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Type 2 diabetes is a multifactorial disease with multiple
underlying aetiologies. To address this heterogeneity,
investigators of a previous study clustered people with
diabetes according to five diabetes subtypes. The aim
of the current study is to investigate the etiology of
these clusters by comparing their molecular signatures.
In three independent cohorts, in total 15,940 individuals
were clustered based on five clinical characteristics. In
a subset, genetic (N5 12,828), metabolomic (N5 2,945),
lipidomic (N 5 2,593), and proteomic (N 5 1,170) data
were obtained in plasma. For each data type, each
cluster was compared with the other four clusters as
the reference. The insulin-resistant cluster showed
the most distinct molecular signature, with higher

branched-chain amino acid, diacylglycerol, and triacyl-
glycerol levels and aberrant protein levels in plasma
were enriched for proteins in the intracellular PI3K/Akt
pathway. The obese cluster showed higher levels of
cytokines. The mild diabetes cluster with high HDL
showed the most beneficial molecular profile with
effects opposite of those seen in the insulin-resistant
cluster. This study shows that clustering people with
type 2 diabetes can identify underlying molecular mech-
anisms related to pancreatic islets, liver, and adipose
tissue metabolism. This provides novel biological
insights into the diverse aetiological processes that
would not be evident when type 2 diabetes is viewed as
a homogeneous disease.
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Type 2 diabetes is a multifactorial disease with multiple
underlying aetiologies (1,2). In an attempt to address this
heterogeneity, investigators of a recent study stratified
people with any form of diabetes into five clusters based
on six clinical variables: age, GAD antibodies, BMI, HbA1c,
insulin resistance (HOMA2 of insulin resistance), and
b-cell function estimates (HOMA2 of b-cell function) (3).
Based on this work, we clustered and cross validated indi-
viduals into five clusters in three large cohorts based on
age, BMI, random or fasting C-peptide, HbA1c, and HDL,
largely reproducing the All New Diabetics in Scania
(ANDIS) clusters and using more readily measured clinical
variables (4).

The results reported in the original and subsequent
articles showed that people in different clusters had dif-
ferent risks for a number of diabetes-related outcomes
(3,5–7). The autoimmunity and insulin-deficient cluster
was defined by a high HbA1c at diagnosis, had ketoacido-
sis and retinopathy (7) more often, and progressed more
rapidly onto insulin compared to the other clusters (3).
The insulin-resistant cluster showed a higher frequency of
nonalcoholic fatty liver disease, and people in this group
were at increased risk of developing chronic kidney dis-
ease (3). The differences in progression and characteristics
of the different clusters suggest that these groups repre-
sent different underlying aetiologies. For example, differ-
ences in genotype frequency across clusters based on
candidate loci were observed and this was further illus-
trated in a follow-up study where it was shown that indi-
viduals in different clusters have differences in portioned
polygenic risk scores for diabetes-related outcomes (3,8).

A systematic deconvolution of the different etiological
processes underlying the clusters is currently lacking. To
address this, we investigate each cluster’s molecular signa-
ture using metabolomics, lipidomics, proteomics, and
genomics to better understand the underlying aetiological
processes representative of patients with diabetes in that
cluster.

RESEARCH DESIGN AND METHODS

Cohort Descriptions
Data from 15,940 individuals from three cohorts, the
Hoorn Diabetes Care System (DCS) (Netherlands), Genet-
ics of Diabetes Audit and Research in Tayside Scotland
(GoDARTS) (Scotland), and ANDIS (Sweden), were used
in this cross-sectional study. Inclusion criteria for IMI-
RHAPSODY were age of diagnosis $35 years, clinical data
available within 2 years after diagnosis, GAD�, no missing
data in one of the five clinical variables used for cluster-

ing, and the presence of genome-wide association study
(GWAS) data. Individuals were clustered using K-means
clustering based on five clinical characteristics: age at
sampling, BMI, HbA1c, HDL, and C-peptide. Of note, C-
peptide was included in the clustering as a proxy of insu-
lin resistance, while HDL has previously been recognized
as a risk factor for time to insulin requirement. Details on
the cohorts and clustering have previously been published
(4). Briefly, DCS is an open prospective cohort that
started in 1998 comprising >14,000 individuals with type
2 diabetes from the northwest part of the Netherlands
(9). The Ethical Review Committee of the VU University
Medical Center, Amsterdam, approved the study. People
visit DCS annually as part of routine care. GoDARTS is a
study comprising individuals with diabetes from the Tay-
side region of Scotland (N5 391,274; January 1996)
who were added to the Diabetes Audit and Research
in Tayside Scotland (DARTS) register (10). The GoDARTS
study was approved by the Tayside Medical Ethics Commit-
tee. Longitudinal retrospective and prospective anonymized
data were collected, including data on prescribing, biochem-
istry, and clinical data. In ANDIS, people were recruited
with incident diabetes within Scania County, Sweden, from
January 2008 to November 2016.

Molecular Measures
An overview of the sample selection procedure is given in
Supplementary Fig. 1A. Individuals were selected based
on the shortest time between diagnosis date and sampling
date without taking into account cluster assignment.
Analysis of small charged molecule analytes (metabolo-
mics, ultrahigh-performance liquid chromatography–tan-
dem mass spectrometry [UHLPC-MS/MS]) was performed
in the largest set (N 5 2,945), followed by lipidomics (N
5 2,593 [Lipotype lipidomics platform; Lipotype, Dres-
den, Germany]) and proteomics (N 5 1,170 [somascan
Platform; SomaLogic]). Of note, the smaller sets were
selected from the larger set based on the samples being
collected closest to the time of diagnosis, so in the
smallest set of 1,170, GWAS, metabolomics, lipidomics,
and proteomics were available (Supplementary Fig. 1A).
Molecular measures were taken close to diagnosis
(Supplementary Table 2). Quality control (QC) was per-
formed in a similar way for metabolomics, lipidomics, and
proteomics. A participant’s data were excluded if their
profile was a strong outlier based on principal compo-
nents analysis and the data of the individual measure-
ments was clearly distinct from the other samples.
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Genetic Data
In DCS, genetic data were generated with the Illumina
HumanCoreExome array. In GoDARTS genetic data were
generated with the Affymetrix Genome-Wide Human SNP
Array 6.0 and the Illumina HumanOmniExpress array. In
ANDIS, genotyping was performed with InfiniumCoreEx-
ome-24 v1-1 BeadChip arrays (Illumina, San Diego, CA) at
Lund University Diabetes Centre. Samples were excluded
for ambiguous gender, call rate <95%, and any duplicate
or related individuals (pi_hat $ 0.2). Single nucleotide
polymorphisms (SNPs) were excluded for monomorphic
SNPs, SNPs with a minor allele frequency (MAF) <0.05,
and SNPs with missingness rate >0.05. Differences in dia-
betes-related genetic risk were based on 403 relatively inde-
pendent diabetes-associated SNPs identified in a recent
large GWAS meta-analysis (11). Genetic data were imputed
using the Michigan Imputation Server against the reference
panel Human Reference Consortium R1.1 with default set-
tings, i.e., phasing with Eagle v2.3 and population of Euro-
pean descent (12). SNPs with minor allele frequency <5%
were discarded from the analyses, leaving 394 SNPs across
the three studies.

Metabolomics
Fifteen small charged molecules were measured in plasma
with targeted UHLPC-MS/MS (Steno Diabetes Center)
(13). In DCS, 1,267 individuals were included for metabo-
lomics measurements. All passed QC, and data for 1,230
individuals overlapped with the cluster data. In GoDARTS,
898 individuals were included in the analysis; 1 failed QC,
and among the 897 remaining individuals, data for 894
overlapped with the cluster data. In ANDIS, 896 individu-
als were included in the analysis; 4 failed QC, and of the
892 remaining samples, 821 overlapped with the cluster
data.

Lipidomics
A total of 614 plasma lipids common to the three
cohorts were determined with use of an Q Exactive
mass spectrometer (Thermo Fisher Scientific) equipped
with a TriVersa NanoMate ion source (Advion Bioscien-
ces) on the Lipotype lipidomics platform (14). Samples
were divided into analytical batches of 84 samples
each. Lipid identification was performed on unpro-
cessed mass spectra files with LipotypeXplorer (15).
Only lipid identifications with a signal-to-noise ratio
>5, and a signal intensity fivefold higher than in corre-
sponding blank samples, were considered for further data
analysis. Batch correction was applied using eight reference
samples per 96-well. Amounts were also corrected for ana-
lytical drift if the P value of the slope was <0.05 with an R2

>0.75 and the relative drift was >5%. In DCS, 900 individ-
uals were included for lipidomics measurements; all passed
QC, and data for 877 overlapped with the cluster data. In
GoDARTS, 898 individuals were included in the analysis; 1
failed QC, and of the 897 remaining samples, 894 over-
lapped with one of the clusters. In ANDIS, 896 individuals

were included in the analysis; 5 failed QC, and of the 891
remaining samples, 820 overlapped with one of the clusters.
Lipid nomenclature is used as previously described, and
SwissLipids database identifiers are provided (16) (Supp-
lementary Table 1). After QC 162 lipid species were used in
this study. The median coefficient of subspecies variation of
the 162 lipids used as accessed by reference samples was
9.49% across all three cohorts.

Protein Measurements
Protein levels (1,195 proteins) in plasma were measured
on the SomaLogic somascan platform (Boulder, CO) in
600 individuals each, for both DCS and GoDARTS. Indi-
viduals were removed if they were strong outliers based
on a principal components analysis. In DCS, 600 individu-
als were included for proteomics measurements, 11 failed
QC, and data for 573 overlapped with data for one of the
clusters. In GoDARTS, 600 individuals were included in
the analysis; 1 failed QC, and of the 599 remaining sam-
ples, 597 overlapped with one of the clusters.

Statistical Analysis
Molecular data were log transformed and z-scaled
before analysis on a federated node system. Data for
each of the cohorts were stored on a local node using
Opal, an open-source data warehouse (Open Source
Software for BioBanks [OBiBa]). A central node respon-
sible for federated node access, user administration,
and software deployment was set up at SIB Swiss Insti-
tute of Bioinformatics. Clinical and molecular data were
harmonized according to the CDISC Study Data Tabula-
tion Model (www.cdisc.org).

To identify molecular measures specific for a cluster, a
generalized linear model was used to test each of the
molecular measures in each cluster, where cluster i was
compared against reference group j, where j was a com-
bined group of the other clusters. Effect sizes represent
change per log SD of the tested molecular measure.
Genetic data were not transformed and represent change
in allele frequency. For example, cluster 1 was compared
with clusters 2–5 combined and cluster 2 was compared
with clusters 1 and 3–5. Main results presented are based
on an unadjusted model (log and z-scaled). Next, as an
exploratory sensitivity analysis, models were adjusted for
the extreme characteristic of a cluster to investigate
whether the observed effect was independent of the
extreme characteristic. This was only done for those clus-
ters with extreme characteristics. Models were run on
each of the cohorts separately and meta-analyzed with
the R package meta (17). Meta-analyzed P values were
adjusted with the Benjamini-Hochberg procedure, and a
false discovery rate (FDR)-adjusted P value <0.05 was
considered significant.

Partitioned polygenic risk scores (pPRS) were
obtained from Udler et al. (18). In each individual
cohort, dosages of SNPs were multiplied with the scores
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for each cluster, which resulted in a risk score per indi-
vidual for each of the five clusters: b-cell (30 SNPs),
proinsulin (7 SNPs), obesity (5 SNPs), lipodystrophy
(20 SNPs), and liver (5 SNPs). Differences in pPRS were
tested with a linear model for one cluster with the
other clusters as the reference group. Next, results
from the three cohorts were meta-analyzed with use of
the metagen function from the meta package. P values
were Bonferroni adjusted and considered significant at
Padjusted < 0.05.

Pathway enrichment on the proteomics was performed
based on Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways with the use of the R package
STRINGdb (1.24.0). The entire SomaLogic set (1,195 pro-
teins) was used as the background set. P values of
enriched pathways were adjusted using the Benjamini-
Hochberg procedure, and an FDR-adjusted P value <0.05
was considered significant.

Effect sizes of proteins associated with estimated glo-
merular filtration rate (eGFR) and incident cardiovascular
disease (CVD) were obtained from Yang et al. (2020) (19).
Up- and downregulated proteins in each of the clusters
(PFDR < 0.05) were selected. Effect sizes in the current
study were compared to Yang et al. obtained 1) correla-
tion coefficient of protein levels and eGFR and 2) hazard
ratios (HRs) from the Cox proportional hazards models
for CVD in individuals without chronic kidney disease
(19).

Analyses were performed with R statistics (version
3.6.2). Figures were produced with the R packages ggplot2
(v3.3.0) and omicCircos (v1.22.0).

Data and Resource Availability
The data sets generated during and/or analyzed during the
current study are not publicly available but are available
from the corresponding author upon reasonable request.

RESULTS

In this cross-sectional study, 15,940 individuals from three
cohorts were included as previously described (4). We
reproduced the original ANDIS severe insulin-deficient
(SIDD), severe insulin resistance (SIRD), and mild obesity-
related diabetes (MOD) clusters and refined the mild age-
related diabetes (MARD) cluster into two: a subset with
high HDL (MDH) and one without any particular defining
features (MD). The characteristics of the clusters and those
of the individuals used for molecular characterization
(genetic data, metabolites, lipids, and proteins) are given in
Supplementary Table 2 and Supplementary Table 3.

SIDD
For SIDD, no differences were observed in allele frequency
of known type 2 diabetes loci compared with the other
clusters (Supplementary Table 4) or in the pPRS (Supple-
mentary Fig. 2). Two metabolites, tyrosine (Fig. 1A and
Fig. 1B) and asymmetric/symmetric dimethylarginine (Fig.
1C and Supplementary Table 5), were significantly lower in
SIDD versus all other clusters. The effect sizes attenuated
slightly after adjustment for the primary variable HbA1c
that defined the SIDD cluster (Supplementary Fig. 3B and
Supplementary Table 5). Of the lipids, eight were downregu-
lated and one upregulated. Out of the eight downregulated
lipids, three belonged to the sphingomyelin class, four

Figure 1—Metabolite levels in the five clusters. A: Change in metabolites levels in each of the clusters versus all others. Colors represent
effect size in log SD; red, upregulation, and blue, downregulation. GUDCA, glycoursodeoxycholic acid; SDMA/ADMA, symmetric dimethy-
larginine/asymmetric dimethylarginine; TCA, taurocholic acid. B: Levels of tyrosine in DCS, GoDARTS, and ANDIS. SIDD and SIRD PFDR <
0.05. C: Levels of (a)symmetric dimethylarginine. SIDD and SIRD PFDR # 0.05. Dots represent the median, and the vertical line represents
the interquartile range.
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belonged to the phosphatidylcholine (PC) class, and one was
a cholesterol ester (Fig. 2A and Supplementary Table 6). The
sole upregulated lipid was a cholesterol ester (CE 20:2;0).
Seven of nine lipids remained significant after adjustment
(Supplementary Fig. 3C and Supplementary Table 6). Finally,
eight proteins were differentially expressed, with four up-
and four downregulated (Supplementary Fig. 4A–D), where
the effect sizes remained similar after adjustment (Supple-
mentary Fig. 3D and Supplementary Table 7).

SIRD
The SIRD cluster was characterized by a strong and dis-
tinct molecular signature of insulin resistance. The pPRS
for b-cell function and proinsulin (18) were decreased in
the SIRD cluster relative to other clusters (b-cell, b 1.41
[95% CI �2.21 to �0.62]; proinsulin, �0.28 [�0.41 to
�0.15]) (Supplementary Fig. 2), indicating genetically
higher b-cell function in the SIRD group. Five diabetes-as-
sociated SNPs all showed a lower risk allele frequency.
The top SNP (rs3802177-A) of SIRD mapped to the pro-
tective allele in SLC30A8 (Supplementary Table 4 and
Table 1). In a sensitivity analysis, only the SLC30A8 vari-
ant remained significant after adjustment for C-peptide
(Supplementary Fig. 3A, Supplementary Table 4, and
Table 1). The SIRD cluster showed eight upregulated
metabolites, including four amino acids, i.e., tyrosine, leu-
cine, isoleucine, and phenylalanine (Fig. 1A and
Supplementary Fig. 5A and B). Two were metabolites of
the amino acid L-tryptophan, i.e., L-kynurenine and indoxyl
sulfate. Adjustment for C-peptide attenuated the effect
(Supplementary Fig. 3B and Supplementary Table 5).

Eighty-nine lipids were changed in SIRD, with 45
(50.6%) upregulated and 44 downregulated (49.4%) (Fig.
2A). Of the 45 upregulated lipids, 43 were in the diacyl-
glycerol (DAG) and triacylglycerol (TAG) class, with TAG
51:3;0 as the strongest associating lipid (Fig. 2B and
Supplementary Table 6), while the remaining two upregu-
lated lipids were PCs containing the n-3 fatty acid docosa-
hexaenoic acid (22:6;0, PC 18:0;0_22:6;0, PC 16:0;0_22:
6;0). Of the 44 downregulated lipids, the most repre-
sented were the PC class (27 lipids [61.4%]), especially
with the ether PCs (38.6%), with PC O-16:0;0/18:1;0
being the strongest downregulated lipid (Fig. 2A and C
and Supplementary Table 6). Also, most ether phosphati-
dylethanolamines (four lipids [9.1%]) and sphingomyelin
species (seven lipids [15.9%]) were downregulated. The
changes in lipids seemed to be dependent on the high
C-peptide levels, with effect sizes of DAGs and TAGs close
to zero after adjustment for the latter (Supplementary
Fig. 3C and Supplementary Table 6).

Of the 1,195 plasma proteins investigated, 367 proteins
were differentially expressed, with 158 proteins downregu-
lated and 209 upregulated. Several top proteins were upre-
gulated independent of C-peptide levels, including two
metalloproteinases, matrix metalloproteinase-7 (MMP-7)
and MMP-12, and MIC-1 (Supplementary Table 7). Metal-
loproteinases are associated with multiple physiological
processes but also with atherosclerosis and diabetes-related
nephropathy (20,21). MIC-1 (GDF-15) is known to be asso-
ciated with insulin resistance (22). The identified proteins
showed a strong enrichment in pathways, including
cytokine–cytokine receptor interaction (50 proteins, PFDR

Figure 2—Lipid levels in the five clusters. A: Change in lipid levels in each of the clusters versus all others. Colors represent effect size in
log SD: red, upregulation, and blue, downregulation. B: Levels of TAG 51:3;0 in DCS, GoDARTS, and ANDIS. SIRD, MOD, and MDH
PFDR # 0.05. C: Levels of PC O-16:0;0/18:1;0. SIRD, MOD, and MDH PFDR # 0.05. Dots represent the median, and the vertical line repre-
sents the interquartile range.
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5 8.69 · 10�56), chemokine signaling pathway (26 pro-
teins, PFDR 5 1.81 · 10�34), Axon guidance (26 proteins,
PFDR 5 3.55 · 10�34) and PI3K-Akt signaling pathway (29
proteins, PFDR 5 1.05 · 10�29). There was a significant
reduction in 3-phosphoinositide–dependent protein kinase
1 (PDPK1) (Fig. 3A and C), which, when activated by insu-
lin, activates Akt/PKB and increases glucose uptake via
GLUT4 (23). Plasma Akt itself was also decreased in SIRD
(Fig. 3A). Insulin tended to be higher in SIRD, although this
was not significant (Fig. 3B), while the insulin receptor was
significantly upregulated (Fig. 3A). In the downstream sig-
naling cascade of the PI3K-Akt pathway, PDPK1 (Fig. 3C),
RAC1, AMPK, HSP90, 14-3-3, and p53 were differentially
expressed (Supplementary Fig. 5C–I). Of note, the proteins
associated with SIRD were only modestly driven by C-pep-
tide levels (Supplementary Fig. 3D).

Next, we overlapped identified proteins with those previ-
ously associated with eGFR and incident CVD (19). Proteins
upregulated in SIRD were previously associated with lower
eGFR levels, including cystatin C (r 5 �0.74, P 5 1.12 ·
10�163), tumor necrosis factor receptor superfamily member
1A (TNF sR-I) (r 5 �0.65, P 5 2.51 · 10�114), and neuro-
blastoma suppressor of tumorigenicity 1 (DAN) (r 5
�0.64, P 5 2.29 · 10�109) (Supplementary Fig. 7A). Con-
versely, proteins positively associated with eGFR were down-
regulated including epidermal growth factor receptor
(ERBB1) (r 5 0.44, P 5 1.96 · 10�46) and a-2-antiplasmin
(r 5 0.41, P 5 1.42 · 10�38). For incident CVD, angiopoie-
tin-2 (HR 1.66, P 5 2.20 · 10�16) and MMP-12 (HR 1.65,
P 5 2.20 · 10�16) were upregulated risk factors in SIRD,
while ERBB1 (HR 0.59, P 5 2.20 · 10�16) was protective for
CVD and downregulated in SIRD (Supplementary Fig. 7B).

MOD
In MOD, the pPRS for obesity was significantly higher (b
0.51 [95% CI 0.34–0.68]) (Supplementary Fig. 2) compared
with other clusters. Individual diabetes-associated risk
alleles associated with high BMI were also more frequent
in MOD, i.e., FTO (rs1421085-C) and the MC4R locus
(rs523288-T) (Supplementary Table 4 and Table 1). Of
note, both loci are also in the pPRS, although different
SNPs in linkage disequilibrium. Naturally, adjustment for
BMI attenuated the effect size for both SNPs (Supplemen-
tary Fig. 3A and Supplementary Table 4).

Isoleucine was the sole metabolite that was differen-
tially upregulated in MOD (Fig. 1A, Supplementary Fig.
4A, and Supplementary Table 5), and this difference was
completely eliminated after adjustment for BMI. The lipid
profile of the MOD cluster was largely similar to the SIRD
cluster (Fig. 2A and Supplementary Table 6); i.e., in MOD,
acyl phosphatidylethanolamine species were upregulated,
but not the ether phosphatidylethanolamines. Cholesterol
esters and PC species containing the n-3 fatty acids eico-
sapentaenoic acid (20:5;0) and docosahexaenoic acid (22:
6;0) were downregulated, while these were upregulated or
not significantly changed in the SIRD cluster. However,
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cholesterol esters and PC species containing 20:3;0 fatty
acids are upregulated in MOD while downregulated or
not significantly changed in the SIRD cluster. In total, 61
lipids were affected, of which 40 were upregulated.
Among these, the DAGs (15%) and TAGs (57.5%) were
strongly enriched. Of the 21 downregulated lipids, the
majority were PCs (61.9%). The effect size for DAG and
TAG changes were strongly reduced after adjustment for
BMI (Supplementary Fig. 3C and Supplementary Table 6).
Interestingly, the largest effect size was seen in the TAGs
with the lowest number of acyl chain carbons and double
bonds (Supplementary Fig. 6A and B), while the TAGs
with more acyl chain carbons and double bonds were not
significantly altered in MOD. In a previous study, satu-
rated or monounsaturated TAGs were associated with
increased diabetes risk, including TAG 46:1, TAG 48:0,
and TAG 48:1, which were also significantly upregulated
in the MOD cluster (24).

Of the 1,195 proteins, 261 were differentially expressed
in MOD with the majority downregulated (158 proteins
[60.5%]) (Supplementary Table 7). After adjustment for
BMI, several remained significant, although their effect
sizes were attenuated, including NCAM-120, DKK3, and
CRDL1 (Supplementary Fig. 3D and Supplementary Table
7). DKK3 has been associated with increased adipogenesis
in fat cells (25). CRDL1 has been shown to be predictive of
b-cell function (26). The role of NCAM-120 is largely

unclear. The strongest enrichment was found for cytokine–
cytokine receptor interaction, with 38 proteins (42.7%,
PFDR 5 2.08 · 10�43) overlapping (Supplementary Fig. 8).
The strongest upregulated proteins in this pathway were
leptin (Supplementary Fig. 4B), growth hormone receptor,
and interleukin-1 receptor antagonist protein, while inter-
leukin-1 receptor type 1 (IL-1 sRi) was downregulated.
Adjustment for BMI influenced the effect size of several
proteins, including leptin, FABP, and CRP (Supplementary
Fig. 3D and Supplementary Table 7). Finally, upregulated
proteins identified in MOD were generally positively asso-
ciated with eGFR and protective for CVD, including the
growth hormone receptor (HR 0.62, P 5 2.20 · 10�16)
(Supplementary Fig. 7).

MDH
The MDH cluster showed a higher pPRS relative to the
other clusters for b-cell function (b 0.61 [95% CI
0.33–0.38]) (Supplementary Fig. 2). Among the diabetes-as-
sociated SNPs, a lower risk allele frequency was observed for
a SNP near LPL (rs10096633-T) (Supplementary Table 4
and Supplementary Table 1). With respect to metabolite,
lipid, and peptide levels the MDH cluster showed opposite
effects compared with the SIRD and MOD cluster. The
amino acids that were upregulated in SIRD were generally
downregulated in MDH (Fig. 1A and Supplementary Table
5). Only the difference in isoleucine level was significant

Figure 3—Proteins in the PI3K/Akt pathway in the five clusters. A: Effect sizes of proteins in the PI3K/Akt pathway (PFDR 5 1.05 · 10�29)
with upregulation (red) in the cluster vs. all others and downregulation (blue). Bars on the left indicate whether proteins are statistically sig-
nificant in a specific cluster. Dots represent the median, and the vertical line represents the interquartile range. B: Levels of insulin in DCS,
GoDARTS, and ANDIS. MDH PFDR # 0.05. C: Levels of PDPK1. Dots represent the median, and the vertical line represents the interquartile
range. SIRD PFDR # 0.05.
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and phenylalanine borderline insignificant. In addition, tau-
rine was significantly upregulated in MDH. After adjustment
for HDL the effect sizes strongly attenuated (Supplementary
Fig. 3B and Supplementary Table 5).

Of the 162 lipids, 135 lipids were affected in MDH, with
52 downregulated and 83 upregulated (Supplementary Table
6). Opposite SIRD and MOD, DAGs (13.5%), TAGs (73.1%),
and acyl phosphatidylethanolamines (9.6%) were downregu-
lated in MDH, while PCs (65.1%) were upregulated, espe-
cially the ether PCs (PC O-, 25.6%) (Supplementary Table
6). The TAGs with a smaller number of acyl chain carbons
and double bonds showed the lowest protein levels versus
the other clusters, while the differences attenuated with
increasing number of acyl chain carbons and double bonds
(Supplementary Fig. 6A and B). In addition, upregulation
was seen for cholesterol esters (13.3%), sphingomyelins
(10.8%), and all ether phosphatidylethanolamines (9.6%),
which point in the opposite direction in the SIRD cluster
(Supplementary Table 6). Adjustment for HDL strongly
decreased the effect size for DAGs and TAGs (Supplemen-
tary Fig. 3C and Supplementary Table 6).

Of the 1,195 proteins, 270 were differentially expressed
in the MDH cluster (119 down- and 151 upregulated). The
effect size of the proteins changed very modestly after
adjustment for HDL (Supplementary Fig. 3D). The peptide
profile of the MDH cluster was opposite that of MOD
(Supplementary Fig. 9 [r 5 �0.82]). As such, among the
top proteins similar proteins were identified, such as
CRDL1, that remained significant after adjustment for
HDL. The pathway enrichment resembled that of SIRD
and MOD, with enrichment for cytokine–cytokine receptor
interaction (31 proteins, PFDR 5 7.04 · 10�32), pathways
in cancer (22 proteins, PFDR 5 2.35 · 10�24), and the
PI3K-Akt signaling pathway (22 proteins, PFDR 5 5.56 ·
10�23). In the PI3K-Akt signaling pathway, growth hor-
mone receptor was downregulated, as well as insulin (Fig.
3B and Supplementary Table 7). Effect sizes were generally
not solely driven by increased HDL levels (Supplementary
Fig. 3D and Supplementary Table 7). MDH-associated pro-
teins in relation to eGFR showed a pattern similar to that
of SIRD (Supplementary Fig. 7A and B), with proteins asso-
ciated with lower eGFR being upregulated as well as pro-
teins associated with higher risk for CVD, the latter
including Follistatin-related protein 3 (HR 1.55, P 5 2.20 ·
10�16) and HCC-1 (HR 1.54, P 5 2.20 · 10�16).

MD
The MD cluster was generally less well-defined, with only
one significant SNP and no significant pPRSs, lipids, or
metabolites. There was a higher risk allele frequency (C
allele) in MD—opposite that of MDH—compared with
the other clusters near the LPL gene (rs10096633-T)
(Supplementary Table 4). In contrast to the few signals
for lipids or metabolites, 354 proteins were differentially
expressed in the MD cluster, with the majority downregu-
lated (209 proteins [59.0%]). Enrichment was found for

Axon guidance (20 proteins, PFDR 5 1.12 · 10�30), cyto-
kine–cytokine receptor interaction (25 proteins, PFDR 5
3.48 · 10�25), and PI3K-Akt signaling pathway (21 pro-
teins, PFDR 5 4.28 · 10�23). While similar pathways were
found to be enriched in comparison with the SIRD clus-
ter, the effect sizes were correlated but reversed
(r 5 �0.88) (Supplementary Fig. 9). In line with this,
insulin and its receptor were significantly downregulated
in MD. Finally, in MD upregulated proteins were generally
associated with better eGFR levels and lower risk for CVD
(Supplementary Fig. 7A and B).

DISCUSSION

Based on five clinical variables, people with type 2 diabe-
tes from three large European cohorts were assigned to
five separate clusters. The molecular phenotyping of the
clusters revealed that, in addition to differences in clinical
characteristics, there were also profound differences in
underlying molecular profiles, which related to pancreatic
islet biology (in SIDD), liver (in SIRD), and adipose tissue
metabolism (in MOD and MDH).

The SIRD cluster was characterized by a molecular pro-
file that fits with insulin resistance, i.e., upregulation of
DAGs, branched-chain amino acids (BCAAs), and insulin
and downregulation of PI3K-Akt pathway–related proteins
and PCs. The MOD cluster showed overlap with the SIRD
cluster, but with a more pronounced molecular profile of
obesity. Individuals in the MDH cluster showed the oppo-
site effect of SIRD and MOD, with, relative to the other
clusters, low levels of TAG, DAG, and BCAAs but higher
levels of ether PCs and phosphatidylethanolamines, sphin-
gomyelins, and cholesterol esters. The results were in part,
but not fully, driven by the identifying characteristic of the
cluster, except for SIDD, which showed consistent results
after adjustment for HbA1c. For example, effect sizes of
TAGs and DAGs in SIRD and MDH were influenced by
adjustment for C-peptide and HDL, respectively. The lower
frequency of diabetes-associated risk alleles could be
explained by the fact that most diabetes SNPs are associ-
ated with reduced insulin secretion. People in the SIRD
cluster have diabetes not because of lower insulin secretion
but, rather, because of high insulin resistance (and conse-
quent greater b-cell function).

The SIDD cluster was characterized by greater insulin
sensitivity and lower b-cell function than the other clusters
based on the clinical characteristics. SIDD was character-
ized by low tyrosine levels and (a)symmetric dimethylar-
gine, CE 16:1;0, PC O-34;1, and PC O-34;2 compared with
the other clusters; higher levels of these metabolites and
lipids have been associated with higher type 2 diabetes risk
(27–30). Higher CE 16:1;0 has also been associated with
higher fasting plasma glucose and 2-h postloading glucose
(31). Moreover, in SIDD, CRP was downregulated, and this
is in line with a previous report that CRP levels are gener-
ally higher in those with insulin resistance and not low
secretion (32).
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The SIRD—and to some extent the MOD—cluster
showed opposing metabolite, lipid, and protein profiles
compared with the MDH cluster (Fig. 4). The SIRD cluster
was characterized by a molecular signature compatible
with insulin resistance inside cells. In SIRD, the frequency
of protective alleles was higher for HOMA2 of b-cell func-
tion–associated variants. Evidence was found for downre-
gulation of insulin-mediated glucose uptake across the
different omics levels, where, for example, higher levels of
BCAA and DAG/TAG were observed. BCAAs have been
shown to be risk factors for developing incident type 2
diabetes in observational studies; their causal role has
also been suggested (33). Both BCAAs and DAG inhibit
insulin receptor substrate 1 (IRS1) (34). DAGs activate
PKC isoforms, which inhibit PI3K activation by phosphor-
ylating the inhibitory serine 307 of IRS1 instead of tyro-
sine (34,35). BCAAs target the intramuscular mammalian
target of rapamycin/ribosomal protein S6 kinase b-1
(mTOR/p70S6K) signaling pathway, as shown in in vitro
and rodent in vivo studies, which also inhibits the PI3K/
Akt pathway via IRS1 and IRS2, depending on the cell
type (34). Inhibition of PI3K/Akt reduces the GLUT4
translocation. In SIRD, multiple proteins were downregu-
lated in PI3K/Akt and the GLUT4 translocation pathway,
including Akt, PDPK1, and RAC1, while insulin was
strongly upregulated (36,37). Furthermore, upregulation
was seen in three ephrin family members (ephrin A2, A2,
A5). Inhibition of the ephrin receptors has been shown to
enhance glucose-stimulated insulin secretion in mice (38).
Although these results might suggest changes in the insu-
lin or glucose responsiveness of relevant metabolic tissues
(e.g., muscle, liver, or adipose), proteins were measured in
plasma in the current study and, as such, are unlikely to
reflect changes in intracellular signaling. Future studies
will be needed to determine the tissue(s) of origin of
these biomarkers and the mechanisms through which

they are released. For example, tissue-specific knockout of
proteins identified in plasma in cell lines or model organ-
isms might provide insight into both the role and tissue
of origin. The higher BMI in individuals in the MOD clus-
ter was in line with the higher allele frequency of variants
associated with a higher BMI, i.e., variants near FTO and
MC4R. Interestingly, variants near TM6SF2 were also
associated with this cluster. TM6SF2 is known to be asso-
ciated with nonalcoholic steatohepatitis (39). The meta-
bolic and lipid profile of MOD resembled that of SIRD.
An interesting observation was that the number of acyl
chain carbons and double bonds was associated with the
effect size in some clusters, in particular MOD and MDH.
In MOD lipids with a higher number of acyl chain carbons
and double bonds the effect size was much lower com-
pared with those with lower numbers. These findings are
in line with those of a previous publication, which showed
that TAGs with a lower number of acyl chain carbons and
double bonds were elevated in T2D case versus control
subjects (24). In addition, lipids that were associated with
increased diabetes risk were generally saturated or mono-
unsaturated fatty acids (24). MOD was further character-
ized by upregulation of leptin, growth hormone receptor,
and multiple interleukins and IL-1Ra. People with a high
BMI have high levels of leptin, which may be a marker of
leptin resistance (40). IL-1Ra is negatively correlated with
QUICKI, where higher levels associate with higher insulin
resistance (32).

The MDH cluster was the cluster with the most benefi-
cial profile and had a molecular signature of insulin sensi-
tivity. This cluster had high HDL levels, low BCAA levels,
low DAGs, and high levels of ether PCs relative to the other
clusters (Fig. 4). Regarding the peptide level, the effects
were opposite those of the MOD cluster. The MDH cluster
displayed high levels of anti-inflammatory fatty acids,
which have been associated with improved insulin sensitiv-
ity in animal studies (41–43).

In the study by Ahlqvist et al. (3), the SIRD cluster was
associated with poorer renal function. In the current
study we compare the identified proteins with proteins
previously associated with eGFR levels and CVD risk (19).
We show that proteins identified in the current study
upregulated in the SIRD and MDH cluster are generally
associated with lower eGFR levels and higher risk for
CVD and, conversely, those downregulated in these two
clusters are associated with higher eGFR levels and lower
CVD risk. An explanation may be that individuals in the
SIRD and MDH cluster are generally older compared with
those in the other three clusters. These results also fur-
ther confirm the added value of adding HDL to the clus-
tering, as the MOD and MD cluster were much more
alike than MD and MDH. The proteins upregulated in the
MD and MOD cluster were associated with higher eGFR
levels and lower CVD risk.

The strengths of the current study include the large
number of individuals, the use of multiple cohorts, and

Figure 4—Schematic overview of the results in the current study.
BCAAs, DAGs, TAGs, and phosphatidylethanolamine (PE) were
upregulated in SIRD and to a lesser extend MOD, while being
downregulated in MDH. PE O-, sphingomyelins, and proteins asso-
ciated with the PI3K/Akt pathway were downregulated in SIRD. In
MOD, proteins were found upregulated that have been associated
with cytokine-cytokine interaction.
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the use of multiple molecular layers to characterize the
clusters. A limitation is that the identified markers are
measured in plasma and, as such, they cannot be directly
linked to specific metabolic tissues. Second, while we
adjusted models for the characteristic of that cluster to
identify markers that were not simply proxies of the clini-
cal features that defined the cluster, we cannot estimate
whether we were able to fully adjust for that characteristic.
Third, in the current study we compared the levels of
molecular measures between individuals with type 2 diabe-
tes and not relative to those of healthy control subjects.
We therefore cannot infer which cluster would be closest
to the general population. Fourth, we use a validated quan-
titative method to measure metabolites that have previ-
ously been linked to diabetes, but the limitation of this
targeted method is that other metabolites are not mea-
sured. As such, we may have missed metabolites with dif-
ferential levels across clusters. Finally, the cohorts used are
mainly comprised of people of European descent and these
results may not be generalizable to other populations.

Conclusion
In the current study, clusters were identified in three
cohorts, based on five different clinical characteristics.
The underlying molecular signatures of each cluster were
markedly different (Fig. 4), suggesting different underly-
ing etiopathological processes. As expected, the identified
molecular signatures reflected the underlying phenotype
to some extent but often remained associated after
adjustment. Our study provides important new granular-
ity on the likely molecular processes involved in diabetes
pathology in each of the diabetes subgroups.
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