0.001

 CICU 67 (23.8%) 703 (45.4%)

 NICU 4 (1.4%) 90 (5.8%)

 PICU 124 (44.0%) 232 (15.0%)

 SICU 87 (30.9%) 523 (33.8%)

Catheter type 0.220

 Single lumen 234 (80.4%) 1328 (75.1%)

 Double lumen 48 (19.6%) 220 (24.9%)

Catheter model  < 0.001

 18 G 58 (20.6%) 264 (17.1%)

 20 G 17 (6.0%) 33(2.1%)

 22 G 165 (58.5%) 1065 (68.8%)

 4.0 Fr 9 (3.2%) 33(2.1%)

 5.0 Fr 25 (8.9%) 134 (8.7%)

 Other 8 (2.8%) 19 (1.2%)

CVC dwell time (h) 186.0 ± 254.4 140.2 ± 125.9  < 0.001

Surgery  < 0.001

 True 174 (61.7%) 1261 (81.5%)

 False 108 (38.3%) 287 (18.5%)
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statistical analysis of all 56 temporal data points in all 
3927 patients is available in Additional file 1: Table S1).

The accuracy, recall, AUC and AP of the four bench-
mark models and the proposed model are shown in 
Table  2 and Fig.  3. The two machine learning models 
RF and GBDT achieved better performance than the 
traditional method LR at three time points, especially 
concerning recall. The MMDL, which uses additional 
temporal dynamic data, achieved better performance 
than the three benchmark models based on static data 
from the first two time points. The proposed model 
achieved the best prediction results in all 4 evaluation 
metrics at all 3 time points. The performance of each 
model did not differ significantly at the three time points. 
The proposed model can predict CADVT 72 h before it is 
discovered with an accuracy of 0.75 and a recall of 0.87.

The calibration results of these models were shown in 
Table  3. The calibration and discrimination of these 5 
models are not consistent. The RF model which achieved 
a smallest Brier score is the only one with Spiegelhal-
ter’s test p value great than 0.05 in all three time points 
which means it is well calibrated. All other four models 
are not well calibrated. The LR and MMDL models will 
under-estimate the risk of CADVT. While, the GBDT 
and model proposed in this study will over-estimate it. If 
the model works as a risk calculator it will needs calibrate 
before implementation.

Discussion
The prevalence of VTE has significantly increased 
across all age groups of hospitalized children, which 
has been attributed, in part, to the widely used CVCs 
in this population [10]. Given this critical and grow-
ing problem, several important pediatric organizations 
have developed initiatives to prevent VTE. However, 
a study showed that current screening guidelines for 
VTE risk in hospitalized children have low sensitiv-
ity (61%; 95% CI 51–70%) for identifying patients at 
increased risk of both CVC-associated and other VTE 
events [11]. It was also confirmed by the traditional 

LR model in this study that recall, which is the same 
as sensitivity, was approximately 61%. This means that 
approximately 40% of CADVT events will not be pre-
dicted. Traditional risk models are inadequate for this 
complex problem.

In this retrospective analysis, we evaluated the perfor-
mance of different machine learning models to predict 
CADVT before it occurred at 3 time points. As a com-
plicated task, the 3 machine learning models that only 
use static data did not achieve the desired predictive 
performance. A multimodal deep learning model called 
the MMDL, which can handle temporal data, exhib-
ited an improved performance. Inspired by this finding, 
we believe that time-series dynamic data contain much 
more clinical information than static data or dynamic 
data-based statistics. For these reasons, we propose a 
new multimodal deep learning model that can provide 
deeper insight and learn shared latent representations for 
prediction tasks from both static and temporal dynamic 
data. The proposed model with an AUC > 0.82 can meet 
most needs of clinical applications. It allows clinicians to 
predict CADVT 3 days in advance. The ability to predict 
CADVT may allow patients to benefit from thrombo-
prophylaxis or close surveillance [20]. The proposed deep 
learning models have the potential to be used as deci-
sion support tools for thromboprophylaxis. Although it 
is not too difficult to develop a machine learning model, 
data integration can be a challenge in practice for such 
a model that requires a large number of data features, 
especially dynamic data features. Prior to implementing 
predictive models in novel settings, analyses of calibra-
tion remain as important as discrimination, but they are 
not frequently discussed [21]. As many studies shown, 
a highly discriminative classifier (e.g., a classifier with 
a larger area under ROC curve) including widely used 
logistic regression model and several machine learn-
ing approaches such as Naïve Bayes, decision trees, and 
artificial neural networks all may not be well-calibrated 
[22, 23]. The calibration reported in this study also show 
many prediction models were not well calibrated.

Table 2 Performance of four benchmark models and the proposed model at three time points

a The model proposed in this study

Model 24 h in advance 48 h in advance 72 h in advance

Accuracy Recall AUC AP Accuracy Recall AUC AP Accuracy Recall AUC AP

LR 0.64 0.61 0.67 0.27 0.66 0.62 0.67 0.28 0.65 0.57 0.66 0.29

RF 0.61 0.68 0.70 0.32 0.60 0.70 0.71 0.34 0.61 0.74 0.72 0.31

GBDT 0.57 0.73 0.70 0.31 0.57 0.75 0.70 0.29 0.60 0.75 0.72 0.32

MMDL 0.66 0.75 0.74 0.30 0.67 0.71 0.74 0.30 0.59 0.79 0.71 0.31

Modela 0.77 0.90 0.83 0.37 0.77 0.88 0.82 0.36 0.75 0.87 0.82 0.36
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Fig. 3 Comparison of AUCs among machine learning models at 3 time points. a Twenty-four hours before CADVT. b Forty-eight hours before 
CADVT. c Seventy-two hours before CADVT. The proposed model is shown as the solid blue line
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The advantage of deep learning models is that they 
can receive a large number of data features at the same 
time and learn from them to obtain implicit correlations 
to serve complex prediction problems. In this study, the 
static data contained 143 features after one-hot encoding, 
and the dynamic data were in an n * 2 * 56 size 3D matrix. 
However, because the deep learning model is not highly 
interpretable, which factors and how they contribute to 
CADVT still need to be studied. Based on the contribu-
tion of different features, the model can be optimized and 
compressed to using fewer data input and with simpler 
network structure in practice. Furthermore, explainabil-
ity is more important than accuracy, as it will identify 
which modified risk factor contributes to CADVT and 
what kind of measures could help to change the situa-
tion and determine a patient’s individual risk. Explainable 
artificial intelligence (XAI), which is a set of processes 
and methods that allows human users to comprehend 
and trust the results and output created by machine 
learning algorithms, is also the focus of current AI 
research in medicine [24]. Some interpretation methods, 
such as SHAP [25], have been introduced to explain the 
output of machine learning models by computing each 
feature for the prediction. However, such an explainable 
framework works well on static features but not on latent 
temporal features.

Several studies have shown that different diseases have 
different risks of CADVT [26]. In this study, we found that 
patients with intracranial space occupying lesions have a 
particularly high risk of CADVT (OR 14.2 p value < 0.001 
compared with CHD patients). Further analysis showed 
the dehydration agent, such as mannitol, glycerol fructose, 
and furosemide etc., that is widely used to reduce brain 
swelling and intracranial pressure, maybe contribute to the 
CADVT. For these reasons, intracranial occupying lesions 
are used independently as a feature. In addition, only the 
primary discharge diagnosis was used to label patient. It 
should include more diseases information in the future 
study. Therefore, for machine learning technology to be 

used to predict CADVT, patients in the training dataset 
should be collected from similar hospitals or the same 
hospital of the practice hospital due to the disease spec-
trum. Different hospitals with different populations with 
different diseases may require different models. Machine 
learning models trained on datasets from multiple centers 
should also consider hospitals as features. Furthermore, if 
the prediction risk probability were directly provided to 
clinician for clinical decision support, applying calibration 
model to estimates is needed.

This study had several limitations. First, as the tempo-
ral data were organized in fixed 12-h time windows, all 
the original temporal features of different clinical data 
were not retained. Furthermore, a more flexible learning 
model that could accept dynamic data at different time 
intervals should be developed. A scheme which uses for-
ward well-defined index time from the catheter insertion 
was also suggested for future study. Second, as the pro-
posed deep learning model was evaluated only in a single 
center with retrospective data in a case–control design, a 
larger evaluation using a cohort design is needed to dem-
onstrate its broad applicability. The most important limi-
tation of such a complicated multimodal deep learning 
model is its clinical explainability and its different cali-
bration in different populations.

Conclusions
In conclusion, children in ICUs are at high risk for 
CADVT, which occurs in approximately 15% of patients. 
In the CADVT prediction task, the model proposed in 
this paper significantly outperforms both traditional 
machine learning models and existing multimodal deep 
learning models at all 3 time points. The AI model was 
able to accurately predict the occurrence of CADVT 
72 h before it was discovered with an accuracy of > 75%, 
a recall of > 87%, and an AUC of > 82%. This study dem-
onstrates that AI could provide measures for thrombo-
prophylaxis in pediatric intensive care settings.

Table 3 Calibration results of models at three time points

a The model proposed in this study

Model 24 h in advance 48 h in advance 72 h in advance

Brier score Spiegelhalter
z score

Spiegelhalter
P value

Brier score Spiegelhalter
z score

Spiegelhalter
P value

Brier score Spiegelhalter
z score

Spiegelhalte
P value

LR 0.149 18.39 0.00 0.147 18.31 0.00 0.145 17.96 0.00

RF 0.124 − 0.34 0.36 0.122 − 0.43 0.33 0.120 − 0.48 0.32

GBDT 0.141 − 5.57 2.53e−8 0.139 − 5.71 8.45e−9 0.138 − 5.76 1.7e−8

MMDL 0.188 2.53 1.61e−2 0.190 2.00 0.08 0.199 2.54 3.61e−2

Modela 0.167 − 4.94 1.70e−6 0.189 − 3.96 1.42e−3 0.177 − 4.55 1.41e−3
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