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Abstract

A multiplex real-time PCR method based on fluorescent TaqMan® probes was developed

for the simultaneous detection of the tomato pathogenic bacteria Clavibacter michiganensis

subsp. michiganensis, Pseudomonas syringae pv. tomato and bacterial spot-causing

xanthomonads. The specificity of the multiplex assay was validated on 44 bacterial strains,

including 32 target pathogen strains as well as closely related species and nontarget tomato

pathogenic bacteria. The designed multiplex real-time PCR showed high sensitivity when

positive amplification was observed for one pg of bacterial DNA in the cases of Clavibacter

michiganensis subsp. michiganensis and Pseudomonas syringae pv. tomato bacteria and

100 pg for bacterial spot-causing xanthomonads. The reliability of the developed multiplex

real-time PCR assay for in planta detection was verified by recognition of the target patho-

gens in 18 tomato plants artificially inoculated by each of the target bacteria and tomato

samples from production greenhouses.

Introduction

Clavibacter michiganensis subsp.michiganensis (Cmm), Pseudomonas syringae pv. tomato
(Pst) and bacterial spot-causing xanthomonads (BSX) represent major bacterial pathogens of

tomato [1, 2]. Cmm and BSX are quarantine organisms in the European Union (EPPO A2 list)

and are subjected to strict international phytosanitary controls [3, 4]. However, significant

losses caused by Pst have also been reported [5, 6].

Cmm (Actinobacteria; family, Microbacteriaceae; genus, Clavibacter), the causal agent of

bacterial wilt and canker of tomato, is considered one of the most important bacterial patho-

gens in tomato plantings worldwide. The pathogen infects tomato plants epiphytically through
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wounds and natural openings such as hydathodes and stomata; however, plants may be

infected from infested seeds. Once inside the plant, the pathogen proliferates in xylem vessels,

forming extensive biofilm-like structures, which aid in colonization and movement through

the plant. Moreover, bacterial ooze from cankers and hydathodes, spread by rain or irrigation

water, causes rapid spread to nearbyplants [7–9]. The symptoms of the disease occur on aerial

parts and include wilting of leaves and discoloration of vascular tissues resulting in stem can-

ker. At the late stage of infection, black spots with white halos, so-called "bird eyes", may occur

on fruit [10, 11].

Bacterial speck of tomato caused by Pst (Proteobacteria; family Pseudomonadaceae; genus

Pseudomonas) is one of the most persistent bacterial diseases in both the greenhouse and field

production of tomatoes. The disease is spread by contaminated tomato seeds and infected

weeds in which the bacteria can survive in the weed root system [12, 13]. The pathogen enters

the intercellular spaces of leaves through stomata or the base of leaf trichomes and multiplies

endophytically and asymptomatically prior to symptom development. The disease is character-

ized by small necrotic lesions surrounded by chlorotic haloes on the leaves, stems and fruits of

tomato plants [5, 6, 14].

Bacterial spot of tomato is caused by multiple species of the genus Xanthomonas (Proteo-

bacteria; family Xanthomonadaceae), most recently separated into four distinct species: X.

euvesicatoria (Xe), X. vesicatoria (Xv), X. perforans (Xp) and X. gardneri (Xg) [15]. However, a

close evolutionary relationship between Xe and Xp was reported [16, 17]. Among the four spe-

cies, Xe, Xv and Xg infect both pepper and tomato, while Xp has only been reported on tomato

[15]. In 2010, the strain Xp was also isolated from diseased pepper plants by Schwartz et al.
[18]. Symptoms on tomato leaves are similar to those described for Pst. Small circular lesions

sometimes with a yellow halo develop on the leaflets or on the edge of leaves. On immature

fruits, dark green to black lesions are formed [19]. The disease is spread through infected

seeds, irrigation water, wind or by infected plant debris [20, 21]. Bacteria enter the host plants

through stomata on the leaf surfaces or through wounds and colonizethe vascular system [22].

Because of the economic importance of these pathogens, the accurate detection of causal

organisms is crucial, and it also represents one of the most effective strategies to prevent their

further spread [3, 23]. For pathogen detection, PCR-based methods are the most commonly

used. Many conventional PCR protocols for Cmm, Pst and BSX detection were described pre-

viously [3, 24–28], as well as real-time PCR assays [29–32] that increased the specificity and

sensitivity of PCR detection. Additionally, the use of multiplex reactions has increased the effi-

ciency of laboratories and has led to the faster and more effective identification of the causal

organism. In the case of tomato pathogens, conventional multiplex PCR detecting Cmm, Pst

and X. axonopodis pv. vesicatoria was described by Özdemir [1]. However, this reaction was

optimized on pure bacterial cultures only when bacterial strains ICMP 2550 (Cmm), ICMP

2844 (Pst) and ICMP 9592 (Xe) were tested. The verification of designed multiplex assay on

broader spectrum of isolates and diseased plants as well as a possible cross-reaction with non-

target bacteria was not shown. The use of previously described system for Cmm detection

through pat-1 gene carried by plasmid pMC1 [33 bears also the risk of false negative results

for isolates lacking this plasmid. Moreover, the separation of PCR products by gel electropho-

resis requires more time and higher workload. According to our knowledge, the multiplex

real-time PCR for detection of bacteria Cmm, Pst and BSX complex was not described up to

now.

The goal of this study was to design a multiplex real-time PCR assay based on TaqMan1

probes to achieve a rapid, sensitive and highly specific protocol for in planta detection of

Cmm, Pst and BSX.

Multiplex real-time PCR detection of tomato bacterial pathogens
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Materials and methods

Bacterial strains and plant samples

Bacterial cultures (listed in S1 and S2 Tables) were obtained from the National Collection of

Plant Pathogenic Bacteria (NCPPB, London, UK), National Collection of Agricultural and

Industrial Microorganisms (NCAIM, Budapest, Hungary), Collection of University of Warwick

(HRIW, Wellesbourne, UK) and Crop Research Institute (CRI, Prague, Czech Republic). In

total, 44 pathogenic bacterial strains with different geographical origins were tested. The set of

samples included 32 strains of target bacteria (six strains of Cmm, eight strains of Pst, 18 strains

of BSX), 10 closely related species and two nontarget bacterial pathogens of tomato. The isolates

were grown on Mueller-Hinton Agar (HiMedia, Mumbai, India) at 25˚C (genus Pseudomonas)
and 28˚C (genera Clavibacter and Xanthomonas) for 2–3 days prior to DNA extraction.

Positive controls for in planta detection were obtained from artificially inoculated tomato

seedlings (Solanum lycopersicum, cv. Mandat) grown in isolated greenhouse conditions. Refer-

ence strains of Cmm (NCPPB 2979), Pst (NCPPB 1106), Xe (NCPPB 2968), Xv (NCPPB 422),

Xg (NCPPB 881) and Xp (NCPPB 4321) grown overnight in Mueller-Hinton Broth (HiMedia,

Mumbai, India), and bacterial suspensions of approximately 108 CFU.ml-1 were prepared in

0.9% sterile physiological saline solution. For each pathogen, 10 one-month-old seedlings were

artificially inoculated. The bacterial suspension of Cmm (0.01 ml) was injected into the tomato

stems using a sterile needle and syringe [34], and the suspension of Pst and each of the BSX

pathogens were sprayed on the leaf surface using a hand atomizer (BOSCH PFS 55, Bosch,

Germany) [35]. After the development of symptoms, three plants inoculated with each bacte-

rium were randomly selected; symptomatic parts were used for DNA extraction and pathogen

detection. As a negative control, the genomic DNA from healthy plants of seven tomato culti-

vars (Pedro, Palava, Sonet, Mandat, Curranto, Charmant and Gallant) was used. Seeds and

seedlings of all tomato cultivars were provided by the company Moravoseed CZ a. s.

DNA extraction

Total genomic DNA of bacterial cultures and DNA of tested plants was extracted with the

NucleoSpin Tissue kit (Macherey-Nagel, Düren, Germany) according to the manufacturer´s

instructions. The DNA of plant samples was isolated from approximately 100 mg of homogenized

plant tissue. The DNA concentration of the samples was estimated with a Modulus™ Single Tube

Multimode Reader (Turner BioSystems, CA, USA) and adjusted to a final concentration of 4–5

ng.μl-1 for bacterial cultures and 50 ng.μl-1 for the plant samples. A concentration of 50 ng.μl-1 was

used for nontarget bacterial cultures to increase the probability of their detection in case of non-

specific amplification and to prevent possible false positive results.

Primer and probe design

Primers and probes (Table 1) were designed using Primer-BLAST [36] and CLC Main Work-

bench 6.5 (CLC Bio, Aarhus, Denmark) software. The detection system for Cmm used the pre-

viously published TaqMan1 probe CMM-TP targeting the region of 16-23S rRNA [29] that

allows the differentiation of Cmm from other Clavibacter michiganensis subspecies. Newly

designed Cmm primers were constructed to be fully compatible with the Cmm probe. For the

detection of Pst, the target region of RNA polymerase sigma factor hrpL (hypersensitivity and
response pathogenicity) was used based on its involvement in pathogenicity. The hrp gene clus-

ter is considered essential for symptom formation in host plants and for hypersensitive

responses in nonhosts. The GTP-binding membrane protein lepA (hypothetical protein for
elongation factor 4) was used as the target for BSX. LepA promotes the back translocation of

Multiplex real-time PCR detection of tomato bacterial pathogens
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tRNAs on the ribosome during the elongation cycle and has a high conservation in certain bac-

teria [37, 38, 39], thus allowing highly specific detection. All primers were tested for individual

specificity by in silico analysis using a Blastn search (GeneBank/NCBI, BLAST 2.2.31+) in

which nonredundant collection (nr/nt) and highly similar sequences (megablast) settings were

used. The self-complementarity, primer-dimer estimation and melting temperatures of each

oligonucleotide were evaluated using Multiple Primer Analyzer (https://www.thermofisher.

com/cz/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-

center/molecular-biology-resource-library/thermo-scientific-web-tools/multiple-primer-

analyzer.html) and OligoAnalyzer Tool (https://www.idtdna.com/pages/tools/oligoanalyzer).

For multiplexing, the following combinations of fluorophores and quenchers were used:

FAM-BHQ1 (Pst), HEX-BHQ1 (Cmm) and Cy5-BHQ2 (BSX).

Optimization of simplex real-time PCR assays

Detection systems were first optimized as simplex assays using DNA from isolates from the

NCPPB collection (S1 and S2 Tables) and seven healthy cultivars of tomato. All samples were

tested in triplicate on the Roche LightCycler 480 Instrument II (Roche Diagnostics, Basel,

Switzerland). The reactions consisted of 10 μl of LightCycler 480 Probes Master (Roche Diag-

nostics Corp., Basel, Switzerland), 1.2 μl of each of the forward and the reverse primer

(10 μM), 0.24 μl of probe (10 μM) and 2 μl of DNA template. The final reaction volume of

20 μl was achieved by the addition of nuclease-free water (Ambion, TFS, Waltham, USA).

Annealing temperatures of 60, 62 and 65˚C were compared to optimize the thermal profile.

The best combination of specificity and reaction efficiency was obtained with an annealing

temperature of 65˚C. The thermal profile of the reaction was set to 95˚C for 10 min followed

by 40 cycles of 95˚C for 10 s, 65˚C for 30 s and 72˚C for 1 s. A plate read was set to occur dur-

ing the 72˚C cycle. The thresholds were set automatically according to manually selected noise

bands within the assays for each TaqMan1 probe.

Evaluation of assay sensitivity

The sensitivity of the simplex assays was evaluated on serial dilutions of DNA isolated from

cultures of Cmm (NCPPB 2979), Pst (NCPPB 1109) and Xe (NCPPB 2689) reference strains.

Only Xe was chosen from the BSX complex due to its prevalence in diseased tomatoes. DNA

samples were diluted to approximately 50 ng.μl-1 with nuclease-free water, and then 10-fold

dilution series (5×101–5×10−4 ng.μl-1) were prepared. All samples were tested in triplicate.

Table 1. Sequences of primers and probes used in the study.

Primer/probe Nucleotide sequence (5’-3’ direction) Target region Product size

CMM-16-23S_e_fwd GCACCTTCTGGGTGTGTCTG 16–23 S rRNA 140 bp

CMM-16-23S_e_rev TGTGATCCACCGGAAAACCG

CMM TP� TCCGTCGTCCTGTTGTGGATG
(HEX-BHQ1)

PST-hrpL_e_fwd TTTCAACATGCCAGCAAACC hrpL 169 bp

PST-hrpL_e_rev GATGCCCCTCTACCTGATGA

PST-hrpL_TP GCTGAACCTGATCCGCAATCAC (FAM -BHQ1)

XE_lepA_aec_fwd TGATCATCGATTCCTGGT lepA 197 bp

XE_lepA_cea_rev GTTGATCCAGCCCACTTC

XE_lepA_TP CCAGCGAGACCACGCCCA (Cy5-BHQ2)

� Designed in [29]

https://doi.org/10.1371/journal.pone.0227559.t001
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TaqMan1 real-time PCR assays were performed on the Roche LightCycler 480 Instrument

II (Roche Diagnostics Corp., Basel, Switzerland) using the mastermix LightCycler 480 Probes

Master (Roche Diagnostics Corp., Basel, Switzerland) and the thermal profile as described above

for the simplex assay optimization. The efficiency of each reaction was determined by a standard

curve calculated with qPCR cycler software (LightCycler1 480 Software, Version 1.5.1.62). For

the absolute quantification, the fit points method analysis module was used for all the analyses.

Specificity of the multiplex real-time PCR assay and sensitivity analysis

Once the simplex reaction conditions were optimized, the three assay reactions were multi-

plexed into one. The triplex assay was performed on the Roche LightCycler 480 Instrument II

using 96 multiwell plates. The reaction mixes were comprised of 10 μl of LightCycler 480

Probes Master (Roche Diagnostics Corp., Basel, Switzerland), 1.2 μl of each of the forward and

reverse primers (10 μM), 0.24 μl of each probe (10 μM) and 2 μl of DNA template. The final

reaction volume of 20 μl was achieved by the addition of nuclease-free water (Ambion, TFS,

Waltham, USA). The thermal profile of the reaction was set to 95˚C for 10 min followed by 40

cycles of 95˚C for 10 s, 65˚C for 30 s and 72˚C for 1 s. A plate read was set to occur during the

72˚C cycle. All samples were tested in triplicate. The multiplex assay was verified on 44 isolates,

which are listed in the S1 and S2 Tables. The sensitivity of the assay was evaluated using the

same serial dilutions of target bacterial DNAs as in simplex sensitivity analyses.

Mixed template experiment

Template DNA from Cmm (NCPPB 2979), Pst (NCPPB 1109) and Xe (NCPPB 2689) were

mixed together in a 1:1:1 ratio (50 ng.μl-1 starting concentrations), and the 10-fold dilution

series in the range of 5×101–5×10−4 ng.μl-1 were tested in simplex and triplex real-time PCR

assays. Three replicates of each dilution were used.

Testing the assay on plant samples from commercial greenhouses

The designed multiplex real-time PCR assay was tested on leaf samples of hydroponic cultured

tomatoes originating from greenhouses of two companies—Farm Mutěnice (Mutěnice, Czech

Republic, 48.9041283N, 17.0291736E) and Farm Bezdı́nek (Dolnı́ Lutyně, Czech Republic,

49.8987581N, 18.4281542E). Four tomato cultivars were tested for the presence of Cmm, Pst

and BSX: cvs. Axxy (cherry tomato, Farm Bezdı́nek), Axiany (vine mini-cherry tomato, Farm

Bezdı́nek), Strabena (vine cherry tomato, Farm Mutěnice) and Sweetlette (vine tomato, Farm

Bezdı́nek). Based on the absence of visual symptoms of bacterial infection on tomato plants,

samples were chosen randomly–five plants per cultivar. The presence of target pathogens was

tested by a designed multiplex real-time PCR assay and evaluated by cultivating samples on

nutrient media specific for Cmm, Phyto Cmm Agar Base (HiMedia, Mummbai, India); Pst,

Phyto Pst Agar Base (HiMedia, Mummbai, India); and BSX, Phyto Xcv Agar Base (HiMedia,

Mumbai, India) enriched by supplements according to the manufacturer´s instructions.

Briefly, leaves suspected for pathogen presence were surface sterilized with 0.5% sodium hypo-

chlorite and four pieces with approx. sizes of 1 cm2 were placed into 1 ml of physiological solu-

tion (0.9% NaCl) for 15 min. For plating on media, 50 μl of the extract was used.

Results

In silico analysis of primers and probe specificity

Oligonucleotide primers were first tested for formation of self-dimers and primer-dimers.

According to the Multiple Primer Analyzer tool, self-dimers do not form. The possible

Multiplex real-time PCR detection of tomato bacterial pathogens

PLOS ONE | https://doi.org/10.1371/journal.pone.0227559 January 7, 2020 5 / 15

https://doi.org/10.1371/journal.pone.0227559


primer-dimers are presented in S1 Fig. The specificity of designed primers was tested by in sil-
ico analysis using a Blastn search (GenBank/NCBI). Designed sequences were compared with

sequences available in the GenBank database using a threshold of 95% similarity. The organ-

isms possibly amplified by the designed oligonucleotides are presented in S3 Table. The in sil-
ico analyses showed that the combination of oligonucleotides for Cmm and Pst detected only

the target organisms. The primers and probe used for BSX detection showed the possible

amplification of five other bacteria, Xanthomonas axonopodis pv. commiphorae, Xanthomonas
campestris pv. arecae, Xanthomonas campestris pv.musacearum, Xanthomonas fuscans subsp.

fuscans and Xanthomonas vasicola pv. vasculorum. However, these pathogens have not been

described on tomato plants.

Designed sequences were also compared with partial or complete genome sequences of tar-

get bacteria available in GenBank. The primers and probe designed for Cmm detection had

100% identity with nucleotides from the 16S rRNA and 16S-23S rRNA intergenic spacer of iso-

lates from Chile (PBC A4755, Pacific Bacterial Collection), China (PBC A4758), the Nether-

lands (PBC A5131), South Korea (TF2644), the United Kingdom (NCPPB 382) or the USA

(NCPPB 870). A substitution of one nucleotide in the forward primer sequence (8th position)

and a complete match in the reverse primer and probe sequence was observed for isolates orig-

inating in China (PBC A4757), Kenya (NCPPB 170), Italy (NCPPB 1064) and Morocco (PBC

A4763). A similar observation was made for lepA gene sequences of xanthomonads from the

BSX complex. There was 100% identity for the probe and reverse primer sequences with a one

mismatch in the forward primer (14th nucleotide) for strains originating from Argentina (LMG

159), Costa Rica (NCPPB 4323), Hungary (LMG 159), New Zealand (LMG 509) or Zimbabwe

(LMG 424). In the case of Pseudomonas syringae pv. tomato, designed oligonucleotides

completely corresponded to the hrpL sequences of strains originating from the USA (DC3000,

isolate NCPPB 2968) and the United Kingdom (MAFF 302272, Ministry of Agriculture, Fisher-

ies and Food, Japan). The substitution of two nucleotides in the forward and one nucleotide in

the reverse primer sequence was found in the case of Canadian Pst strain B13-200.

Specificity and sensitivity of simplex real-time PCR

Detection systems were tested on DNA from the isolates listed in S1 and S2 Tables and seven

healthy cultivars of tomato. At the annealing temperature of 65˚C, only strains X. axonopodis
pv. phaseoli and X. hortorum pv. carotae showed nontarget amplification in the assay for BSX

detection (S4 Table).

The sensitivity of the simplex reaction was evaluated on serial dilutions of genomic DNA

purified from Cmm (NCPPB 2979), Pst (NCPPB 1106) and Xe (NCPPB 2689) (Table 2). The

Table 2. Sensitivity analysis of simplex assays for serial dilution of genomic DNA from pathogenic Cmm, Pst and

Xe. Mean Ct values are presented.

Amount of DNA per reaction HEX (Cmm NCPPB 2797) FAM (Pst NCPPB 1106) CY5 (Xe NCPPB 2689)

100 ng 15.71 16.75 21.52

10 ng 19.02 19.49 24.53

1 ng 22.55 23.10 26.94

0.1 ng 25.61 26.09 31.82

0.01 ng 29.11 30.36 33.50

0.001 ng - 33.31 -

Efficiency (%) 99.3 93.4 99.6

Slope -3.340 -3.490 -3.331

Y-intercept 22.40 22.99 27.87

https://doi.org/10.1371/journal.pone.0227559.t002
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Pst detection assay exhibited consistent amplification of the hrpL gene from 1 pg of bacterial

genomic DNA in the reaction. The detection sensitivity for Cmm and Xe was 10 times lower.

The reaction efficiency was calculated as 99.3% for Cmm, 93.4% for Pst and 99.6% for BSX

detection. The detection of BSX through the lepA gene showed consistently higher Ct values

than the assays for Cmm and Pst detection.

Specificity of multiplex real-time PCR assay

The multiplex assay was tested on the bacterial isolates listed in S1 and S2 Tables. The specific-

ity of the designed primers and probes was tested on 32 target bacteria, 10 closely related spe-

cies (C.m. subsp. insidiosus, C.m. subsp. tesselarius, P. s. pv. syringae, X. axonopodis pv.

phaseoli, X. campestris pv. armoraciae, X. c. pv. campestris, X. c. pv. incanae, X. c. pv. raphani,
X. cucurbitae and X. hortorum pv. carotae) and two nontarget tomato pathogens (Pseudomo-
nas corrugata, Pectobacterium carotovorum subsp. carotovorum). Positive detection of the tar-

get strains was achieved for all TaqMan1 probes (Table 3). The assay for the identification of

Cmm (HEX channel) showed positive results for all virulent and avirulent (NCPPB 515)

strains of Cmm. The closely related subspecies C.m. subsp. insidiosus and C.m. subsp. tesselar-
ius were not amplified. However, amplification was observed at>37 cycles for CRI 211 (Pst)

and NCPPB 281 (Pectobacterium carotovorum subsp. carotovorum). Therefore, a cycle cut-off

of 37 was established as the highest value for reliable detection.

The assay for Pst identification (FAM channel) successfully amplified seven out of eight Pst

isolates, although detectable fluorescence was not recorded for Pst strain NCPPB 878. The

sequence amplified from NCPPB 878 with hrpL primers in conventional PCR showed variabil-

ity at the hybridization site of the TaqMan1 probe in two positions where a nucleotide substi-

tution of T instead of C was present in the Pst reference sequence (NC_004578) (Fig 1).

Nonspecific amplification was not observed for the other bacteria.

Primers and the probe designed for the detection of the lepA gene of BSX pathogens (Cy5

channel) proved reliable for identification of all BSX members, X. euvesicatoria, X. vesicatoria,

X. gardneri and X. perforans, as well as for the X. axonopodis pv. vesicatoria strains. Nonspecific

amplification was observed only in the case of X. axonopodis pv. phaseoli and X. hortorum pv.

carotae. The reactions with the other bacteria showed negative results.

No amplification occurred from all samples of plant genomic DNA extracted from healthy

tomato plants.

Sensitivity of the designed multiplex real-time PCR assay

The sensitivity of the multiplex real-time PCR exhibited consistent amplification of the 16S
rRNA and hrpL genes from 1 pg of genomic DNA in the reaction (Table 4). The sensitivity of

detection was 100 times lower for the of lepA gene compared to the 16S rRNA and hrpL genes.

The reaction efficiency reached values of 97.8% for Cmm, 95.5% for Pst and 99.3% for BSX

detection.

Mixed template experiment and in planta detection

The DNA of Cmm, Pst and Xe mixed at a ratio of 1:1:1 was diluted in a 10-fold dilution series

and tested by the real-time PCR assay. Positive results were obtained up to the 1000-fold dilu-

tion in both simplex and multiplex assays (Figs 2 and 3), which represented the amount of 1 pg

of genomic DNA in the reaction. In the case of the 1000-fold dilution, the Cmm (HEX) and

Pst (FAM) detection exhibited mean Ct values of approximately 30 in both the simplex and

multiplex reactions. The Ct values for Xe detection were higher than those obtained for Cmm

Multiplex real-time PCR detection of tomato bacterial pathogens
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Table 3. The mean Ct values for each fluorescent TaqMan1 probe obtained from the designed multiplex real-time PCR assays. Mean Ct values ± standard deviation

are presented.

Target bacteria Isolate HEX FAM Cy5

C. m. subsp. michiganensis NCPPB 515 20.63 ± 0.08 - -

NCPPB 1064 21.43 ± 0.05 - -

NCPPB 1496 21.27 ± 0.04 - -

NCPPB 2323 21.34 ± 0.06 - -

NCPPB 2979� 20.89 ± 0.01 - -

NCPPB 3120 21.56 ± 0.03 - -

P. s. pv. tomato NCPPB 878 - - -

NCPPB 1106� - 22.01 ± 0.67 -

NCPPB 2683 - 24.71 ± 0.15 -

NCPPB 3333 - 22.43 ± 0.26 -

NCPPB 3787 - 24.09 ± 0.62 -

NCPPB 4369 - 21.72 ± 0.39 -

CRI 111 - 23.33 ± 0.49 -

CRI 211 37.87 ± 1.12 23.69 ± 0.05 -

X. euvesicatoria NCPPB 941 - - 23.46 ± 0.25

NCPPB 2574 - - 23.40 ± 0.66

NCPPB 2594 - - 23.03 ± 0.47

NCPPB 2968� - - 23.19 ± 0.13

X. vesicatoria NCPPB 422� - - 22.51 ± 0.20

NCPPB 1421 - - 23.26 ± 0.84

NCPPB 2044 - - 22.75 ± 0.04

NCPPB 3786 - - 24.82 ± 0.45

X. gardneri NCPPB 881� - - 21.86 ± 0.51

X. perforans NCPPB 4321� - - 21.97 ± 0.04

X. a. pv. vesicatoria CRI 1008 - - 24.42 ± 0.13

CRI 1009 - - 24.52 ± 0.13

CRI 1011 - - 24.38 ± 0.08

CRI 1013 - - 24.21 ± 0.10

CRI 1016 - - 24.23 ± 0.27

CRI 1018 - - 24.39 ± 0.28

CRI 1023 - - 24.54 ± 0.17

CRI 1026 - - 23.77 ± 0.10

Nontarget bacteria

C. m. subsp. insidiosus NCPPB 1109� - - -

C. m. subsp. tesselarius NCPPB 3664� - - -

P. s. pv. syringae NCPPB 2750 - - -

P. corrugata NCPPB 2445� - - -

P. c. subsp. carotovorum NCPPB 281� 37.07 ± 0.83 - -

X. a. pv. phaseoli NCAIM B.01695 - - 23.93 ± 0.04

X. c. pv. armoraciae NCAIM B.01281 - - -

X. c. pv. campestris NCPPB 528� - - -

X. c. pv. incanae HRIW 6377 - - -

X. c. pv. raphani HRIW 8503 - - -

X. cucurbitae NCAIM B.01397 - - -

X. h. pv. carotae NCAIM B.01586 - - 24.89 ± 0.08

� Reference isolate

https://doi.org/10.1371/journal.pone.0227559.t003
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and Pst detection. The mean Ct values for Xe detection were 36 in the simplex reaction and 38

in the multiplex reaction.

The in planta detection of the designed assay was verified on artificially inoculated one-

month-old tomato plants. The target pathogens were successfully detected by multiplex real-

time PCR assay using 16-23S rRNA, hrpL and lepA genes on appropriate channels in all tested

samples (Table 5).

Testing the designed multiplex assay on greenhouse samples

Leaf samples of four tomato cultivars randomly collected from plants in production green-

houses were tested for the presence of pathogenic Cmm, Pst and BSX by the designed multi-

plex real-time PCR assay. None of the 20 samples showed positive detection of the target

organisms. The presence of pathogens was also tested by cultivation of leaf extracts on selective

media, but characteristic colonies were not observed.

Discussion

This study provides the first report of a multiplex TaqMan1 real-time PCR assay that simulta-

neously targets the Cmm, Pst and BSX complex. For the detection of these pathogens, conven-

tional multiplex PCR was optimized by Özdemir [1] using previously published systems for

Cmm [33], Pst [40 and Xav [41] detection. However, this system was tested only on three cul-

tures, Cmm ICMP 2550 (NCPPB 2979), Pst ICMP 2844 (NCPPB 1106) and Xav ICMP 9592,

Fig 1. Comparison of partial hrpL sequences of the Pst reference isolate (NC_004578) and isolate NCPPB 878.

The underlined area shows the hybridization site of the TaqMan1 probe for the designed assay, and the red letters

show differences in nucleotides.

https://doi.org/10.1371/journal.pone.0227559.g001

Table 4. Sensitivity analysis of the multiplex assay for serially diluted genomic DNA of pathogenic Cmm, Pst and

Xe. Mean Ct values are presented.

Amount of DNA per reaction HEX (Cmm NCPPB 2797) FAM (Pst NCPPB 1106) CY5 (Xe NCPPB 2689)

100 ng 17.52 18.23 19.82

10 ng 20.89 21.54 23.36

1 ng 24.28 25.72 26.50

0.1 ng 27.67 29.50 31.13

0.01 ng 31.02 31.63 -

0.001 ng 34.39 35.39 -

Efficiency (%) 97.8 95.5 99.3

Slope -3.375 -3.424 -3.340

Y-intercept 24.27 25.30 34.47

https://doi.org/10.1371/journal.pone.0227559.t004
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which were recently classified as X. euvesicatoria [15]. Additionally, the specificity analyses

were confirmed neither on a broader spectrum of target and nontarget isolates nor on plant

samples. Because Cmm and BSX are quarantine organisms, the use of real-time PCR methods

is more accurate for providing information about the health of tested material.

Real-time PCR assays using TaqMan1 probes for Cmm detection were previously pub-

lished [29, 42, 43]. Available detection systems use the target sequence of the internal tran-

scribed spacer (ITS) located between the 16S and 23S rDNA, as in this study. This region is

generally used to avoid possible false-negative results that can be reported when plasmid-

borne genes encoding pathogenicity (pat-1 and celA) are targeted [44, 45]. The specificity of

the designed assay for Cmm was confirmed by the specific detection of C.michiganensis and

Fig 2. Detection of pathogenic Cmm, Pst and Xe in mixed samples by simplex real-time PCR assays. Log10 values

of the starting mixed DNA concentrations are plotted against the corresponding Ct values. Each dot represents data

from triplicate TaqMan real-time PCR amplifications.

https://doi.org/10.1371/journal.pone.0227559.g002

Fig 3. Detection of pathogenic Cmm, Pst and Xe in mixed samples by multiplex real-time PCR assays. Log10

values of the starting mixed DNA concentrations are plotted against the corresponding Ct values. Each dot represents

data from triplicate amplifications.

https://doi.org/10.1371/journal.pone.0227559.g003
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both virulent and avirulent strains (Table 3). Nevertheless, based on the nonspecific amplifica-

tion of Pectobacterium carotovorum subsp. carotovorum and Pst isolate CRI 211, the cycle cut-

off value of Ct 37 is recommended. The application of a cut-off value in qPCR protocols is fre-

quently used by diagnostic laboratories to prevent false positive results [46]. The qPCR system

targeting putative two-component system sensor kinases [47] for Cmm identification that was

recommended by EPPO [48] also applies the limit of Ct 35. This protocol was not used in this

study because of the possible hybridization of the primers RZ_ptssk 10/RZ_ptssk 11 with Pst

isolates, as a difference in two nucleotides between both primers and the Pst reference

sequence was found by in silico analysis.

The designed system for the identification of Pst pathogens targets the hrpL gene from the

hrp cluster, which was reported as suitable for PCR-specific detection [25, 26]. The hrpL gene

encodes the alternative sigma factor required for the expression of the hrp gene cluster in the

Pseudomonas syringae group [49, 50], which is essential for symptom development in host

plants and the hypersensitive response in nonhosts [51, 52]. The specificity of the reaction was

proven for seven of eight tested isolates of Pst. Nonspecific amplification was not observed. In

the case of strain NCPPB 878, lack of detection was caused by nucleotide substitutions at the

probe hybridization site. However, the nucleotide sequence of the target locus of the hrpL gene

showed 97% identity with Pseudomonas syringae pathovars aptata, panici, pisi and syringae but

only 88% identity with the Pst reference sequence (GenBank Acc. No. NC_004578) when the

Blastn search (BLAST 2.2.31+) was applied. Additionally, the NCPPB collection does not

declare the authenticity of isolate 878, although the origin from S. lycopersicum and its patho-

genicity was confirmed by NCPPB.

The published real-time PCR protocols for BSX pathogens are focused mainly on the dis-

tinction of the involved species [32, 53]. Since the worldwide distribution of X. perforans [54]

and X. gardneri [55] was reported, the presence of all BSX species should be tested. In the

detection of the BSX group, the lepA gene was successfully amplified from all four species and

natural isolates from the CRI collection. Nonspecific amplification was obtained only for the

isolates X. axonopodis pv. phaseoli and X. hortorum pv. carotae. Based on the in silico analyses

of the designed oligonucleotides, the amplification of X. a. pv. phaseoli should be prevented by

incompatibility with the BSX probe. Nevertheless, none of these pathogens were reported on

tomato plants; thus, a false positive result is not expected.

In sum, the designed assay proved high specificity in both simplex and multiplex reactions.

The specificity of the multiplex assay was not influenced by the involvement of the primers

and probes used except for Pectobacterium carotovorum subsp. carotovorum and Xanthomonas
axonopodis pv. phaseoli, which were detected by the assay designed for BSX. The reliable

results were also obtained when target DNAs were mixed and 1000 times diluted to the final

Table 5. Detection of pathogenic Cmm, Pst and BSX by multiplex real-time PCR in artificially inoculated plant samples.

Sample FAM (Pst) HEX (Cmm) Cy5 (BSX) Sample FAM (Pst) HEX (Cmm) Cy5 (BSX)

Pst1 29.23 ± 0.33 - - Xv1 - - 36.47 ± 0.18

Pst2 27.01 ± 0.16 - - Xv2 - - 33.88 ± 0.67

Pst3 24.59 ± 0.21 - - Xv3 - - 36.03 ± 0.17

Cmm1 - 24.21 ± 0.03 - Xg1 - - 32.20 ± 0.28

Cmm2 - 26.83 ± 0.20 - Xg2 - - 33.75 ± 0.42

Cmm3 - 21.24 ± 0.42 - Xg3 - - 31.85 ± 0.29

Xe1 - - 25.53 ± 0.52 Xp1 - - 30.62 ± 0.76

Xe2 - - 24.64 ± 0.16 Xp2 - - 30.86 ± 0.16

Xe3 - - 25.45 ± 0.34 Xp3 - - 31.55 ± 0.47

https://doi.org/10.1371/journal.pone.0227559.t005
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amount of approx. 0.1 ng of genomic/total DNA per reaction. The verification of plant samples

confirmed the usability of the designed detection assay, which allows the recognition of quar-

antine organisms. The negative result for samples from commercial greenhouses confirmed

the high level of phytosanitary practice that is required for the ecological approach to be

applied by concerned companies. The verification of the designed assay on seeds was not per-

formed based on the quarantine character of pathogenic Cmm and BSX and strict sanitary

controls that created the unavailability of infected seeds for this study. Nevertheless, this multi-

plex real-time PCR based on three TaqMan1 probes was shown to be a useful tool for the

quick, specific and sensitive detection of the quarantine and economically important tomato

bacterial pathogens Clavibacter michiganensis subsp.michiganensis, Pseudomonas syringae pv.

tomato and bacterial spot-causing xanthomonads in both bacterial cultures and tomato plants.
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