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Abstract
Genotyping of classical major histocompatibility complex (MHC) genes is challenging 
when they are hypervariable and occur in multiple copies. In this study, we used sev-
eral different approaches to genotype the moderately variable MHC class I exon 3 
(MHCIe3) and the highly polymorphic MHC class II exon 2 (MHCIIβe2) in the blue-
throat (Luscinia svecica). Two family groups (eight individuals) were sequenced in rep-
licates at both markers using Ion Torrent technology with both a single-  and a 
dual- indexed primer structure. Additionally, MHCIIβe2 was sequenced on Illumina 
MiSeq. Allele calling was conducted by modifications of the pipeline developed by 
Sommer et al. (BMC Genomics, 14, 2013, 542) and the software AmpliSAS. While the 
different genotyping strategies gave largely consistent results for MHCIe3, with a 
maximum of eight alleles per individual, MHCIIβe2 was remarkably complex with a 
maximum of 56 MHCIIβe2 alleles called for one individual. Each genotyping strategy 
detected on average 50%–82% of all MHCIIβe2 alleles per individual, but dropouts 
were largely allele- specific and consistent within families for each strategy. The dis-
crepancies among approaches indicate PCR biases caused by the platform- specific 
primer tails. Further, AmpliSAS called fewer alleles than the modified Sommer pipeline. 
Our results demonstrate that allelic dropout is a significant problem when genotyping 
the hypervariable MHCIIβe2. As these genotyping errors are largely nonrandom and 
method- specific, we caution against comparing genotypes across different genotyping 
strategies. Nevertheless, we conclude that high- throughput approaches provide a 
major advance in the challenging task of genotyping hypervariable MHC loci, even 
though they may not reveal the complete allelic repertoire.
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1  | INTRODUCTION

The polymorphic and polygenic major histocompatibility complex 
(MHC) in many vertebrates is inherently difficult to genotype. The 

last decade has provided new sequencing platforms that may enable 
cheaper, faster, and more accurate and reproducible MHC genotyp-
ing (Babik, Taberlet, Ejsmond, & Radwan, 2009; Biedrzycka, Sebastian, 
Migalska, Westerdahl, & Radwan, 2017; Duke et al., 2015; Grogan, 
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McGinnis, Sauther, Cuozzo, & Drea, 2016; Lighten, Oosterhout, & 
Bentzen, 2014). However, the task is still quite demanding in hy-
pervariable study systems, partly due to the challenge of designing 
pipelines to separate true alleles from methodological artifacts (Babik, 
2010; Grogan et al., 2016; Lighten et al., 2014; Sebastian, Herdegen, 
Migalska, & Radwan, 2016). Validation of true alleles through the use 
of replicate amplicons and pedigree information may however assist 
in quality control of the genotyping process of such systems (Gaigher 
et al., 2016; Grogan et al., 2016; Sommer, Courtiol, & Mazzoni, 2013; 
Zagalska- Neubauer et al., 2010).

Major histocompatibility complex genes are crucial to trigger adap-
tive immune responses in jawed vertebrates and are among the most 
polymorphic genes known (Janeway, Travers, Walport, & Shlomchik, 
2001). MHC class I (MHCI) genes encode transmembrane glycopro-
teins found on the surface of most cells. Peptides derived from in-
tracellular pathogens bind specifically to the peptide- binding region 
(PBR) of membrane- bound MHCI molecules and are presented to 
CD8+ cytotoxic T cells. Similarly, peptides from extracellular pathogens 
are presented to CD4+ helper T cells by MHC class II (MHCII) mole-
cules, which are located on specialized antigen- presenting cells such 
as B cells, dendritic cells, and macrophages. Due to the specificity of 
the PBR, organisms with more MHC alleles are able to trigger an im-
mune response against more pathogens. The polymorphism at MHC 
genes is believed to be influenced by several processes, including 
pathogen- mediated balancing selection and sexual selection (see re-
views by Edwards and Hedrick (1998) and Piertney and Oliver (2006)).

In Aves, the structure of the MHC varies immensely. While 
chicken (Gallus gallus) is described as having a “minimal essential 
MHC” (Kaufman et al., 1999), many non- Galliform species exhibit 
an increased number of MHC loci (e.g., great snipe (Gallinago media; 
Ekblom, Grahn, & Höglund, 2003), blue petrel (Halobaena caerulea; 
Strandh, Lannefors, Bonadonna, & Westerdahl, 2011), and Eurasian 
coot (Fulica atra; Alcaide, Munoz, Martínez- de la Puente, Soriguer, & 
Figuerola, 2014)). In Passeriformes, the MHC genes are extensively 
duplicated and highly diverse, and pseudogenes are commonly found 
(Westerdahl, 2007). For instance, Bollmer, Dunn, Freeman- Gallant, 
and Whittingham (2012) detected a minimum of eight MHCI exon 
3 (MHCIe3) and 23 MHCII β exon 2 (MHCIIβe2) loci in the com-
mon yellowthroat (Geothlypis trichas) using 454 sequencing, while 
Zagalska- Neubauer et al. (2010) revealed numerous pseudogenes as 
well as at least nine transcribed MHCIIβe2 loci in collared flycatcher 
(Ficedula albicollis). Further, O’Connor, Strandh, Hasselquist, Nilsson, 
and Westerdahl (2016) described MHCIe3 diversity in 12 passerine 
species, in which the minimum number of loci ranged from four in the 
bluethroat (Luscinia svecica) to 19 in the willow warbler (Phylloscopus 
trochilus). High intra- individual diversity was also found by Anmarkrud, 
Johnsen, Bachmann, and Lifjeld (2010), who used a traditional cloning 
and Sanger sequencing approach to identify 61 unique MHCIIβe2 al-
leles in 20 bluethroats and a minimum number of 11 functional loci.

For passerine birds, gene duplication and high- sequence similarity 
at MHC loci due to gene conversion preclude single- locus amplifica-
tion when intron sequences are not known (Westerdahl, 2007). When 
performing PCR amplicon sequencing from multilocus gene targets, 

such as the MHC, several aspects may contribute to PCR- induced 
biases. For example, similarity to primer sequence, GC content in 
primer- binding sites and differences in secondary structures will influ-
ence the amplification success of the DNA template (Pawluczyk et al., 
2015; Polz & Cavanaugh, 1998; Suzuki & Giovannoni, 1996). Hence, 
primer design is important in order to reduce PCR- introduced biases. 
Many researchers now use “phusion primers” when performing ampl-
icon sequencing. These are primer sequences with platform- specific 
adapters, sample- specific index tags (barcode), and other sequence 
motifs added to the target gene sequence. These motifs will generate 
a “primer tail”. This tail may thus introduce amplification biases if it 
has a noncompatible GC pattern to the nucleotides surrounding the 
primer- binding motif, or if local secondary structures obstruct anneal-
ing of the primer.

Although Roche 454 pyrosequencing has been extensively ap-
plied in MHC studies on nonmodel organisms since 2009 (Babik et al., 
2009), this platform is now being phased out and new technologies 
are applied. Of the available high- throughput sequencing platforms, 
Ion Torrent semiconductor sequencing and Illumina MiSeq paired- end 
sequencing are currently among the most appropriate alternatives for 
MHC genotyping due to read lengths and output. However, as for 
every sequencing method, these techniques are also subject to errors. 
In addition to substitution errors made by polymerases, chimera for-
mation is common in multilocus PCR amplification (Kanagawa, 2003; 
Lenz & Becker, 2008). Further, homopolymer errors causing indels are 
abundant in Ion Torrent (Loman et al., 2012). Being aware of these 
pitfalls is essential, and it is important to take measures to minimize 
the impact of artifacts arising before or during sequencing. Thus, es-
tablishment of robust PCR approaches and allele- calling pipelines is 
crucial for separating artifacts from true alleles.

Two main assumptions are generally made in the processes of 
recognizing artifacts in MHC studies: Artifacts should be less com-
mon than real alleles across and within individuals, and they should 
originate from true alleles (Babik et al., 2009). Based on these as-
sumptions, Babik et al. (2009) used per individual frequencies to 
identify a threshold below which artifacts should occur. This was 
further elaborated by Galan, Guivier, Caraux, Charbonnel, and 
Cosson (2010) who established two thresholds: T1; the minimum 
number of reads per sample required for reliable genotyping, and 
T2; intra- amplicon frequency corresponding to the minimum num-
ber of reads per variant to validate true alleles. However, as pure 
threshold approaches potentially misidentify alleles and artifacts 
(Lighten et al., 2014), stricter approaches are needed in complex 
MHC systems. In a MHCII study on flycatchers, Zagalska- Neubauer 
et al. (2010) used a 2- PCR- 3- reads- in- each inclusion criteria, where 
the variants had to be present with at least three reads in two inde-
pendent PCRs to be considered alleles. Further, in order to account 
for artifacts and allelic dropout, Sommer et al. (2013) established an 
expanded workflow for genotyping MHC in nonmodel organisms. 
Their allele- calling pipeline relies on amplicon replicates, artifact 
detection, and relative intra- amplicon frequencies after initial qual-
ity filtering of the sequencing reads. By combining this pipeline with 
a 1% threshold approach similar to Galan’s T2, Grogan et al. (2016) 
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genotyped MHC- DRB in ring- tailed lemurs (Lemur catta) across 
454 and Ion Torrent platforms with consistent results. Introducing 
such a threshold of 0.4% also minimized the number of artifacts 
when genotyping the hypervariable MHCIe3 in sedge warblers 
(Acrocephalus schoenobaenus) using this pipeline (Biedrzycka et al., 
2017).

Another MHC allele- calling pipeline based on a stepwise threshold 
clustering methodology was developed by Stutz and Bolnick (2014). In 
this pipeline, sequences are clustered based on similarity and filtered, 
attempting to reveal artifacts and add their depths to the putative 
alleles from which they are originating. By incorporating platform- 
specific error rates, Sebastian et al. (2016) have implemented this 
pipeline in the publicly available AmpliSAS tool.

Biedrzycka et al. (2017) compared four allele- calling strategies for 
genotyping sedge warbler MHCIe3 including both AmpliSAS and the 
original workflow established by Sommer et al. (2013). They found 
high agreement (>90%) between these pipelines at coverages above 
2,000 reads but argue for the use of coverages of >5,000 reads due to 
the increased reliability.

In our study, we further compare allele calling by modifying the 
Sommer pipeline and AmpliSAS by the use of family data, in order 
to facilitate genotyping of bluethroat MHC. We thus compare dif-
ferent aspects of genotyping strategies (i.e., sequencing approaches 
and allele- calling pipelines) in a moderately variable MHC gene 
(MHCIe3) and a highly polymorphic MHC gene (MHCIIβe2) in the 
bluethroat, using two family sets (two offspring in each family, with 
their genetic parents). The MHCIe3 and MHCIIβe2 amplicons were 
sequenced on an Ion Personal Genome Machine™, applying two 
different primer tail approaches. Additionally, the MHCIIβe2 ampli-
cons were sequenced on the Illumina MiSeq® platform. Using these 
approaches, we aimed to test whether platform or sequence motif 
and length of the primer tail would bias the outcome. We modified 
the pipeline of Sommer et al. (2013) and the downstream analyses 
of the output from AmpliSAS software (Sebastian et al., 2016), and 
used allelic inheritance patterns between parent and offspring gen-
otypes as additional support for the results. Accordingly, using fam-
ily data, we wished to establish a workflow for robust genotyping of 
bluethroat MHCIe3 and MHCIIβe2, which is a premise for the use of 
these markers in ecological and evolutionary analyses.

2  | MATERIALS AND METHODS

This study is based on DNA from blood samples of two offspring 
and their biological parents in two family groups of bluethroats 
(L. svecica svecica; Appendix S1). The eight individuals were sampled 
in the subalpine habitat of Øvre Heimdalen valley, Øystre Slidre, 
Norway (61°25′N, 8°52′E). Norwegian Animal Research Authority 
gave ethical permissions to the fieldwork (license 2014/53673 to AJ). 
Parentage was confirmed through a panel of microsatellites in another 
study (Sætre, Johnsen, Stensrud, & Cramer, unpublished data). DNA 
was extracted using E- Z® 96 Blood DNA Kit (Omega Bio- Tek Inc. 
[D1199- 01]), following the protocol of the manufacturer.

2.1 | Sequencing

All amplicons (for explanation of terms, see Appendix S2) were ampli-
fied in duplicates, with a unique barcode identifier for each replicate. 
Primer sequences and binding sites are provided in the Supplementary 
material (Appendices S3 and S4). In order to minimize PCR artifacts, 
the number of PCR cycles was reduced to 25 (Lenz & Becker, 2008). 
For detailed description of the amplification and sequencing, see 
Appendix S5.

MHCIe3 was amplified using the primer pair MhcPasCI- FW and 
MhcPasCI- RV (Alcaide, Liu, & Edwards, 2013) and sequenced on an 
Ion PGM. Two primer structures were applied (see Figure 1); one in 
which barcode and barcode adapter were included only on the for-
ward primer (single index; SI), and one including Ion Torrent adapter, 
barcode, barcode adapter, and seven nucleotide spacer motif on both 
forward and reverse primers (dual index; DI).

The primers MHCIIFihy- E2CF and MHCIIFihy- E2CR (Canal, 
Alcaide, Anmarkrud, & Potti, 2010) were used to amplify MHCIIβe2 
by a similar SI and DI approach, and the amplicon sequencing was 
conducted on an Ion PGM. Additionally, MHCIIβe2 amplicons were 
generated by including Illumina Linker sequences, barcodes, and het-
erogeneity spacer motif (Fadrosh et al., 2014) on both forward and re-
vers primers, and sequenced on Illumina MiSeq (see Figure 1).

2.2 | Allele calling

Allele calling was conducted through two pipelines: one based on a 
previously published pipeline by Sommer et al. (2013), and one based 
on the software AmpliSAS (Sebastian et al., 2016).

2.2.1 | Modified pipeline from Sommer et al. (2013)

A flowchart of this allele- calling method is outlined in Figure 2, while 
a detailed description and comments on the modifications are pro-
vided in Appendix S6. In short, paired MiSeq reads were merged 
using FLASH (Magoč & Salzberg, 2011), and raw reads from all data-
sets were quality filtered using standard UNIX commands and fastx 
toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). Barcode splitting 
and clustering of identical reads into variants were conducted by 
jMHC (Stuglik, Radwan, & Babik, 2011). Variants with less than three 
reads in any amplicon were discarded, as were amplicons with less 
than 500 reads in total. After this step, we established a threshold 
above which we expected to have included most true alleles and 
excluded most artifacts, based on the assumption that true alleles 
will amplify to a greater depth than artifacts will (Babik et al., 2009; 
Lighten et al., 2014). A cut- off threshold of 0.2% was conservatively 
inferred from visually recognizing a change in number of unique vari-
ants included at different values of cut- off (Figure 3). Hence, variants 
with intra- amplicon frequency of less than 0.2% were discarded for 
the  respective amplicons.

The remaining variants across the whole dataset were aligned 
to previously published sequences (GenBank accession num-
ber KU169737–KU169747 (MHCI; O’Connor et al., 2016) and 

http://hannonlab.cshl.edu/fastx_toolkit/
info:ddbj-embl-genbank/KU169737
info:ddbj-embl-genbank/KU169747
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HQ539575–HQ539614 (MHCII; Gohli et al., 2013)) with ClustalW 
(Thompson, Higgins, & Gibson, 1994) in MEGA7 (Kumar, Stecher, & 
Tamura, 2016), and trimmed correspondingly. Variants with shift in 
reading frame, stop codon, or lacking the conserved residues Cys7 and 
Cys70 (MHCI; O’Connor et al., 2016) or Cys10 and Cys75 (MHCII; Gohli 
et al., 2013) were discarded. Further, chimera detection was carried out 
using UCHIME (Edgar, Haas, Clemente, Quince, & Knight, 2011).

While the most frequent variant within each amplicon was scored as 
an allele, the remaining variants were divided into “=1 bp” and “>1 bp” 
variants, according to the number of base pair differences to their most 
similar, more frequent variant, found by MEGA7. Amplicon replicates 
were then utilized to score artifacts (chimeric variants scored as chi-
mera also in replicate or not found within replicate above 0.2% thresh-
old; “=1 bp” variants not found within replicate above 0.2% threshold; 
“>1 bp” variant not present above 0.2% threshold in any other amplicon 
from individuals within the same family group). The remaining variants 
within each amplicon were scored as alleles (see Figure 2).

For offspring with one failed amplicon, family information was used 
as a substitute for the replicate. Here, “=1 bp” variant or a chimeric vari-
ant was scored as an allele if present in parental genotypes. “>1 bp” 
variants were called as alleles if found in any other family member.

2.2.2 | AmpliSAS pipeline

As a second allele- calling pipeline, we used the online tool suite 
AmpliSAT (Sebastian et al., 2016). After initial filtering (see Appendix 
S6), the datasets were explored in AmpliCHECK. Corresponding to the 

AmpliCHECK results, we set maximum number of alleles per amplicon 
to 60 for the algorithm implemented in AmpliSAS. Minimum amplicon 
depth was set to 500, while we used default platform- specific error 
rates for substitutions and indels. In- frame length was required for 
the dominant sequence within a cluster. Further, the frequency of 
the subdominant cluster with respect to the dominant frequency was 
changed from the default of 25% to 10%, in order to avoid cluster-
ing similar alleles with different amplification efficiencies (Biedrzycka 
et al., 2017). Lastly, variants with an intra- amplicon frequency of 
less than 0.20% or with a depth below three reads were discarded. 
Variants of lengths exhibiting frameshifts in relation to the expected 
length, noncoding variants, and chimeras were also discarded.

Duplicates of all individuals enabled validation of alleles based on 
the presence in the replicate sample. Hence, only variants scored in 
both amplicon replicates of an individual were called as alleles. Error 
rates were calculated as the percentage of putative alleles not found 
in both replicate runs (errors in replicates).

One offspring had however only one successful MHCII- MiSeq am-
plicon. Here, we called putative alleles if present in one or both parents 
in the same run.

2.3 | Comparing genotypes from modified Sommer 
pipeline and AmpliSAS

As the sequences were trimmed in the modified pipeline from 
Sommer et al. (2013) in order to match published sequences, the se-
quences from AmpliSAS were aligned and trimmed correspondingly 

F IGURE  1 Primer setup used to amplify MHC class I exon 3 (MHCI) and MHC class II exon 2 (MHCII) in eight bluethroats. MHCI was 
sequenced in a single index run and in a dual index run on Ion Torrent. MHCII was additionally sequenced on Illumina MiSeq. The numbers are 
referring to the length of the respective parts of the primers
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in MEGA7, and collapsed using fastx toolkit. Identical alleles ob-
tained in different pipelines were given identical names using stand-
ard UNIX commands. The genotypes were then compared, both 
among the different primer setups and between the allele- calling 
pipelines, by counting shared alleles across methods within individu-
als. A saturation rate plot was established, to visualize the average 

proportion of all alleles genotyped for an individual each approach 
was able to genotype (Figure 4). The figure was made in R, version 
3.2.5 (R Core Team 2016), with the package ggplot2 (Wickham, 
2009).
Within each approach, the family data were evaluated in order 
to reveal lack of Mendelian inheritance, that is, variants scored 

F IGURE  2 Flowchart over the pipeline modified from Sommer et al. (2013), conducted to genotype MHC class I exon 3 and MHC class II 
exon 2 in eight bluethroats
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as alleles in offspring but not in any of its parent. Errors in ped-
igree were calculated as the percentage of alleles genotyped 
in offspring individuals but not found in any of their parents. 
Only offspring having no failed replicates were used for this  
purpose.

3  | RESULTS

3.1 | MHCIe3

After barcode splitting in both allele- calling pipelines, all MHCI- SI ampli-
cons and 12 of 16 MHCI- DI amplicons had >5,000 reads per amplicon. 

F IGURE  3 Number of unique sequences for different values of cut-off, found within each strategy (MHC class, primer approach, and 
platform) in the eight bluethroat individuals. Only variants having three reads or more in any amplicon are included. Short and low- quality reads 
are removed, but no further filtering was conducted before this step, in order to reveal any threshold where low- frequency artifacts are likely 
included

F IGURE  4 The saturation rate for each 
approach for genotyping MHC class II 
exon 2 in eight bluethroats, calculated as 
the average proportion of the individual 
“combined genotypes” each approach 
was able to genotype. The “combined 
genotype” was established for each 
individual by combining all alleles that were 
called in the individual using at least one 
approach
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The remaining four MHCI- DI amplicons had >2,900 reads per amplicon.
Using the modified pipeline from Sommer et al. (2013), 18 unique 

alleles were identified in all eight individuals combined, with com-
plete concordance for every individual between the MHCI- SI and the 
MHCI- DI primer setup. There were between five and eight alleles per 
individual across all samples (Appendix S7), corresponding to at least 
four MHCI- loci. The 18 alleles translated into 14 unique amino acid 
sequences (Table 1, Appendix S8).

Two alleles were recognized by the modified Sommer pipeline 
only. Of these, one allele was not found in both replicates of any indi-
vidual by AmpliSAS, while the other allele was marked as “suspicious 
sequence” by AmpliCHECK and not outputted in the final result from 
AmpliSAS. All alleles identified with AmpliSAS were also called using 
the modified Sommer pipeline.

Genotyping with AmpliSAS thus identified 16 alleles in total 
(Table 1), with the same unique variants genotyped using MHCI- SI and 
MHCI- DI. Three alleles found in an individual by MHCI- SI were how-
ever not called as alleles in the same individual by MHCI- DI, as they 
were found in only one of the two MHCI- DI amplicons by AmpliSAS. 
Apart from this discrepancy, there was no disagreement between the 
results from the two primer setups (see Appendix S9).

There was no deviation from Mendelian inheritance of offspring 
alleles in either of the two allele- calling pipelines.

3.2 | MHCIIβe2

All Ion Torrent MHCII amplicons (MHCII- SI and MHCII- DI) and 12 
of the 16 MHCII- MiSeq amplicons had >5,000 reads after barcode 
splitting in both pipelines. Excluding one failed sample (one replicate 
MHCII- MiSeq run of individual 69390), the remaining MHCII- MiSeq 
amplicons had each assigned >2,400 reads at this stage.

3.2.1 | Modified pipeline from Sommer et al. (2013)

Analyzing the data using the modified pipeline from Sommer et al. 
(2013), 117 unique alleles were identified across all sequencing strate-
gies. The 117 alleles translated into 105 unique amino acid sequences. 
Less than 5% of the alleles found in the offspring were not found in 
any of their parents (Table 2).

Fewer alleles were called in every individual using the MHCII- DI 
sequencing approach, than in the two other approaches (averagely 
35.6, 23.0, and 32.6 alleles were called per individual for the MHCII- SI, 
MHCII- DI, and MHCII- MiSeq data, respectively). The number of al-
leles per individual called within the separate sequencing approaches 
ranged from 17 to 47. When combining all three sequencing ap-
proaches, a maximum of 25 alleles were genotyped per individual by 
all three approaches, while a maximum of 53 alleles were genotyped 
per individual in at least one approach.

3.2.2 | AmpliSAS pipeline

Across all eight samples and all three sequencing approaches, 114 
unique alleles were called using AmpliSAS, which translated into 102 
unique amino acid sequences. For this allele- calling pipeline, 7–10 
(6.4%–12.5%) pedigree errors were found in each of the primer 
approaches.

On average, the MHCII- DI approach yielded 22.0 alleles per in-
dividual, while 27.8 alleles were scored per individual in both the 
MHCII- SI and the MHCII- MiSeq approaches. As with the modified 
Sommer pipeline, AmpliSAS also called fewer alleles using MHCII- DI 
than MHCII- SI for most individuals (in all individuals except two; on 
average 5.75 more alleles were scored per individual with MHCII- SI 
than with MHCII- DI).

MHCI- SI MHCI- DI

Modified pipeline from Sommer et al. (2013)

 Reads per amplicon after jMHC (including only 
variants with ≥3 reads within any amplicon)

8,744–48,840 2,953–18,154

 Total number of alleles 18 18

 Alleles per individual 6.6 (5–8) 6.6 (5–8)

 Unique amino acid sequences 14 14

 Errors in pedigree 0 0

AmpliSAS

 Reads per amplicon >5,000 3,002–>5,000

 Reads per amplicon assigned to alleles 2,797–3,534 2,028–4,815

 Total number of alleles 16 16

 Alleles per individual 5.4 (4–7) 5.0 (4–7)

 Alleles per amplicon 5.6 (4–7) 5.5 (4–8)

 Unique amino acid sequences 13 13

 Errors in replicates 3.4% 9.1%

 Errors in pedigree 0 0

The datasets were genotyped through two pipelines; one using a modification of the pipeline published 
by Sommer et al. (2013) and one using the online tool AmpliSAS (Sebastian et al., 2016).

TABLE  1 Results from genotyping eight 
bluethroats at MHC class I exon 3 (MHCI), 
using two primer strategies (single index 
[SI] and dual index [DI]) on Ion Torrent
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Within the separate sequencing approaches, 16–39 alleles were 
found per individual (Table 2). Genotyping rendered a maximum of 20 
alleles per individual found in all three sequencing approaches, and a 
maximum of 53 alleles per individual were found in at least one ap-
proach when combining the results.

3.2.3 | Comparing the approaches

We established a “combined genotype” for each individual consisting 
of all unique MHCIIβe2 alleles that were called in at least one of the 
approaches for that respective individual. The number of alleles per in-
dividual in the “combined genotype” ranged from 35 to 56, with an av-
erage of 43.5. Averaged over all individuals, the MHCII- SI primer setup 
followed by allele calling with the modified Sommer pipeline was able 
to retrieve the highest percentage of the “combined genotype” (i.e., 
saturation rate), as compared to the other approaches (Figure 4). The 
dual- indexed approaches had the lowest saturation rate, while within 
every primer setup, the modified Sommer pipeline had higher satura-
tion rate than when allele calling using AmpliSAS. The maximum num-
ber of unique alleles in a combined genotype (i.e., 56 alleles) implies a 
minimum of 28 MHCIIβe2 loci in the bluethroat (see Appendix S10).

All unique alleles across all individuals found with AmpliSAS were 
also found using the modified Sommer pipeline, except for one allele 
which was also the only allele lacking a cysteine residue in position 75 
when translated—which suggests that it is a nonfunctional allele (see 
Appendix S11). Within each individual, on average 80.1% (MHCII- SI), 
94.4% (MHCII- DI), and 91.9% (MHCII- MiSeq) of the alleles were called 
by both the modified Sommer pipeline and AmpliSAS. For the MiSeq 
data, all alleles genotyped for each individual by AmpliSAS were also 

called by the modified Sommer pipeline. The latter pipeline genotyped 
on average 4.88 more MiSeq alleles per individual than AmpliSAS.

For both allele- calling pipelines, fewest unique alleles were geno-
typed across all samples using the MHCII- DI data, while the highest 
number of unique alleles was found in the MiSeq dataset. Also in terms 
of alleles per individual, the MHCII- DI run rendered fewest alleles for 
both pipelines (Table 2 and Figure 4).

4  | DISCUSSION

In this study, we aimed to establish a robust genotyping method for 
MHC class I exon 3 (MHCIe3) and MHC class II exon 2 (MHCIIβe2) in 
bluethroats. Simultaneously, we intended to highlight possible differ-
ences in MHC genotyping resulting from different sequencing plat-
forms, primer design, and bioinformatic allele- calling pipelines. For 
the hypervariable MHCIIβe2, both the number and the identity of al-
leles varied among the abovementioned approaches. More consistent 
genotypes were obtained when analyzing MHCIe3, in which mainly 
bioinformatic pipeline but not primer structure influenced the results. 
Our use of family data and replicates was advantageous in order to 
validate alleles. We thus recommend including such data when analyz-
ing highly polymorphic markers.

4.1 | Sources of variation among 
strategies: platforms

One of the main challenges when genotyping variable multilocus sys-
tems like MHC is to be able to separate real alleles from artifacts (Babik 

TABLE  2 Results from genotyping eight bluethroats at MHC class II exon 2 (MHCII), using two primer strategies (single index [SI] and dual 
index [DI]) on Ion Torrent as well as being sequenced on Illumina MiSeq

MHCII- SI MHCII- DI MHCII- MiSeq

Modified pipeline from Sommer et al. (2013)

 Reads per amplicon after jMHC (including only variants with ≥3 
reads within any amplicon)

6,495–19,886 14,777–68,524 2,436–10,553

 Total number of alleles 96 74 105

 Alleles per individual 35.6 (29–47) 23.0 (17–31) 32.6 (23–41)

 Unique amino acid sequences 84 65 93

 Errors in pedigree 2.1% 4.3% 3.4%

AmpliSAS

 Reads per amplicon >5,000 >5,000 2,877–>5,000

 Reads per amplicon assigned to alleles 3,251–4,445 3,754–4,681 2,611–4,721

 Total number of alleles 75 74 94

 Alleles per individual 27.8 (20–39) 22.0 (16–30) 27.8 (21–34)

 Alleles per amplicon 31.6 (22–42) 23.5 (16–31) 28.5 (21–35)

 Unique amino acid sequences 68 64 82

 Errors in replicates 12.1% 6.4% 8.4%

 Errors in pedigree 6.4% 10.9% 12.5%

The datasets were genotyped through two pipelines; one using a modification of the pipeline published by Sommer et al. (2013) and one using the online 
tool AmpliSAS (Sebastian et al., 2016).
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et al., 2009; Lighten et al., 2014). As specific sequencing platforms 
have typical error profiles (Duke et al., 2015; Loman et al., 2012; Quail 
et al., 2012)—for example, homopolymer errors are more prominent 
for Ion Torrent than Illumina—different platforms could render differ-
ent genotypes (Sebastian et al., 2016). Variant filtering in subsequent 
allele- calling pipelines is however supposed to eradicate sequencing 
errors. Yet, this process might not work perfectly and could poten-
tially result in high- depth, in- frame artifactual variants incorrectly 
being called as alleles. Nevertheless, the low number of alleles not 
following Mendelian inheritance makes this unlikely to be the only 
explanation for the observed differences in genotypes. Another rea-
son for the discrepancy could be platform- specific adapter motifs in 
the primers (mechanisms for unequal amplification discussed below).

4.2 | Sources of variation among strategies: primers

The differences between primer approaches are better elucidated 
when comparing Ion Torrent runs, which are not confounded by 
differences in sequencing platforms. It is important to note that the 
MHCIe3 runs with different primer structure (MHCI- SI and MHCI- DI) 
yielded identical results within each allele- calling pipeline (except one 
individual genotyped with AmpliSAS; discussed later), while this was 
not the case for MHCIIβe2 (MHCII- SI and MHCII- DI).

The underlying mechanisms that possibly explain the observed 
MHCIIβe2 genotype discrepancies may involve differential amplifica-
tion of alleles (e.g., Sommer et al., 2013). A “tail” of spacer/barcode/
adapter in the primer sequence would preferentially amplify variants 
that have complementary bases to this tail outside the gene target. 
Such a tail is applied on both forward and reverse primers in the DI 
approach, while in contrast, the SI primers have only the barcode at-
tached, and only to the forward primers (Ion Torrent adapters were 
ligated onto the amplicons after MHC amplification). As a result, 
we would expect a stronger effect and fewer alleles to be amplified 
using the DI approach. Indeed, we observed fewer alleles called for 
every individual by both bioinformatic pipelines using MHCII- DI than 
MHCII- SI, when disregarding alleles that exhibited Mendelian errors.

Amplified PCR fragments will have complementary sequences to 
the whole primer (including the tail), in contrast to the template, in 
which only the gene target is complementary to the primer sequence. 
The annealing affinity of the primers in the PCR will thus be higher to 
amplified fragments compared to template sequences. Because the 
DI primer setup consists of a longer tail on both forward and reverse 
primers, this “affinity effect” may create more bias and potential al-
lelic dropouts in the MHCII- DI amplifications than in the MHCII- SI 
amplifications.

Lastly, the probability of secondary structure formation in the DI 
primer sequence is higher due to the longer primer tail. The combina-
tion of these effects might explain the lower number of observed al-
leles for the MHCII- DI approach compared to the MHCII- SI approach.

Our results demonstrate that the use of phusion primers can create 
allelic dropout in PCR amplifications of multilocus targets. Researchers 
should be aware of this potential pitfall and address this issue when 
sequencing polymorphic multilocus regions such as the MHC.

4.3 | Sources of variation among strategies: allele- 
calling pipelines

Within each MHCIIβe2 primer setup, we found distinct genotypes de-
pending on the allele- calling pipelines used. First, one possible cause 
to the disparity between the modified Sommer pipeline and AmpliSAS 
is the clustering in the AmpliSAS algorithm. While all variants pass-
ing the filters are called as alleles in the modified Sommer pipeline, 
AmpliSAS cluster similar variants based on platform- specific error 
rates and relative frequencies of variants clustered together. Hence, 
the fewer alleles scored using AmpliSAS could be caused by errone-
ous clustering of low- frequency, true alleles to other true alleles. The 
discrepancy could also arise from high- frequency artifacts incorrectly 
being called as alleles in the modified Sommer pipeline. The latter is 
unlikely to be a general explanation because all except two of the 39 
MHCIIβe2 alleles called using the modified Sommer pipeline and not 
AmpliSAS showed Mendelian inheritance. However, repeatable er-
rors could be a cause of this pattern. Checking the “=1 bp”- variants in 
offspring revealed that many were instances where the “=1 bp” vari-
ant was found within one parent which lacked the “source” variant, 
while the “source” variant was found within the other parent which 
lacked the “=1 bp” variant (data not shown). Repeatable errors are 
thus likely not a major problem in the modified Sommer pipeline, al-
though we cannot dismiss it completely. Also, within each MHCIIβe2 
primer setup, not all of the alleles called only when using the modified 
Sommer pipeline had high sequence similarities to other alleles (see 
Appendix S12). Clustering of similar alleles may thus not account for 
all the instances in which AmpliSAS genotyped fewer alleles.

Second, the use of replicates could be an additional explanation for 
the higher number of alleles called when using the modified Sommer 
pipeline. In the AmpliSAS pipeline, we scored a variant as an allele in an 
individual if the AmpliSAS program genotyped it as an allele for both 
replicates. Variants found in only one of the replicates were however 
treated more carefully in the modified Sommer pipeline. Here, such 
variants were called as alleles if the variant in question was more than 
one base pair different from a more frequent variant within the same 
amplicon and concurrently found within other amplicons of the same 
family group. The underlying rationale is that these “>1 bp variants” 
are less likely to be sequencing errors, but if they are, it is unlikely that 
the same artifact is found within multiple amplicons from the same 
family group. Variants that are only one base pair different from a more 
frequent variant are managed more strictly and are required to be 
present in both replicates of an individual in order to be called as allele.

The use of replicates can also affect the interpretation of chime-
ras, and hence the number of alleles called. Whereas a variant that is 
scored as a putative allele in one amplicon but marked as a chimera in 
the replicate will be called as an allele in the modified Sommer pipe-
line, this variant will not be genotyped by AmpliSAS. This is because 
chimeras are removed from the output from AmpliSAS, and as the vari-
ant is then lacking from one of the two replicates, it will not be called 
as an allele.

While we reduced the number of PCR cycles to 25 in order to 
minimize PCR artifacts, other actions could be taken, for instance a 
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prolonged elongation step or the introduction of a reconditioning step 
(Lenz & Becker, 2008). However, as we are comparing approaches that 
all apply the same PCR- protocol (see Appendix S5), this is not further 
evaluated here.

Third, there could be an effect of difference in coverage levels 
required for the two allele- calling pipelines. AmpliSAS is based on 
a subsampling of 5,000 reads from each amplicon as default, while 
the modified Sommer pipeline takes all reads within an amplicon into 
account. Biedrzycka et al. (2017) achieved high repeatability and reli-
ability when using 5,000 reads per amplicon for genotyping a sedge 
warbler MHCI- dataset (with complexity similar to the MHCIIβe2 data-
set in our study) by AmpliSAS, justifying the use of the default sub-
sampling value. Implementing a minimum amplification efficiency of 
0.2 (as in Biedrzycka et al. (2017)) and a maximum of 47 alleles per 
individual to the information in Figure S6 and Table S4 in Sommer 
et al. (2013), a minimum of 2,456 reads per amplicon are required to 
determine a complete genotype with at least three reads per allele 
(99.9% confidence level). As all MHCIIβe2 amplicons sequenced on 
the Ion Torrent initially had >5,000 reads each, while all except one 
(<500 reads) MHCII- MiSeq and MHCI amplicons had >2,800 reads, 
we chose to only exclude the one failed MiSeq amplicon. While the re-
maining amplicons thus would have sufficient coverage for genotyping 
using the modified Sommer pipeline, we also chose to keep these am-
plicons for AmpliSAS, because of the additional strength we get from 
including family data and replicates of each individual. The missing of 
a MHCIIβe2 allele in AmpliSAS could thus be due to low coverage, as 
three of the eight individuals had one MHCII- MiSeq amplicon repli-
cate with coverage <5,000 (2,877–4,399) reads. Indeed, eight of the 
11 MiSeq alleles found by the modified Sommer pipeline and not by 
AmpliSAS could be explained in this manner, where the alleles miss-
ing when genotyping in AmpliSAS are found in high- coverage ampl-
icons but not in their lower- coverage replicates (data not shown). In 
other words, this implies that higher sequencing depth is required for 
the AmpliSAS pipeline compared to the modified Sommer pipeline in 
order to obtain the same accuracy when genotyping highly polymor-
phic loci. Bluethroat MHCIe3, which has relatively few loci (i.e., four; 
O’Connor et al., 2016), is likely not affected by coverage differences 
to the same extent as the polymorphic bluethroat MHCIIβe2. This is 
in line with Razali, O’Connor, Drews, Burke, and Westerdahl (2017), 
who found that MiSeq and 454 sequencing provided equal results 
despite differences in read depths when genotyping amplicons with 
low diversity, while the results were less consistent in amplicons with 
higher diversity.

4.4 | Comparing the approaches

Genotyping MHCIe3 yielded mainly consistent results across all ap-
proaches. Still, the modified Sommer pipeline revealed two additional 
unique alleles compared to the results from AmpliSAS. These alleles 
showed neither any deviation from Mendelian inheritance nor any 
signs of nonfunctionality, and we assume they are false negatives 
in the AmpliSAS pipeline. Further, within each allele- calling pipeline, 
only one individual exhibited differences in MHCI- SI and MHCI- DI 

genotypes (genotyped using AmpliSAS). The three “missing” alleles in 
the MHCI- DI genotype were however called in one of the MHCI- DI 
replicates and found in the unfiltered AmpliSAS results for both rep-
licates. The lack of these MHCI- DI alleles could thus be caused by 
erroneous filtering in AmpliSAS.

For the hypervariable MHCIIβe2, the results were less consistent. 
Across all primer approaches, four unique alleles were found only 
when using the modified Sommer pipeline, while one unique allele was 
found only using AmpliSAS. It is worth mentioning that this latter allele 
was the only allele lacking the important cysteine residue in position 
75 and hence is likely a pseudogene or an artifact. As cysteine residues 
in position 10 and 75 are included in the filtering steps of the modified 
Sommer pipeline, this allele would not be retained in the outputted 
genotype.

Within each primer setup, more MHCIIβe2 alleles were scored 
using the modified Sommer pipeline than AmpliSAS. This is evident 
also from the saturation rate plot (Figure 4; see also Appendix S13), 
where a higher percentage of the combined genotypes (i.e., alleles 
called within an individual using at least one approach) were called 
using the modified Sommer pipeline than using AmpliSAS. Most of 
these alleles are expected to be true positives, as almost all alleles 
called in the offspring also were genotyped for one or both of their 
parents (Table 2). Furthermore, there were fewer errors in pedigree for 
genotyping with the modified Sommer pipeline than with AmpliSAS. 
These numbers are however not directly comparable between the 
allele- calling pipelines, because of the use of family information to 
facilitate genotyping in the modified Sommer pipeline. The “errors in 
pedigree” (Table 2) will thus be biased towards the modified Sommer 
pipeline as compared to AmpliSAS. Yet, the lower number of errors 
in pedigree and the higher saturation rate still suggest that the mod-
ified Sommer pipeline could render more consistent and comprehen-
sive results than AmpliSAS. The more automated allele calling through 
AmpliSAS is however both faster and less prone to human mistakes, 
which need to be taken into account when deciding upon which ap-
proach to use. Based on our results, we still recommend the use of the 
modified Sommer pipeline on highly polymorphic systems, especially 
when family data are available and the sequencing is not ultradeep 
(>5,000 reads in every amplicon).

Correspondingly, MHCII- SI (genotyped using the modified 
Sommer pipeline) had higher saturation rate and lower percentage of 
errors in pedigree compared to the other approaches and could be the 
preferred approach. However, single indexing requires substantially 
more barcodes when multiplexing a large number of individuals, and 
sequencing using dual- indexed primers on Illumina MiSeq as in this 
study (Figure 1) could thus be a cost- efficient option.

The difficulty of correctly genotyping highly polymorphic loci like 
bluethroat MHCIIβe2 also raises the issue of balancing false negatives 
against false positives. An approach that calls more alleles will likely 
also score some artifacts as alleles, while a “stricter” approach will be 
more prone to fail to genotype true alleles. The relative importance of 
this will likely be dependent on the research question (e.g., whether 
the study is on diversity, or associations between pathogens and MHC 
alleles). Although false positives such as repeatable errors cannot be 
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completely ruled out, we believe that consistency in family data is an 
overall strength for the approach used. Hence, the opportunity for val-
idation of alleles provided by family data is of great value, and using an 
approach that minimizes the errors in inheritance pattern could guide 
the choice of method.

4.5 | Polymorphism levels in MHCIe3 and MHCIIβe2 
in bluethroats

For MHC class I, we detected maximum eight alleles per individual, 
implying minimum four MHCIe3 loci in bluethroats. This is in accord-
ance with the results from O’Connor et al. (2016), who also reported 
four loci in the species, using a dual index approach and two different 
primer combinations. The same study revealed considerable diversity 
in the number of MHCIe3 loci across passerines, with bluethroats (four 
loci) and willow warblers (19 loci) at the extreme ends. This strength-
ens our findings of relative low complexity at MHCI in bluethroats, and 
that the genotyping at these loci likely is robust against variation in 
primer design and allele- calling approaches in the species.

The complexity recognized at MHCIIβe2 in this study is in stark 
contrast to the results from MHCIe3. Our study supports the findings 
of both Anmarkrud et al. (2010) and Gohli et al. (2013), where high 
levels of MHCIIβe2 polymorphism were detected in the bluethroats 
through cloning and Sanger sequencing. Although likely underesti-
mated due to technical limitations, Anmarkrud et al. (2010) identified a 
minimum of 11 functional MHCIIβe2 loci. In this study, when combin-
ing all strategies, up to 56 alleles and thus a minimum of 28 MHCIIβe2 
loci were described for one individual, testifying to the incredible di-
versity at this marker.

5  | CONCLUSION

Our results reveal that different genotyping strategies yield simi-
lar genotypes in bluethroat MHCIe3, a system with relatively low 
polymorphism. In contrast, caution needs to be exercised when se-
quencing highly complex markers such as the bluethroat MHCIIβe2. 
For bluethroat MHCIIβe2, our results demonstrate that genotyped 
alleles will be biased according to both primer design and allele- 
calling pipeline. Consequently, comparisons of results across ap-
proaches and studies are error prone in this polymorphic marker. 
However, the use of family data and replicates lends support to 
results found within each strategy and prove to be especially valu-
able for validation of alleles in the complex MHCIIβe2. As such, the 
methodology described herein could be useful for exploration of 
ecological and evolutionary relevant hypotheses relative to MHC 
variation, even though it does not necessarily describe the true rep-
ertoire of alleles within each individual.
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