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We propose and analyze a compartmental nonlinear deterministic mathematical model for the typhoid fever outbreak and optimal
control strategies in a community with varying population. The model is studied qualitatively using stability theory of differential
equations and the basic reproductive number that represents the epidemic indicator is obtained from the largest eigenvalue of
the next-generation matrix. Both local and global asymptotic stability conditions for disease-free and endemic equilibria are
determined. The model exhibits a forward transcritical bifurcation and the sensitivity analysis is performed. The optimal control
problem is designed by applying Pontryagin maximum principle with three control strategies, namely, the prevention strategy
through sanitation, proper hygiene, and vaccination; the treatment strategy through application of appropriate medicine; and the
screening of the carriers. The cost functional accounts for the cost involved in prevention, screening, and treatment together with
the total number of the infected persons averted. Numerical results for the typhoid outbreak dynamics and its optimal control
revealed that a combination of prevention and treatment is the best cost-effective strategy to eradicate the disease.

1. Introduction

According to [1], “infectious diseases are those diseases
caused by viruses, bacteria, epiphytes, and parasites such as
protozoans or worms that have a potential to spread into
the population easily.” Typhoid fever is one of the common
infectious diseases in human beings that is caused by dif-
ferent species of Salmonella. The most common species of
Salmonella that cause typhoid fever are Salmonella paratyphi
A, B, and C and Salmonella paratyphi D [WHO [2]]. “Most
of the time typhoid fever is caused by lack of sanitation in
which the disease causing bacteria is transmitted by ingestion
of contaminated food or water” WHO, 2003. The bacteria
are released from the infectious individuals or carriers and
then contaminate food or drinking water as a consequence
of unsatisfactory hygiene practices. Due to this, typhoid
fever is a common disease in developing countries. The data
taken from Ethiopia for that past seven years (2009–2015), in

Figure 1, indicate that in each year the disease is increasing
in alarming rate. Mathematical models have great benefits
for describing the dynamics of infectious disease. Moreover,
it plays a significant role in predicting suitable control
strategies and analyzing and ranking their cost-effectiveness
(for example, see Okosun andMakinde [3–7]). Very essential
research results on the transmission dynamics of typhoid
have come out in the last decade; for instance, see Adetunde
[8], Mushayabasa and Bhunu [9], Moffat et al. (2014), Steady
et al. (2014), Adeboye and Haruna [10], Omame et al. [11],
Khan et al. [12], and Akinyi et al. [13]. All of the above
studies reveal an important result for typhoid fever dynamics
by considering different countries situation. But we have
identified that till now there is no study that has been done
to investigate the typhoid fever dynamics with the application
of optimal control methods and cost-effectiveness analysis of
the applied control strategies.
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Figure 1: Reported cases of typhoid in Ethiopia for the past seven
years.

In view of the above, we developed a deterministic
mathematical model to investigate the dynamics of typhoid
fever with optimal control strategies and also we investigated
the cost-effectiveness of the implemented control strategies.

2. Model Description and Formulation

The model considers human population as well as bacteria
population (𝐵𝑐). The human population at time 𝑡 is divided
into four subclasses. Susceptible (𝑆): this class includes those
individuals who are at risk for developing an infection from
typhoid fever disease. Infected (𝐼): this class includes all
individuals who are showing the symptom of the disease.
Carrier (𝐶): this is a personwho is colonized by the bacterium
Salmonella typhi without showing any obvious signs of
disease and who is a potential source of infection to others by
contaminating foods and water carelessly during preparation
and handling.Recovered (𝑅): this class includes all individuals
that have recovered from the disease and got temporary
immunity. The susceptible class is increased by birth or emi-
gration at a rate of Λ and also from recovered class by losing
temporary immunity with 𝛿 rate. Susceptible individuals will
get typhoid causing bacteria when they take foods or waters
which is contaminated by Salmonella bacteria. The force of
infection of the model is 𝜆 = 𝐵𝑐V/(𝐾 + 𝐵𝑐), where V is
ingestion rate, 𝐾 is the concentration of Salmonella bacteria
in foods or waters, and 𝐵𝑐/(𝐾 + 𝐵𝑐) is the probability of
individuals in consuming foods or drinks contaminated with
typhoid causing bacteria. After the susceptible individuals got
the typhoid causing bacteria, they have probability of joining
carrier with 𝜌 rate or being a member of infective with 1 − 𝜌
rate. The infected subclass is increased from carrier subclass
by 𝜃 screening rate.Those individuals in the infected subclass
can get treatment and join recovered subclass with a rate
of 𝛽. The recovered subclass also increases with individuals
who came from carrier class by getting natural immunity
with a rate of 𝜙. In all human subclasses, 𝜇 is the natural
death rate of individuals, but in the infective class 𝛼 is the
disease causing death rate. The model assumed the bacteria
population in contaminated foods and waters, where carriers
and infectives can contribute to increasing the number of
bacteria population in foods and waters without proper
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Figure 2: Flow diagram of the model.

sanitation with a discharge rate of 𝜎1 and 𝜎2, respectively. We
consider 𝜇𝑏 to be the death rate of Salmonella bacteria and all
the described parameters are nonnegative.

The above model description is represented Figure 2.
Figure 2 can be written in five systems of differential

equations.

𝑑𝑆𝑑𝑡 = Λ + 𝛿𝑅 − (𝜇 + 𝜆) 𝑆,
𝑑𝐶𝑑𝑡 = 𝜌𝜆𝑆 − (𝜎1 + 𝜃 + 𝜇 + 𝜙)𝐶,
𝑑𝐼𝑑𝑡 = (1 − 𝜌) 𝜆𝑆 + 𝜃𝐶 − (𝜎2 + 𝛽 + 𝜇 + 𝛼) 𝐼,
𝑑𝑅𝑑𝑡 = 𝛽𝐼 + 𝜙𝐶 − (𝜇 + 𝛿) 𝑅,
𝑑𝐵𝑐𝑑𝑡 = 𝜎1𝐶 + 𝜎2𝐼 − 𝜇𝑏𝐵𝑐,

(1)

where 𝜆 = 𝐵𝑐V/(𝐾 + 𝐵𝑐), with initial condition 𝑆(0) = 𝑆0,𝐶(0) = 𝐶0, 𝐼(0) = 𝐼0, 𝑅(0) = 𝑅0, and 𝐵𝑐(0) = 𝐵𝑐0.
3. The Model Analysis

3.1. Invariant Region. We obtained the invariant region, in
which the model solution is bounded. To do this, first we
considered the total human population (𝑁), where 𝑁 = 𝑆 +𝐶 + 𝐼 + 𝑅.

Then, differentiating𝑁 both sides with respect to 𝑡 leads
to

𝑑𝑁𝑑𝑡 = 𝑑𝑆𝑑𝑡 + 𝑑𝐶𝑑𝑡 + 𝑑𝐼𝑑𝑡 + 𝑑𝑅𝑑𝑡 . (2)

By combining (1) and (2), we can get

𝑑𝑁𝑑𝑡 = Λ − 𝜇𝑁 − 𝛼𝐼. (3)
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In the absence of mortality due to typhoid fever disease (𝛼 =0), (3) becomes

𝑑𝑁𝑑𝑡 ≤ Λ − 𝜇𝑁. (4)

Integrating both sides of (4),

∫ 𝑑𝑁Λ − 𝜇𝑁 ≤ ∫𝑑𝑡 ⇐⇒
−1𝜇 ln (Λ − 𝜇𝑁) ≤ 𝑡 + 𝑐

(5)

which simplifies into

Λ − 𝜇𝑁 ≥ 𝐴𝑒−𝜇𝑡, (6)

where𝐴 is constant. By applying the initial condition𝑁(0) =𝑁0 in (6), we get𝐴 = Λ−𝜇𝑁0 which upon substitution in (6)
yields

Λ − 𝜇𝑁 ≥ (Λ − 𝜇𝑁0) 𝑒−𝜇𝑡. (7)

Then by rearranging (7), we can get

𝑁 ≤ Λ𝜇 − [Λ − 𝜇𝑁0𝜇 ] 𝑒−𝜇𝑡. (8)

As 𝑡 → ∞ in (8), the population size𝑁 → Λ/𝜇which implies
that 0 ≤ 𝑁 ≤ Λ/𝜇.Thus, the feasible solution set of the system
equation of the model enters and remains in the region:

Ω = {(𝑆, 𝐼, 𝐶, 𝑅) ∈ R
4
+ : 𝑁 ≤ Λ𝜇 } . (9)

Therefore, the basic model is well posed epidemiologically
and mathematically. Hence, it is sufficient to study the
dynamics of the basic model inΩ.
3.2. Positivity of the Solutions. We assumed that the initial
condition of the model is nonnegative, and now we also
showed that the solution of the model is also positive.

Theorem 1. Let Ω = {(𝑆, 𝐶, 𝐼, 𝑅, 𝐵𝑐) ∈ R5+ : 𝑆0 > 0, 𝐼0 > 0,𝐶0 > 0, 𝑅0 > 0, 𝐵𝑐0 > 0}; then the solutions of {𝑆, 𝐶, 𝐼, 𝑅, 𝐵𝑐}
are positive for 𝑡 ≥ 0.
Proof. From the system of differential equation (1), let us take
the first equation:

𝑑𝑆𝑑𝑡 = Λ + 𝛿𝑅 − (𝜇 + 𝜆) 𝑆 ⇒
𝑑𝑆 (𝑡)𝑑𝑡 ≥ − (𝜇 + 𝜆) 𝑆 (𝑡) ⇒
𝑑𝑆 (𝑡)𝑆 (𝑡) ≥ − (𝜇 + 𝜆) 𝑑 (𝑡) ⇒

∫ 𝑑𝑆 (𝑡)𝑆 (𝑡) ≥ −∫ (𝜇 + 𝜆) 𝑑 (𝑡) .

(10)

Then by solving using separation of variable and applying
condition, we obtained

𝑆 (𝑡) ≥ 𝑆0𝑒−(𝜇+𝜆)𝑡 ≥ 0. (11)

And also by taking the second equation of (1), that is,

𝑑𝐶𝑑𝑡 = 𝜌𝜆𝑆 − (𝜎1 + 𝜃 + 𝜇 + 𝜙)𝐶, (12)

it is true that

𝑑𝐶𝑑𝑡 ≥ − (𝜎1 + 𝜃 + 𝜇 + 𝜙)𝐶 ⇒
𝑑𝐶𝐶 ≥ − (𝜎1 + 𝜃 + 𝜇 + 𝜙) 𝑑 (𝑡) ⇒

∫ 𝑑𝐶𝐶 ≥ −∫ (𝜎1 + 𝜃 + 𝜇 + 𝜙) 𝑑𝑡.
(13)

Then by solving using separation of variable and applying
initial condition gives;

∴ 𝐶 (𝑡) ≥ 𝐶0𝑒−(𝜇+𝜙)𝑡 ≥ 0. (14)

Similarly we took the third equation of (1) which is;

𝑑𝐼 (𝑡)𝑑𝑡 = (1 − 𝜌) 𝜆𝑆 + 𝜃𝐶 − (𝜎2 + 𝛽 + 𝜇 + 𝛼) 𝐼 (15)

it is true that

𝑑𝐼𝑑𝑡 ≥ − (𝜎2 + 𝛽 + 𝜇 + 𝛼) 𝐼 ⇒
𝑑𝐼𝐼 ≥ − (𝜎2 + 𝛽 + 𝜇 + 𝛼) 𝑑 (𝑡) ⇒

∫ 𝑑𝐼𝐼 ≥ −∫ (𝜎2 + 𝛽 + 𝜇 + 𝛼) 𝑑 (𝑡) .
(16)

After solving using technique of separation of variable and
then applying initial condition, the following is obtained:

∴ 𝐼 (𝑡) ≥ 𝐼0𝑒−(𝜎2+𝛽+𝜇+𝛼)𝑡 ≥ 0. (17)

We took the fourth equation of (1) which is

𝑑𝑅𝑑𝑡 = 𝛽𝐼 + 𝜙𝐶 − (𝜇 + 𝛿) 𝑅 ⇒
𝑑𝑅𝑑𝑡 ≥ − (𝜇 + 𝛿) 𝑅 ⇒
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𝑑𝑅𝑅 ≥ − (𝜇 + 𝛿) 𝑑 (𝑡) ⇒
∫ 𝑑𝑅𝑅 (𝑡) ≥ −∫ (𝜇 + 𝛿) 𝑑 (𝑡)
∴ 𝑅 (𝑡) ≥ 𝑅0𝑒−(𝜇+𝛿)𝑡 ≥ 0.

(18)

Finally we took the fifth equation of (1),
𝑑𝐵𝑐𝑑𝑡 = 𝜎1𝐶 + 𝜎2𝐼 − 𝜇𝑏𝐵𝑐 ⇒
𝑑𝐵𝑐𝑑𝑡 ≥ −𝜇𝑏𝐵𝑐 ⇒
𝑑𝐵𝑐𝐵𝑐 (𝑡) ≥ − (𝜇𝑏) 𝑑 (𝑡) ⇒

∫ 𝑑𝐵𝑐𝐵𝑐 ≥ −∫ (𝜇𝑏) 𝑑 (𝑡)
∴ 𝐵𝑐 ≥ 𝐵𝑐0𝑒−(𝜇𝑏)𝑡 ≥ 0.

(19)

This completes the proof of the theorem.

Therefore, the solution of the model is positive.

3.3.The Disease-Free Equilibrium (DFE). To find the disease-
free equilibrium (DFE), we equated the right hand side of
model (1) to zero, evaluating it at 𝐶 = 𝐼 = 0 and solving for
the noninfected and noncarrier state variables.Therefore, the
disease-free equilibrium 𝐸0 = (Λ/𝜇, 0, 0, 0, 0).
3.4. The Basic Reproductive Number (R0). In this section, we
obtained the threshold parameter that governs the spread of a
disease which is called the basic reproduction number which
is determined. To obtain the basic reproduction number, we
used the next-generation matrix method so that it is the
spectral radius of the next-generation matrix [15].

The model equations are rewritten starting with newly
infective classes:𝑑𝐶𝑑𝑡 = 𝜌𝜆𝑆 − (𝜎1 + 𝜃 + 𝜇 + 𝜙)𝐶,

𝑑𝐼𝑑𝑡 = (1 − 𝜌) 𝜆𝑆 + 𝜃𝐶 − (𝜎2 + 𝛽 + 𝜇 + 𝛼) 𝐼,
𝑑𝐵𝑐𝑑𝑡 = 𝜎1𝐶 + 𝜎2𝐼 − 𝜇𝑏𝐵𝑐.

(20)

Then by the principle of next-generation matrix, we obtained

𝑓 = [[[
[

𝜌( 𝐵𝑐V𝐾 + 𝐵𝑐) 𝑆(1 − 𝜌) ( 𝐵𝑐V𝐾 + 𝐵𝑐) 𝑆
]]]
]
,

V = [[[
[

(𝜎1 + 𝜃 + 𝜇 + 𝜙)𝐶
(𝜎2 + 𝛽 + 𝜇 + 𝛼) 𝐼 − 𝜃𝐶
− (𝜎1𝐶 + 𝜎2𝐼 − 𝜇𝑏𝐵𝑐)

]]]
]
.

(21)

The Jacobian matrices of 𝑓 and V evaluated at DFE are given
by 𝐹 and 𝑉, respectively, such that

𝐹 =
[[[[[[
[

0 0 𝜌 ΛV𝜇𝐾
0 0 (1 − 𝜌) ΛV𝜇𝐾
0 0 0

]]]]]]
]
,

𝑉 = [[[[
[

(𝜎1 + 𝜃 + 𝜇 + 𝜙) 0 0
−𝜃 (𝜎2 + 𝛽 + 𝜇 + 𝛼) 0
−𝛿1 −𝛿2 𝜇𝑏

]]]]
]
.

(22)

The inverse of 𝑉 is obtained and given by

𝑉−1 =
[[[[[[[[
[

1𝑘1 0 0
𝜃𝑘1𝑘2

1𝑘2 0
𝜃𝜎2 + 𝜎1𝑘2𝑘1𝑘2𝜇𝑏

𝜎2𝑘2𝜇𝑏
1𝜇𝑏

]]]]]]]]
]
, (23)

where 𝑘1 = (𝜎1 + 𝜃 + 𝜇 + 𝜙) and 𝑘2 = (𝜎2 + 𝛽 + 𝜇 + 𝛼).
Then,

𝐹𝑉−1

=
[[[[[[[
[

𝜌ΛV (𝜃𝜎2 + 𝜎1𝑘2)𝜇𝐾𝑘1𝑘2𝜇𝑏
𝜌ΛV𝜎2𝜇𝐾𝑘2𝜇𝑏

𝜌ΛV
V𝐾𝜇𝑏

(1 − 𝜌)ΛV (𝜃𝜎2 + 𝜎1𝑘2)𝜇𝐾𝑘1𝑘2𝜇𝑏
(1 − 𝜌)ΛV𝜎2𝜇𝐾𝑘2𝜇𝑏

(1 − 𝜌)ΛV
V𝐾𝜇𝑏0 0 0

]]]]]]]
]
. (24)

The characteristic equation of 𝐹𝑉−1 is obtained as

𝜆2 (𝜌ΛV (𝜃𝜎2 + 𝜎1𝑘2)𝜇𝐾𝑘1𝑘2𝜇𝑏 + (1 − 𝜌)) ΛV𝜎2𝜇𝐾𝑘2𝜇𝑏 = 0. (25)

The eigenvalues of 𝐹𝑉−1 are
𝜆1 = 𝜆2 = 0,
𝜆3 = 𝜌ΛV (𝜃𝜎2 + 𝜎1𝑘2)𝜇𝐾𝑘1𝑘2𝜇𝑏 + (1 − 𝜌) ΛV𝜎2𝜇𝐾𝑘2𝜇𝑏 .

(26)

The dominant eigenvalue of 𝐹𝑉−1 is 𝜆3.
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Therefore, the basic reproduction number (R0) after
substituting 𝑘1 and 𝑘2 is given by

R0 = [𝜌(𝜃𝜎2 + 𝜎1 (𝜎2 + 𝛽 + 𝜇 + 𝛼))
(𝜎1 + 𝜃 + 𝜇 + 𝜙) + (1 − 𝜌) 𝜎2]

⋅ ΛV𝜇𝐾 (𝜎2 + 𝛽 + 𝜇 + 𝛼) 𝜇𝑏 .
(27)

3.5. Local Stability of Disease-Free Equilibrium

Proposition 2. The disease-free equilibrium point is locally
asymptotically stable ifR0 < 1 and unstable ifR0 > 1.
Proof. To proof this theorem first we obtain the Jacobian
matrix of system (1) at the disease-free equilibrium 𝐸0 as
follows:

𝐽𝐸0 =
[[[[[[[[[[[[
[

−𝜇 0 0 𝛿 VΛ𝐾𝜇
0 − (𝜎1 + 𝜃 + 𝜇 + 𝜙) 0 0 𝜌VΛ𝜇𝐾
0 𝜃 − (𝜎2 + 𝛽 + 𝜇 + 𝛼) 0 (1 − 𝜌) VΛ

𝜇𝐾0 𝜙 𝛽 − (𝜇 + 𝛿) 0
0 𝜎1 𝜎2 0 −𝜇𝑏

]]]]]]]]]]]]
]

. (28)

From the Jacobianmatrix of (28), we obtained a characteristic
polynomial:

(−𝜆 − 𝜇) (−𝜆 − (𝜇 + 𝛿)) (𝜆3 + 𝐿1𝜆2 + 𝐿2𝜆 + 𝐿3)
= 0, (29)

where

𝐿1 = 𝜎2 + 𝛽 + 2𝜇 + 𝛼 + 𝜎1 + 𝜙 + 𝜃 + 𝜇𝑏,
𝐿2 = 𝜇𝑏 (𝜎2 + 𝛽 + 2𝜇 + 𝛼 + 𝜎1 + 𝜙 + 𝜃)

+ (𝜎2 + 𝛽 + 𝜇 + 𝛼) (𝜎1 + 𝜇 + 𝜙 + 𝜃)
− (𝜌𝜎1 + (1 − 𝜌) 𝜎2) VΛ𝜇𝐾,

𝐿3 = 𝜇𝑏 (𝜎2 + 𝛽 + 𝜇 + 𝛼) (𝜎1 + 𝜇 + 𝜙 + 𝜃) (1 −R0) .

(30)

From (29) clearly, we see that

−𝜆 − 𝜇 = 0,
or − 𝜆 − (𝜇 + 𝛿) = 0,

or 𝜆3 + 𝐿1𝜆2 + 𝐿2𝜆 + 𝐿3 = 0
⇓

𝜆1 = −𝜇 < 0,
𝜆2 = − (𝜇 + 𝛿) < 0.

(31)

For the last expression, that is,

𝜆3 + 𝐿1𝜆2 + 𝐿2𝜆 + 𝐿3 = 0, (32)

we appliedRouth-Hurwitz criteria. By the principle of Routh-
Hurwitz criteria, (32) has strictly negative real root if and only
if 𝐿1 > 0, 𝐿3 > 0, and 𝐿1𝐿2 > 𝐿3.

Obviously we see that 𝐿1 is positive because it is a sum
of positive variables, but 𝐿3 to be positive 1 − R0 must be
positive, which leads toR0 < 1.Therefore, DFEwill be locally
asymptotically stable if and only ifR0 < 1.
3.6. Global Stability of DFE

Theorem 3. The disease-free equilibrium is globally asymptot-
ically stable in the feasible region Ω ifR0 < 1.
Proof. To proof this theorem, we first developed a Lyapunov
function, technically.

𝐿 = [𝜃𝜎2 + 𝜎1𝑘2𝑘1 ]𝐶 + 𝜎2𝐼 + 𝑘2𝐵𝑐, (33)

where 𝑘1 = 𝜎1 + 𝜃 + 𝜇 + 𝜙 and 𝑘2 = 𝜎2 + 𝛽 + 𝜇 + 𝛼
Then differentiating 𝐿 both sides leads to

𝑑𝐿𝑑𝑡 = [𝜃𝜎2 + 𝜎1𝑘2𝑘1 ] 𝑑𝐶𝑑𝑡 + 𝜎2 𝑑𝐼𝑑𝑡 + 𝑘2 𝑑𝐵𝑐𝑑𝑡 . (34)

Substituting expression for𝑑𝐶/𝑑𝑡,𝑑𝐼/𝑑𝑡, and𝑑𝐵𝑐/𝑑𝑡 from (1)
to (34) results in

𝑑𝐿𝑑𝑡 = [𝜃𝜎2 + 𝜎1𝑘2𝑘1 ] 𝜌𝜆𝑆 − (𝜎1 + 𝜃 + 𝜇 + 𝜙)𝐶
+ 𝜎2 ((1 − 𝜌) 𝜆𝑆 + 𝜃𝐶 − (𝜎2 + 𝛽 + 𝜇 + 𝛼) 𝐼)
+ 𝑘2 (𝜎1𝐶 + 𝜎2𝐼 − 𝜇𝑏𝐵𝑐) .

(35)

By collecting like terms of (35),
𝑑𝐿𝑑𝑡 = [𝜌𝜃𝜎2 + 𝜎1𝑘2𝑘1 + (1 − 𝜌) 𝜎2] 𝜆𝑆

+ (𝜃𝜎2 − 𝜃𝜎2 − 𝜎1𝑘2) 𝐶 − 𝜎2𝑘2𝐼
+ 𝑘2 (𝜎1𝐶 + 𝜎2𝐼 − 𝜇𝑏𝐵𝑐) .

(36)
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Equation (36) can be simplified as

𝑑𝐿𝑑𝑡 = [𝜌𝜃𝜎2 + 𝜎1𝑘2𝑘1 + (1 − 𝜌) 𝜎2] 𝜆𝑆 − 𝑘2𝜇𝑏𝐵𝑐). (37)

Equation (37) can be written as interims ofR0,

𝑑𝐿𝑑𝑡 = (R0𝜇𝑏𝑘2 𝜇𝐾ΛV ) 𝜆𝑆 − 𝑘2𝜇𝑏𝐵𝑐). (38)

At 𝑆 = 𝑆0 = Λ/𝜇, (38) becomes

𝑑𝐿𝑑𝑡 ≤ (R0 − 1) 𝑘2𝜇𝑏𝐵𝑐. (39)

So 𝑑𝐿/𝑑𝑡 ≤ 0 if R0 ≤ 1. Furthermore, 𝑑𝐿/𝑑𝑡 = 0 ⇔ 𝐵𝑐 = 0
which leads to 𝐶 = 𝐼 = 0 orR0 = 1.

Hence, 𝐿 is Lyapunov function on Ω and the largest
compact invariant set in {(𝑆, 𝐶, 𝐼, 𝑅, 𝐵𝑐) ∈ Ω, 𝑑𝐿/𝑑𝑡 = 0} is
the singleton (𝑆0, 0, 0, 0, 0).

Therefore, by LaSalle’s invariance principle (LaSalle [16]),
every solution to equations of model (1) with initial con-
ditions in Ω which approaches the disease-free equilibrium
at 𝑡 (time) tends to infinity (𝑡 → ∞) whenever R0 ≤ 1.
Hence, the disease-free equilibrium is globally asymptotically
stable.

3.7. The Endemic Equilibrium. The endemic equilibrium is
denoted by 𝐸∗ = (𝑆∗, 𝐶∗, 𝐼∗, 𝑅∗, 𝐵∗𝑐 ) and it occurs when the
disease persists in the community. To obtain it, we equate all
the model equations (1) to zero. Then we obtain

𝑆∗ = Λ (𝜎2 + 𝜇 + 𝛼 + 𝛽) (𝜎1 + 𝜇 + 𝜃 + 𝜙) (𝜇 + 𝛿)
(𝜇 + 𝜆∗) − 𝛽𝜆∗𝛿 ((1 − 𝜌) (𝜎1 + 𝜇 + 𝜃 + 𝜙) + 𝜌𝜃) − 𝛿𝜙𝜌𝜆∗ (𝜎2 + 𝜇 + 𝛽 + 𝛼) ,

𝐶∗ = 𝜌𝜆∗Λ (𝜎2 + 𝜇 + 𝛼 + 𝛽) (𝜇 + 𝛿)
(𝜇 + 𝜆∗) − 𝛽𝜆∗𝛿 ((1 − 𝜌) (𝜎1 + 𝜇 + 𝜃 + 𝜙) + 𝜌𝜃) − 𝛿𝜙𝜌𝜆∗ (𝜎2 + 𝜇 + 𝛽 + 𝛼) ,

𝐼∗
= (R0𝐾(𝜎1 + 𝜇 + 𝜃 + 𝜙) (𝜎2 + 𝜇 + 𝛽 + 𝛼) 𝜇𝜇𝑏 − 𝜎1𝜌ΛV (𝜎2 + 𝜇 + 𝛽 + 𝛼)) (𝜇 + 𝛿)
𝜇𝐾𝜎2 + V𝜎2 − 𝛽𝛿R0𝐾(𝜎1 + 𝜇 + 𝜃 + 𝜙) (𝜎2 + 𝜇 + 𝛽 + 𝛼) 𝜇𝜇𝑏 + 𝛽𝛿𝜎1 (𝜎2 + 𝜇 + 𝛽 + 𝛼)ΛV − 𝛿𝜎2𝜙𝜌V (𝜎2 + 𝜇 + 𝛽 + 𝛼) ,

𝑅∗ = 𝛽𝐼∗ + 𝜙𝐶∗𝜇 + 𝛿 ,

𝐵∗𝑐 = 𝜆∗Λ (𝜇 + 𝜆∗) [𝜎1𝜌 (𝜎2 + 𝜇 + 𝛼 + 𝛽) + 𝜎2 (1 − 𝜌) (𝜎1 + 𝜇 + 𝜃 + 𝜙) + 𝜌𝜃]
𝜇𝑏 [𝜇 + 𝜆∗) − 𝛽𝜆𝛿 ((1 − 𝜌) (𝜎1 + 𝜇 + 𝜃 + 𝜙) + 𝜌𝜃) − 𝛿𝜙𝜌𝜆∗ (𝜎2 + 𝜇 + 𝛽 + 𝛼)] .

(40)

When we substitute the expression for 𝐵∗𝑐 into the force
of infection, that is, 𝜆∗ = 𝐵∗𝑐 V/(𝐾 + 𝐵∗𝑐 ), we obtained a
characteristic polynomial of force of infection,

𝑝 (𝜆∗) = 𝐷1𝜆∗2 + 𝐷2𝜆∗ = 0, (41)

where𝐷1 = 1+R0(𝜎2+𝜇+𝛼+𝛽)(𝜎1+𝜇+𝜃+𝜙)(𝜇+𝛿)𝜇𝜇𝑏𝐾+(𝛽𝛿((1 − 𝜌)(𝜎1 + 𝜇 + 𝜃 + 𝜙) + 𝜌𝜃) + 𝛿𝜙𝜌(𝜎2 + 𝜇 + 𝛼 + 𝛽)),𝐷2 = (1 −R0)(𝜇 + 𝛿)𝜇.
Clearly, 𝐷1 > 0 and 𝐷2 ≥ 0. Whenever R0 < 1, 𝜆∗ =−𝐷1/𝐷2 ≤ 0. From this, we see that, for R0 < 1, there is no

endemic equilibrium for this model.
Therefore, this condition shows that it is not possible for

backward bifurcation in the model if R0 < 1. When we
plot 𝐼∗ overR0 by using the expression for 𝐼∗ and estimated
parameters in Table 2, we got a forward bifurcation (Figure 3).

Lemma 4. A unique endemic equilibrium point 𝐸∗ exists and
is positive ifR0 > 1.

4. Sensitivity Analysis of Model Parameters

On the basic parameters, we carried out sensitivity analy-
sis. This helped us to check and identify parameters that
can impact the basic reproductive number. To carry out
sensitivity analysis, we followed the technique outlined by
[17, 18]. This technique develops a formula to obtain the
sensitivity index of all the basic parameters, defined as ΔR0

𝑥 =(𝜕R0/𝜕𝑥)(𝑥/R0), for 𝑥 represents all the basic parameters.
For example, the sensitivity index of R0 with respect to

V is ΔR0
V = (𝜕R0/𝜕V)(V/𝑅eff ) = 1. And with respect to the

remaining parameters, ΔR0
𝐾 , ΔR0
𝜎1
, ΔR0
𝜎2
, ΔR0
𝜌 , ΔR0
𝜇 , ΔR0
𝜇𝑏
, ΔR0
𝛼 ,ΔR0

𝜃
,ΔR0
𝛽
, andΔR0

𝜙 are obtained and evaluated atΛ = 100,𝜙 =0.0003, 𝜎1 = 0.9, 𝜎2 = 0.8, 𝛽 = 0.0002, 𝜌 = 0.3, 𝜇 = 0.0247,𝜇𝑏 = 0.0001, 𝛼 = 0.052, 𝜃 = 0.2, V = 0.9, and 𝐾 = 50,000.
Their sensitivity indices are in Table 1.

4.1. Interpretation of Sensitivity Indices. The sensitivity
indices of the basic reproductive number with respect to
main parameters are arranged orderly in Table 1. Those
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Figure 3: Forward bifurcation of typhoid fever model.

Table 1: Sensitivity indices table.

Parameter symbol Sensitivity indices
V 1
𝐾 0.999
𝜎1 0.26
𝜎2 0.03
𝜌 0.00506
𝜇 −1.028
𝜇𝑏 −1
𝛼 −0.0592
𝜃 0.009
𝛽 −0.00017
𝜙 −0.000089

parameters that have positive indices (V, 𝐾, 𝜎1, 𝜎2, and 𝜌)
show that they have great impact on expanding the disease
in the community if their values are increasing. Due to the
reason that the basic reproduction number increases as
their values increase, it means that the average number of
secondary cases of infection increases in the community.
And also those parameters in which their sensitivity indices
are negative (𝜇, 𝜇𝑏, 𝛼, 𝜃, 𝛽, and 𝜙) have an influence of
minimizing the burden of the disease in the community as
their values increase while the others are left constant. And
also as their values increase, the basic reproduction number
decreases, which leads to minimizing the endemicity of the
disease in the community.

5. Extension of the Model into
an Optimal Control

In this section, the basicmodel of typhoid fever is generalized
by incorporating three control interventions. The controls
are prevention (𝑢1) (sanitation and proper hygiene controls),
treatment (𝑢2) (treating individuals who developed symp-
toms of the disease), and screening of carriers (𝑢3) which
helps them to get proper treatment if they are aware of their
status.

After incorporating the controls into the basic model of
typhoid fever, we get the following state equations:

𝑑𝑆𝑑𝑡 = Λ + 𝛿𝑅 − (1 − 𝑢1) 𝜆𝑆 − 𝜇𝑆,
𝑑𝐶𝑑𝑡 = (1 − 𝑢1) 𝜌𝜆𝑆 − (𝜃 + 𝑢3) 𝐶 − (𝜎1 + 𝜙 + 𝜇)𝐶,
𝑑𝐼𝑑𝑡 = (1 − 𝑢1) (1 − 𝜌) 𝜆𝑆 + (1 − 𝑢3) 𝜃𝐶 − (𝑢2 + 𝛽) 𝐼

− (𝜎2 + 𝜇 + 𝛼) 𝐼,
𝑑𝑅𝑑𝑡 = (𝑢2 + 𝛽) 𝐼 + 𝜙𝐶 − (𝜇 + 𝛿) 𝑅,
𝑑𝐵𝑐𝑑𝑡 = 𝜎1𝐶 + 𝜎2𝐼 − 𝜇𝑏𝐵𝑐,

(42)

where 𝜆 = 𝐵𝑐V/(𝐾 + 𝐵𝑐).{0 ≤ 𝑢1 < 1, 0 ≤ 𝑢2 < 1, 0 ≤ 𝑢3 < 1, 0 ≤ 𝑡 ≤ 𝑇}
is Lebesgue measurable. Our main objective is to obtain the
optimal levels of the controls and associated state variables
that optimize the objective function.The formof the objective
function is taken from [19] and given by

𝐽 = min
𝑢1 ,𝑢2,𝑢3

∫𝑡𝑓
0
(𝑏1𝐶 + 𝑏2𝐼 + 12

3∑
𝑖=1

𝑤𝑖𝑢2𝑖)𝑑𝑡. (43)

The coefficients associated with state variables (𝑏1 and 𝑏2)
and with controls (𝑤𝑖) are positive. Due to the fact that cost
is not linear in its condition, we make the cost expression
((1/2)𝑤𝑖𝑢2𝑖 ) quadratic.

As objective function (43) shows, we aimed to minimize
the number of carriers, infectives, and costs. That is, we want
to get an optimal triple (𝑢∗1 , 𝑢∗2 , 𝑢∗3 ) such that

𝐽(𝑢∗1 , 𝑢∗2 , 𝑢∗3 ) = min{𝐽(𝑢1, 𝑢2, 𝑢3) | 𝑢𝑖 ∈ 𝑈}, where𝑈 = {(𝑢1, 𝑢2, 𝑢3) | each 𝑢𝑖 is measurable with 0 ≤𝑢𝑖 < 1 for 0 ≤ 𝑡 ≤ 𝑡𝑓} is the set of acceptable controls.
5.1. Existence of an Optimal Control. The existence of the
optimal control can be showed by using an approach of [20].
We have already justified the boundedness of the solution of
the basic typhoid fevermodel.This result can be used to prove
the existence of optimal control. For detailed proof, see [20]
[Theorem 4.1, p68-69].

5.2. The Hamiltonian and Optimality System. To obtain the
Hamiltonian (𝐻), we follow the approach of [21] such that

𝐻 = 𝑑𝐽𝑑𝑡 + 𝜆1 𝑑𝑆𝑑𝑡 + 𝜆2 𝑑𝐶𝑑𝑡 + 𝜆3 𝑑𝐼𝑑𝑡 + 𝜆4 𝑑𝑅𝑑𝑡 + 𝜆5 𝑑𝐵𝑐𝑑𝑡 . (44)

That is,

𝐻(𝑆, 𝐶, 𝐼, 𝑅, 𝐵𝑐, 𝑡) = 𝐿 (𝐶, 𝐼, 𝑢1, 𝑢2, 𝑢3, 𝑡) + 𝜆1 𝑑𝑆𝑑𝑡
+ 𝜆2 𝑑𝐶𝑑𝑡 + 𝜆3 𝑑𝐼𝑑𝑡 + 𝜆4 𝑑𝑅𝑑𝑡
+ 𝜆5 𝑑𝐵𝑐𝑑𝑡 ,

(45)
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Table 2: Parameter values for typhoid fever model.

Parameter symbol Parameter description Value Source
V Salmonella ingestion rate 0.9 Assumed𝐾 Concentration of Salmonella bacteria in foods and water 50000 [14]𝜇 Human beings natural death rate 0.0247 Assumed𝛼 Typhoid induced death rate 0.052 Estimated𝛽 Treatment rate of infectious diseases 0.002 Estimated𝜎1 Discharge rate of Salmonella from carriers 0.9 Gosh et al., 2006𝜎2 Discharge rate of Salmonella from infective 0.8 Assumed𝛿 Removal rate from recovered subclass to susceptible subclass 0.000904 Adetunde, 2008𝜃 Screening rate of carriers 0.2 Assumed𝜙 Removal of carriers by natural immunity 0.0003 Assumed𝜌 Probability of susceptible joining carrier state 0.3 Assumed𝜇𝑏 Natural/drug induced death rate of bacteria 0.001 Gosh et al., 2006Λ Recruitment of human beings 100 Assumed

where 𝐿(𝐶, 𝐼, 𝑢1, 𝑢2, 𝑢3, 𝑡) = 𝑏1𝐶 + 𝑏2𝐼 + (1/2)∑3𝑖=1 𝑤𝑖𝑢2𝑖 , 𝜆1,𝜆2, 𝜆3, 𝜆4, and 𝜆5 are the adjoint variable functions. To obtain
the adjoint variables, we followed the classical result of [21].

Theorem 5. There exist an optimal control set of 𝑢1, 𝑢2, and 𝑢3
and corresponding solution, 𝑆, 𝐶, 𝐼, 𝑅, and 𝐵𝑐, that minimize𝐽(𝑢1, 𝑢2, 𝑢3) over𝑈. Furthermore, there exist adjoint functions𝜆1, . . . , 𝜆5 such that

𝑑𝜆1𝑑𝑡 = −𝜆1 (−𝜇 − 𝐵𝑐V (1 − 𝑢1)𝐾 + 𝐵𝑐 )
− 𝜆2 (1 − 𝜌) (1 − 𝑢1) 𝐵𝑐V𝐾 + 𝐵𝑐 − 𝜆3 (1 − 𝑢1) 𝜌V𝐵𝑐𝐾 + 𝐵𝑐 ,

𝑑𝜆2𝑑𝑡 = −𝑏1 − 𝜆2 (−𝜃 − 𝑢3) − 𝜆3 (1 − 𝑢3) 𝜃 − 𝜆4𝜙
− 𝜆5 (𝜎1 + 𝜙 + 𝜇) ,

𝑑𝜆3𝑑𝑡 = −𝑏2 − 𝜆3 (−𝑢2 − 𝛽 − 𝜎2) − 𝜆4 (𝑢2 + 𝛽)
− 𝜆5 (𝜎2 + 𝜇 + 𝛼) ,

𝑑𝜆4𝑑𝑡 = −𝜆1𝛿 − 𝜆4 (−𝜇 − 𝛿) ,
𝑑𝜆5𝑑𝑡 = −𝜆1𝐵𝑐V (1 − 𝑢1) 𝑠(𝑘 + 𝐵𝑐)2 − 𝜆2((1 − 𝑢1) 𝜌V𝑆𝐾 + 𝐵𝑐

− (1 − 𝑢1) 𝜌V𝐵 − 𝑐𝑆
(𝐾 + 𝐵𝑐)2 ) − 𝜆3((1 − 𝜌) (1 − 𝑢1) V𝑆𝐾 + 𝐵𝑐

− (1 − 𝜌) (1 − 𝑢1) 𝐵𝑐V𝑆(𝐾 + 𝐵𝑐)2 ) + 𝜆5𝜇𝑏,

(46)

with transversality conditions,

𝜆𝑖 (𝑡𝑓) = 0, 𝑖 = 1, . . . , 5. (47)

And the characterized control set of (𝑢∗1 , 𝑢∗2 , 𝑢∗3 ) is
𝑢∗1 (𝑡) = max{0,

min(1, 𝑆 (𝜆2𝜌V𝐵𝑐 − 𝐵𝑐𝜌V𝜆3 + 𝐵𝑐V𝜆3 − 𝜆1𝐵𝑐V)(𝐾 + 𝐵𝑐) 𝑤1 )} ,

𝑢∗2 (𝑡) = max{0,min(1, 𝐼 (𝜆3 − 𝜆4)𝑤2 )} ,

𝑢∗3 (𝑡) = max{0,min(1, 𝐶 (𝜆3𝜃 + 𝜆2)𝑤3 )} .

(48)

Proof. To prove this theorem, we used the classical result of
[21]. Accordingly, to get the system of adjoint variables, we
differentiate the Hamiltonian (45) with respect to each state
as follows:

𝑑𝜆1𝑑𝑡 = −𝑑𝐻𝑑𝑆 = −𝜆1 (−𝜇 − 𝐵𝑐V (1 − 𝑢1)𝐾 + 𝐵𝑐 )

− 𝜆2 (1 − 𝜌) (1 − 𝑢1) 𝐵𝑐V𝐾 + 𝐵𝑐 − 𝜆3 (1 − 𝑢1) 𝜌V𝐵𝑐𝐾 + 𝐵𝑐 ,
𝑑𝜆2𝑑𝑡 = −𝑑𝐻𝑑𝐶 = −𝑏1 − 𝜆2 (−𝜃 − 𝑢3) − 𝜆3 (1 − 𝑢3) 𝜃

− 𝜆4𝜙 − 𝜆5 (𝜎1 + 𝜙 + 𝜇) ,
𝑑𝜆3𝑑𝑡 = −𝑑𝐻𝑑𝐼 = −𝑏2 − 𝜆3 (−𝑢2 − 𝛽 − 𝜎2) − 𝜆4 (𝑢2

+ 𝛽) − 𝜆5 (𝜎2 + 𝜇 + 𝛼) ,
𝑑𝜆4𝑑𝑡 = −𝑑𝐻𝑑𝑅 = −𝜆1𝛿 − 𝜆4 (−𝜇 − 𝛿) ,
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𝑑𝜆5𝑑𝑡 = − 𝑑𝐻𝑑𝐵𝑐 = −𝜆1𝐵𝑐V (1 − 𝑢1) 𝑆(𝐾 + 𝐵𝑐)2
− 𝜆2((1 − 𝑢1) 𝜌V𝑆𝐾 + 𝐵𝑐 − (1 − 𝑢1) 𝜌V𝐵𝑐𝑆(𝐾 + 𝐵𝑐)2 )

− 𝜆3((1 − 𝜌) (1 − 𝑢1) V𝑆𝐾 + 𝐵𝑐
− (1 − 𝜌) (1 − 𝑢1) 𝐵𝑐V𝑆(𝐾 + 𝐵𝑐)2 ) + 𝜆5𝜇𝑏.

(49)
And also for characterization of the optimal control, we used
the following partial differential equation:

𝜕𝐻𝜕𝑢𝑖 = 0 at 𝑢𝑖 = 𝑢∗𝑖 , (50)

where 𝑖 = 1, 2, 3.
For 𝑖 = 1,
𝜕𝐻𝜕𝑢1 = 0 at 𝑢∗1

⇓
𝑢∗1 = 𝑆 (𝜆2𝜌V𝐵𝑐 − 𝐵𝑐𝜌V𝜆3 + 𝐵𝑐V𝜆3 − 𝜆1𝐵𝑐V)(𝐾 + 𝐵𝑐) 𝑤1 .

(51)

For 𝑖 = 2,
𝜕𝐻𝜕𝑢2 = 0 at 𝑢∗2

⇓
𝑢∗2 = 𝐼 (𝜆3 − 𝜆4)𝑤2 .

(52)

For 𝑖 = 3,
𝜕𝐻𝜕𝑢3 = 0 at 𝑢∗3

⇓
𝑢∗3 = 𝐶 (𝜆3𝜃 + 𝜆2)𝑤3 .

(53)

Since 0 < 𝑢∗𝑖 < 1, we can write in a compact notation:

𝑢∗1 = max{0,
min(1, 𝑆 (𝜆2𝜌V𝐵𝑐 − 𝐵𝑐𝜌V𝜆3 + 𝐵𝑐V𝜆3 − 𝜆1𝐵𝑐V)(𝐾 + 𝐵𝑐) 𝑤1 )} ,

𝑢∗2 = max{0,min(1, 𝐼 (𝜆3 − 𝜆4)𝑤2 )} ,
𝑢∗3 = max{0,min(1, 𝐶 (𝜆3𝜃 + 𝜆2)𝑤3 )} .

(54)

5.3. The Optimality System. It is a system of states (42) and
adjoint (46) incorporating with the characterization of the
optimal control and initial and transversality conditions.
Then we have the following optimality system:

𝑑𝑆𝑑𝑡 = Λ + 𝛿𝑅 − (1 − 𝑢∗1 ) 𝜆𝑆 − 𝜇𝑆,
𝑑𝐶𝑑𝑡 = (1 − 𝑢1∗) 𝜌𝜆𝑆 − (𝜃 + 𝑢∗3 ) 𝐶 − (𝜎1 + 𝜙 + 𝜇)𝐶,
𝑑𝐼𝑑𝑡 = (1 − 𝑢∗1 ) (1 − 𝜌) 𝜆𝑆 + (1 − 𝑢∗3 ) 𝜃𝐶 − (𝑢∗2 + 𝛽) 𝐼

− (𝜎2 + 𝜇 + 𝛼) 𝐼,
𝑑𝑅𝑑𝑡 = (𝑢∗2 + 𝛽) 𝐼 + 𝜙𝐶 − (𝜇 + 𝛿) 𝑅,
𝑑𝐵𝑐𝑑𝑡 = 𝑄 + 𝜎1𝐶 + 𝜎2𝐼 − 𝜇𝑏𝐵𝑐,
𝑑𝜆1𝑑𝑡 = −𝜆1 (−𝜇 − 𝐵𝑐V (1 − 𝑢∗1 )𝑘 + 𝐵𝑐 )

− 𝜆2 (1 − 𝜌) (1 − 𝑢∗1 ) 𝐵𝑐V𝐾 + 𝐵𝑐 − 𝜆3 (1 − 𝑢∗1 ) 𝜌V𝐵𝑐𝐾 + 𝐵𝑐 ,
𝑑𝜆2𝑑𝑡 = −𝑏1 − 𝜆2 (−𝜃 − 𝑢∗3 ) − 𝜆3 (1 − 𝑢∗3 ) 𝜃 − 𝜆4𝜙

− 𝜆5𝜎1,
𝑑𝜆3𝑑𝑡 = −𝑏2 − 𝜆3 (−𝑢∗2 − 𝛽 − (𝜎2 + 𝜇 + 𝛼)) − 𝜆4 (𝑢∗2

+ 𝛽) − 𝜆5𝜎2,
𝑑𝜆4𝑑𝑡 = −𝜆1𝛿 − 𝜆4 (−𝜇 − 𝛿) ,
𝑑𝜆5𝑑𝑡 = −𝜆1𝐵𝑐V (1 − 𝑢∗1 ) 𝑆(𝐾 + 𝐵𝑐)2 − 𝜆2((1 − 𝑢∗1 ) 𝜌V𝑆𝐾 + 𝐵𝑐

− (1 − 𝑢∗1 ) 𝜌V𝐵 − 𝑐𝑆
(𝐾 + 𝐵𝑐)2 ) − 𝜆3((1 − 𝜌) (1 − 𝑢∗1 ) V𝑆𝐾 + 𝐵𝑐

− (1 − 𝜌) (1 − 𝑢∗1 ) 𝐵𝑐V𝑆(𝐾 + 𝐵𝑐)2 ) + 𝜆5𝜇𝑏,
𝜆𝑖 (𝑡𝑓) = 0, 𝑖 = 1, 2, 3, 4, 5,
𝑆 (0) = 𝑆0,
𝐶 (0) = 𝐶0,
𝐼 (0) = 𝐼0,
𝑅 (0) = 𝑅0,
𝐵𝑐 (0) = 𝐵𝑐0 .

(55)
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Figure 4: Simulations of typhoid fever model with prevention control only.

5.4. Uniqueness of the Optimality System. Since the state and
adjoint variables are bounded and also the obtained ordinary
differential equations have Lipschitz in their structure, it
is possible to show the uniqueness, hence the following
theorem.

Theorem 6. For 𝑡 ∈ [0, 𝑡𝑓], the bounded solutions to the
optimality system are unique.

Proof. See [22] for the proof of this theorem.

6. Numerical Simulations

We perform numerical simulation of the optimality system
by using the parameter values given in Table 2.

To obtain optimal solution, we apply iterative technique.
By using an advantage of the initial conditions of the state
system, we used a forward fourth-order Runge-Kuttamethod
to solve it and also due to the final conditions for the
adjoint system, we used a backward fourth-order Runge-
Kutta method to solve it. To solve the state initial guess of
controls is used and the solution of the state system and
the initial guess helps to solve the adjoint system. Each
control continues to be updated by combining its previous
and characterization values. To repeat the solutions, the
updated controls are used. This situation continues until two
consecutive iterations are close enough [23].

To examine the impact of each control on eradication of
typhoid fever disease, we used the following strategy:

(i) Applying prevention only (𝑢1) as intervention
(ii) Applying treatment only (𝑢2) as intervention

(iii) Applying screening only (𝑢3) as intervention
(iv) Implementing prevention (𝑢1) and treatment (𝑢2)

intervention
(v) Implementing prevention (𝑢1) and screening (𝑢3)

intervention
(vi) Implementing treatment (𝑢2) and screening (𝑢3)

intervention
(vii) Using all the three controls: prevention effort 𝑢1,

treatment effort 𝑢2, and also screening 𝑢3
Initial values that we used for simulation of the optimal
control are 𝑆(0) = 1000, 𝐶(0) = 150, 𝐼(0) = 200, 𝑅(0) = 300,
and 𝐵𝑐(0) = 200 and also coefficients of the state and controls
that we used are 𝑏1 = 25, 𝑏2 = 25,𝑤1 = 4,𝑤2 = 3, and𝑤3 = 5.
6.1. Control with Prevention Only. We simulated the opti-
mality system by incorporating prevention intervention only.
Figures 4(a) and 4(b) show the decrease of infectious and
carrier population in the specified time. We conclude that
prevention that includes sanitation and other techniques is a
vitalmethod to reduce typhoid fever infection.Thenumber of
individuals who have been with typhoid fever disease before
implementation of prevention control has gone down due
to disease induced and natural deaths. Therefore, applying
optimized prevention control can eradicate typhoid fever
disease in the community.

6.2. Control with Treatment Only. We applied treatment
only as intervention that is treating individuals who develop
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Figure 5: Simulations of typhoid fever model with treatment control only.

disease symptom. From Figures 5(a) and 5(b), we under-
stand that the number of infectious individuals and carri-
ers decreased when treatment intervention is applied. The
number of infectious individuals and carriers did not go to
zero over the period of implementation of this intervention
strategy.The reason is that due to lack of prevention suscepti-
ble individuals still get infected. Therefore, we conclude that
applying optimized treatment only as control intervention
decreases the burden of the disease but it cannot eradicate
typhoid fever disease in the community.

6.3. Control with ScreeningOnly. Aswe know screening helps
carriers to identify their status as they are leaving with the
bacteria or not. Therefore, Figures 6(a) and 6(b) show that
the infectious and carrier population goes down by screening
effort but their number cannot be zero. New infection always
appears in the community because the diseases are not
prevented and individuals who develop the symptom of the
disease are not getting treatment. Therefore, control with
screening only reduces the burden in some extent but it is
not helpful to eradicate typhoid fever disease totally from the
community.

6.4. Control with Prevention and Treatment. We simulate the
model using a combination of prevention and treatment as
intervention strategy for control of typhoid fever disease in
the community. Figures 7(a) and 7(b) clearly show that the
infectious and carrier population has gone to zero at the end
of the implementation period. Therefore, we conclude that
this strategy is effective in eradicating the disease from the
community in a specified period of time.

6.5. Control with Prevention and Screening. We simulated the
model by incorporating optimized prevention and screening
as disease control strategy. Figures 8(a) and 8(b) show that the
infectious and carrier population goes to zero at the end of
the implementation of intervention time. From this, we can
conclude that applying prevention and screening can eradi-
cate the disease even if without treating individuals that have
disease symptom. Therefore, applying optimized prevention
and screening as intervention strategy will eradicate typhoid
fever disease from the community.

6.6. Control with Treatment and Screening. In this strategy,
we applied treatment and screening as intervention to control
typhoid fever disease. Figures 9(a) and 9(b) show that
optimized intervention by treating infectious individuals and
screening of carriers decreases the number of infectious and
carrier populations but did not go to zero. Therefore, this
strategy is not 100% effective in eradicating the disease in the
specified period of time.

6.7. Control with Prevention, Treatment, and Screening. In
this strategy, we implemented all the three controls (preven-
tion, treatment, and screening) as intervention to eradicate
typhoid fever from the community. Figures 10(a) and 10(b)
show that the number of infectious individuals and carriers
goes to zero at the end of the implementation period.
Moreover, Figure 11 shows that the number of Salmonella
bacteria population decreased after the implementation of
the strategy. Therefore, applying this strategy is effective in
eradicating typhoid fever disease form the community in a
specified period of time.
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Figure 6: Simulations of typhoid fever model with screening control only.
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(a) Prevention and treatment impact on infectious individuals
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Figure 7: Simulations of typhoid fever model with prevention and treatment controls.

7. Cost-Effectiveness Analysis

In this section, we identified a strategy which is cost-effective
compared to other strategies. To achieve this, we used
incremental cost-effectiveness ratio (ICER), which is done

dividing the difference of costs between two strategies to the
difference of the total number of their infections averted.
We estimated the total number of infections averted for each
strategy by subtracting total infections with control from
without control. To get the total cost of each strategy, we used
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Figure 8: Simulations of the typhoid fever model with prevention and screening controls.
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(a) Treatment and screening impact on infectious individuals

u1 = u2 = u3 = 0

1 2 30

Time (months)

20

40

60

80

100

120

140

Ca
rr

ie
r p

op
ul

at
io

n

̸= ̸=u1 = 0, u2 0, u3 0

(b) Treatment and screening impact on carriers

Figure 9: Simulations of the typhoid fever model with treatment and screening controls.

their respective cost function ((1/2)𝑤1𝑢21, (1/2)𝑤2𝑢22, and(1/2)𝑤3𝑢23) to calculate over the time of intervention. We did
not consider strategies that implement one intervention only,
due to the reason that one intervention only is not guaranteed
to eradicate the disease totally from the community. Those

strategies which incorporate more than one intervention are
ordered below to be compared pairwise:

Strategy A (prevention and screening)

Strategy B (treatment and screening)
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(a) Prevention, treatment, and screening impact on infectious individ-
uals
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Figure 10: Simulations of the typhoid fever model with prevention, treatment, and screening controls.
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Figure 11: Simulations of the typhoid fever model with prevention,
treatment, and screening controls on Salmonella bacteria popula-
tions.

Strategy C (prevention and treatment)

Strategy D (prevention, treatment, and screening)

Table 3:Number of infections averted and total cost of each strategy.

Strategies Description Total infections
averted

Total cost
(USD)

A Prevention and
screening 11,977 733.07

B Treatment and
screening 13,805 800

C Prevention and
treatment 19,699 531.19

D
Prevention,

treatment, and
screening

19,987 1104.5

We used parameter values in Table 2 to estimate the total cost
and total infections averted in Table 3.

First we compared the cost-effectiveness of strategies A
and B: ICER(A) = 733.07/11,977 = 0.06, ICER(B) =(733.07 − 800)/(11,977 − 13,805) = 0.037.

This shows that strategy B is cheaper than strategy A by
saving 0.037.Thatmeans strategy A needs higher money than
strategy B. Therefore, we exclude strategy A and continue to
compare strategies B and C.

ICER (B) = 80013,805 = 0.058,
ICER (C) = 800 − 573.1913,805 − 19,699 = −0.039.

(56)
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Figure 12: Cost function of the intervention strategies for the period
of 3 months.

Similarly, this comparison indicates that strategy C is cheaper
than strategy B by saving 0.039. Therefore, strategy B is
rejected and continues to compare strategy C with the last
strategy which is D.

ICER (C) = 573.1919,699 = 0.029,
ICER (D) = 573.19 − 1,104.519,699 − 19,987 = 1.845.

(57)

Finally, the comparison result reveals that strategy C is
cheaper than strategy D by saving 0.029.Therefore, strategy C
(combination of prevention and treatment) is the best strat-
egy from all compared strategies due to its cost-effectiveness
and healthy benefit.

Moreover, Figure 12 shows that applying only one inter-
vention is cheapest. But we do not consider this because
a single intervention is not effective in eradicating the
disease. A combination of prevention and treatment strategy
is the cheapest of all other combined intervention strategies.
The combination of all the three interventions (prevention,
treatment, and screening) is the most expensive strategy
compared to other strategies.

8. Discussions and Conclusions

In this study, a deterministic model for the dynamics of
typhoid fever disease is proposed. The qualitative analysis of
the model shows that the solution of the model is bounded
and positive and also the equilibria points of the model are
obtained and their local as well as global stability condition
is established.The study also obtained the basic reproduction

number and it reveals that forR0 < 1 there is no possibility of
having backward bifurcation. In Section 4, sensitivity analysis
of the reproductive number has been carried out. Results
from the sensitivity analysis of the reproductive number
suggest that an increase in V, 𝐾, 𝜎1, and 𝜎2 has the greatest
influence on increasing the magnitude of the associated
reproductive number which results in the endemicity of
typhoid fever.

In Section 5, using Pontryagin’s maximum principle, the
optimal control problem is formulated and the conditions for
optimal control of the disease are analyzed with effective pre-
ventive measures (sanitation and proper hygiene controls),
treatment regime, and screening. Existence conditions for
optimal control are established and the optimality system
is developed. Seven intervention strategies are proposed for
examining each strategy on the eradication of typhoid. In Sec-
tion 6, the proposed strategies are investigated numerically
and their results are displayed graphically. Cost-effectiveness
analysis of the main strategies is done in Section 7, and
the results indicate that prevention and the cost put into
treatment have a strong impact on the disease control.
Effective treatment only without prevention is not the best
option in controlling the spread of typhoid fever. Therefore,
this finding conclude that adequate control measures which
adhered to these control strategies (preventive and treatment)
would be a very effective way for fighting the disease and also
for cost-effectiveness.
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