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Abstract

Neuroblastoma (NB) is a typical childhood and heterogeneous neoplasm for which efficient targeted therapies for high-risk
tumors are not yet identified. The chemokine CXCL12, and its receptors CXCR4 and CXCR7 have been involved in tumor
progression and dissemination. While CXCR4 expression is associated to undifferentiated tumors and poor prognosis, the
role of CXCR7, the recently identified second CXCL12 receptor, has not yet been elucidated in NB. In this report, CXCR7 and
CXCL12 expressions were evaluated using a tissue micro-array including 156 primary and 56 metastatic NB tissues. CXCL12
was found to be highly associated to NB vascular and stromal structures. In contrast to CXCR4, CXCR7 expression was low in
undifferentiated tumors, while its expression was stronger in matured tissues and specifically associated to differentiated
neural tumor cells. As determined by RT-PCR, CXCR7 expression was mainly detected in N-and S-type NB cell lines, and was
slightly induced upon NB cell differentiation in vitro. The relative roles of the two CXCL12 receptors were further assessed by
overexpressing CXCR7 or CXCR4 receptor alone, or in combination, in the IGR-NB8 and the SH-SY5Y NB cell lines. In vitro
functional analyses indicated that, in response to their common ligand, both receptors induced activation of ERK1/2
cascade, but not Akt pathway. CXCR7 strongly reduced in vitro growth, in contrast to CXCR4, and impaired CXCR4/CXCL12-
mediated chemotaxis. Subcutaneous implantation of CXCR7-expressing NB cells showed that CXCR7 also significantly
reduced in vivo growth. Moreover, CXCR7 affected CXCR4-mediated orthotopic growth in a CXCL12-producing
environment. In such model, CXCR7, in association with CXCR4, did not induce NB cell metastatic dissemination. In
conclusion, the CXCR7 and CXCR4 receptors revealed specific expression patterns and distinct functional roles in NB. Our
data suggest that CXCR7 elicits anti-tumorigenic functions, and may act as a regulator of CXCR4/CXCL12-mediated signaling
in NB.
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Introduction

Neuroblastoma (NB) is a typical pediatric neoplasm derived

from embryonic neural crest cells. The tumor recapitulates

characteristics of its originating cells, with an extensive heteroge-

neity, pluripotential differentiation and migratory abilities. The

disease displays a remarkable clinical diversity, ranging from

spontaneous regression to fatal progression and dissemination to

privileged sites, such as bone-marrow and liver [1,2].

Chemokines and their receptors have been originally described

as essential mediators of leukocyte directional migration, partic-

ularly during infection and inflammation, and have further

emerged as crucial players in all stages of tumor development

[3,4,5,6]. The binding of chemokines to their cognate receptors

elicits typical cellular responses, such as directional migration,

through activation of classical MAP-kinase or PI3-kinase/PKB

signaling cascades [7]. Both tumor and stromal cells express a large

pattern of chemokine/chemokine receptor axes, which may

represent major paracrine/autocrine complex players within the

tumor and its microenvironment [8].

CXCR4 is the most frequently expressed chemokine receptor on

tumor cells [9]. In addition to its critical role in tumor cell growth,

survival and angiogenesis in multiple cancers, the CXCR4/

CXCL12 pair has been shown to mediate homing and metastatic

secondary growth in CXCL12-producing organs, such as liver and

bone marrow [10,11,12]. However, the relative contribution of the

CXCR4/CXCL12 axis in organ-specific dissemination or/and

tumorgrowthhasbeen stronglydebated [13,14,15]. Inparticular,we

have previously shown that CXCR4 mostly promoted NB primary

tumor and secondary growth, without influencing organ-specific

dissemination of malignant NB cells [16].
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CXCR4 has long been considered as the only mediator of

CXCL12-induced biological effects. CXCR7, formerly called

RDC1, has been recently identified as an alternate receptor for

CXCL12 [17,18]. This new chemokine receptor has been

demonstrated to bind with high affinity to CXCL12 and with

low affinity to a second chemokine, interferon-inducible T cell

chemoattractant (I-TAC; also known as CXCL11). However,

despite its chemokine receptor phylogenic relation, growing

evidence has suggested that CXCR7 does not mediate typical

chemokine responses such as G protein-coupled receptor-mediat-

ed calcium mobilization [17,18,19,20]. Although coupling of the

CXCR7 receptor with G proteins is still under debate [20,21], the

possibility that the receptor is able to induce signal transduction is

nevertheless suggested by reports demonstrating MAPK and Akt

pathway activation upon CXCR7-expressing cell exposure to

CXCL12 [22,23,24]. In humans, CXCR7 is expressed in

embryonic neuronal and heart tissue, in some hematopoietic cells,

and activated endothelium [17,18,25,26,27,28,29]. Elevated levels

of CXCR7 have been detected in several tumors, and particularly

in the endothelial cell-associated vasculature [10,24,30]. More-

over, CXCR7 expression was shown to promote growth and

metastasis of various tumor models in vivo, suggesting a role for

CXCR7 in regulating immunity, angiogenesis, and organ-specific

metastasis [10,30,31]. The identification of CXCR7 has added

new perspectives for the implication of the CXCR4/CXL12 pair

in tumor biology [32,33]. However, CXCR7 specific implication

in NB dissemination, and its contribution to CXCL12/CXCR4–

mediated NB signaling are still not fully elucidated.

In this study, we investigated the expression of CXCR7 and

CXCL12 in a large panel of NB tissues. Our data revealed

a generally low CXCR7 expression in primary NBs of all stages,

which was however specifically enhanced in neural-associated

compartment of differentiated and matured tumors. In vitro and

in vivo studies showed that CXCR7 elicited anti-tumorigenic

properties, particularly in presence of CXCR4. Indeed, we

suggested that CXCR7 was sufficient to act as a regulator of

specific CXCR4/CXCL12-mediated NB growth and migration.

Altogether our data pointed to the existence of a putative cross-talk

between the two CXCL12 receptors in NB cell lines, and

suggested the implication of the global CXCR7/CXCR4/

CXCL12 axis in the regulation of NB progression.

Materials and Methods

Ethics Statement
Our study using patient tissues was approved by the ethical

research review board of the State University Hospital of

Lausanne (CHUV). Patient tissue collection and analyses were

performed after patients’ written informed consent. Animal

experimentation protocols (authorization number: 1564.1/5) were

approved by the state veterinary services.

Cell Lines
All NB well-characterized cell lines [34], the MCF-7 breast

cancer cell line [17], the PC-3 prostate cancer cell line [35], and

the SW480 colon cancer cell line [36] were cultured in Dubelcco’s

modified Eagle’s medium (D-MEM) (Gibco, Paisley, UK)

supplemented with 1% penicillin/streptomycin (Gibco) and 10%

heat inactivated Foetal Calf Serum (FCS) (Sigma-Aldrich, St

Louis, MO, USA).

Tissue-microarray (TMA)
The TMA was composed of tumor samples from 156 patients,

diagnosed with NB between July 1988 and April 2002, treated and

followed in four clinical centers: Bicêtre hospital and Gustave

Roussy Institute (Villejuif, France), the American Hospital (Reims,

France), CHU Sainte Justine (Montréal, Canada), and Shiga

University hospital (Otsu, Japan). Four tissue cylinders (0.6 mm

diameter) per sample were obtained and transferred into a re-

cipient paraffin block using a manual tissue arrayer (Alphelys,

Plaisir, France). Five mm sections of TMA blocks were depar-

affinated in xylol bath for 10 min, and rehydrated by successive

transfers in alcohol baths with decreasing concentration, and

finally in H20. Then, sections were washed for 5 min in 3% H2O2

to inhibit endogenous peroxydase. TMA sections were incubated

overnight at 4uC with mouse anti-human CXCL12 (clone 79018,

R&D systems, Minneapolis, MN, USA) and mouse anti-human

CXCR7 (clone 9C4, kind gift from Dr. M. Thelen, IRB,

Bellinzona, Switzerland) antibodies diluted in Dako REALTM

antibody diluent (Dako, Glostrup, Denmark). Incubation with

secondary antibody was performed using EnVisionTM HRP-

antibodies (Dako) for 30 min, followed by treatment with 100 ml
DAB (Dako) at 1/50 dilution for 8 min. Slides were then

incubated in hematoxylin bath for 10 s, and then dehydrated in

baths with increasing alcohol concentration, and finally in xylol.

Washes between each step were done in TBS pH 7.6. Slides were

mounted using Eukitt Mounting Medium (EMS, Hatfield, PA,

USA). Immunostaining scores (0–4) were established for each

stained tissue by semi-quantitative optical analysis by two in-

dependent investigators blinded for clinical data. The percentage

of positive cells in each sample was scored as follows: 0, all cells

negative; 1+, up to 25% of cells were positive; 2+, 26% to 50%;

3+, 51% to 75%; 4+, more than 75%.

RT-PCR
Total RNA, extracted from cell lines using the RNeasy Mini kit

(Qiagen, Hilden, Germany), was reverse-transcribed using Prime-

ScriptTM RT reagent Kit, according to the manufacturer’s instruc-

tions (TAKARABio Inc., Shiga, Japan).Oneml of cDNAwas added

to 5 U/ml GoTaqHHot Start Polymerase (Promega, Madison, MI,

USA), specific buffer, 0.2 mM dNTPs and 1 mM human-specific

primer pairs.ThePCRreaction consisted of 2 min at 95uC, followed
by30cyclesof30 sat95uC,30 sat60uC,and30 sat72uC,withafinal
step of 5 min at 72uC. CXCR4 and CXCR7 expression levels were

compared to those of theGAPDH housekeeping gene. PCRproducts

were analyzed on 2% agarose gels. Real-time semi-quantitative RT-

PCRwas performedusing theABI PRISM7900 HTreal-time PCR

system (Applied Biosystem) with SYBR Green� detection mix

(Qiagen). Expression levels of CXCR4 and CXCR7 transcripts were

calculated relatively to the level of the housekeeping gene HPRTI

using the DDCt method. PCR program corresponded to: 2 min at

50uC,5 minat95uC,40cyclesof threerepeatedstepsofamplification

(10 s at 95uC, 30 s at 60uC, 15 s at 95uC), and 15 s at 65uC.Human-

specific pairs of primers: CXCR7:59-

TGGGCTTTGCCGTTCCCTTC-39 and 59-

TCTTCCGGCTGCTGTGCTTC-39, CXCR4:59-TATCTGT-

GACCGCTT-CTACC-39 and 59-GCAGGACAGGATGA-

CAATA-C-39, GAPDH: 59-AGATCATCAGCAATGCCTCC-39

and 59-GTGGCAGTGATGGCAT-GGAC-39, HPRT1:59-TGA-

CACTGGCAAAACAATGCA-39 and 59-GGTCCTTTTCACC-

AGCAAGCT-39.

Plasmids
The complete coding sequence of CXCR7 (1.089 kb) was

amplified by PCR from a pcDNA3 plasmid containing human

CXCR7 (kindly provided by Dr. M. Thelen, Bellinzona) using 59

and 39 primers containing XhoI and EcoRI sites as follows: sense:

59-GCGCCTCGAGATGGATCTGCATCTCTTCGACTAC-
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T-39; antisense: 59-GCGCG-AATTCTCATTTGGTGCTC-

TGCTCCA-39. The amplified cDNA was subcloned into the

pMigr vector (kind gift from F. Louache, Institut Gustave Roussy,

Villejuif, France) containing IRES-EGFP sequence. The pMigr

plasmid containing complete coding region of CXCR4 (1.1 kb) was

already used and described elsewhere [16,37]. Plasmids containing

CXCR7 and CXCR4 cDNAs were sequenced for their integrity.

The pMigr-EGFP vectors encoding for EGFP with or without

CXCR4 or CXCR7 gene was inserted by retroviral-mediated

infection into NB cells, as previously described [37].

Flow Cytometry
Transduced GFP-expressing cells were sorted by FACS AriaITM

cell sorter (BD Biosciences, San Jose, CA, USA) to control

transfection efficiency.

Single cells were stained with PE-labeled mouse anti-CXCR4

(clone 12G5, BD Biosciences), and mouse anti-CXCR7 (clone

9C4), as previously described [16,18]. Alexa FluorH 647-labeled

goat anti-mouse secondary antibody (Invitrogen, Carlsbad, CA,

USA) was used for the detection of CXCR7. Ten thousand events

were analyzed by FACScan (BD Biosciences).

Immunofluorescence
Hundred thousand cells were plated in Lab-TekR Chamber

SlideTM System (Nunc, Ny,USA), 48 h before analyses. Cells were

washed with PBS, fixed in 4% paraformaldehyde (PFA) (Fluka,

Buchs, Switzerland) for 10 min at room temperature, and then

permeabilized with SAP buffer (0.1% saponin (Sigma)20.05%-

NaN3 in PBS) for 15 min [22]. Cells were blocked in SAP buffer

supplemented with 10% goat serum (Sigma), and then incubated

with anti-CXCR7 (10 mg/mL clone 9C4, and clone 11G8 from

R&D systems) or anti-b3 tubulin (1:1000, clone 2G10, Sigma) in

SAP buffer containing 1.5% goat serum. Cells were next

incubated with appropriate Cy3-conjugated secondary antibody

(Jackson ImmunoResearch Laboratories, West Grove, PA, USA).

DAPI (Sigma) was added for nuclear staining, and slides were

mounted using DAKOH Fluorescent mounting medium (Dako).

Imaging was performed using a camera DFC345 FX (Leica

Microsystems Schweiz AG, Switzerland) and analyzed with the

Leica Application Suite (LAS) software.

Differentiation Assay
In vitro neuronal and glial/shwannian differentiation assays were

performed by treating NB cells with all-trans retinoic acid (RA)

(Sigma) and bromodeoxyuridine (BrdU), respectively, as pre-

viously described [38,39,40]. RA was dissolved in DMSO to

a concentration of 3.5 mg/ml and stored in light protected vials at

220uC. Aliquots of stock solution were freshly thawed for each

experiment and diluted in DMEM, 10% FCS. NB cells were

plated 24 h before treatment with either 10 mM RA or BrdU.

Medium was renewed every three days.

ERK1/2 and Akt Phosphorylation
Following overnight serum starvation, cells were either un-

stimulated or stimulated with 100 ng/mL human recombinant

CXCL12 or CXCL11 (PeproTech, Rocky Hill, NJ, USA) for

indicated time, or pre-treated with 1 mM of the specific CXCR4

blocker 4F-benzoyl TN14003 (kind gift of N.Fujii, Kyoto, Japan)

prior to ligand stimulation. Cells were lysed in sample buffer

(250 mM Tris-HCl at pH 6.8, 10% SDS, 40% Glycerol, 16% b-
mercaptoethanol, 0.04% Bromo-phenol-blue), and protein lysates

were loaded on 10% SDS-PAGE. Gels were transferred to

Immobilon-P membranes (Millipore, Volketswil, Switzerland).

Membranes were blocked in TBS-Tween 0.01% containing 2%

ECL AdvanceTM Blocking Agent (AmershamTM ECL AdvanceTM

Western Blotting Detection Kit, GE Healthcare, Buckingham-

shire, UK), and blotted with specific primary antibodies: rabbit

anti-phospho-p44/42 MAPK (thr202/Tyr204), rabbit anti-phos-

pho-Akt (Ser 473), rabbit anti-p44/42 MAPK, rabbit anti-Akt (all

from Cell Signaling, Danvers, MA, USA). Blots were then

incubated with the appropriate HRP-conjugated secondary

antibody (Dako). ECL detection kit (GE Healthcare) was used

for detection.

Soft Agar Assay
Anchorage-independent colony formation assay, modified from

a previous protocol [41], was performed using double-layer soft

agar in 6-well plates (Corning) with a top layer of 0.175% agar

(DifcoTM Agar Noble, BD Biosciences) and a bottom layer of

0.35% agar. Briefly, 56103 NB cells were suspended in 0.175%

agar diluted in DMEM/10% FCS, and laid on the top of the

supporting agar layer. When stipulated, 100 mL fresh medium

supplemented with 100 ng/mL CXCL12 was added weekly.

Colonies were allowed to form at 37uC for at least two weeks.

Colony cell viability was assessed using the MTS/PMS cell

proliferation kit (Promega), and viable colonies were counted using

light microscopy (Leica Laborluc D).

Chemotaxis Assay
Cell migration was measured using Transwell CostarH cell

culture chambers with polycarbonate filters of 8 mm porosity

(BD Biosciences), as previously described [16]. 26105 cells

suspended in DMEM/2% FCS were seeded in the upper

compartment of the chamber system. The lower compartment

was filled with DMEM/2% FCS supplemented or not with

100 ng/ml CXCL12 (PrepoTech). The cells were allowed to

settle down for 4 h. After washing with PBS, membranes were

fixed for 10 min in 4% PFA (Fluka) in PBS. Membranes were

stained with haematoxylin (Polysciences, warrington, PA, USA).

Non-migrated cells were carefully scraped from the upper side

of the filter, and migrated cells on the lower side were counted

by light microscopy.

In vivo Studies
All animal experiments were carried out with Swiss athymic

nude mice (Balb/C nu/nu). For heterotypic assays, groups of three

mice were subcutaneously injected in the flank with 26105 cells

suspended in 200 ml mix (1:1) of DMEM and BD MatrigelTM

Basement Membrane Matrix (BD Biosciences). The grafted

animals were then weekly monitored with calipers for tumor

growth assessment. The tumor volume was calculated using the

formula (length6width2)/2. For orthotopic assays, seven animals

per cell line were engrafted with NB cells directly in the left

adrenal gland, as previously described [16,37]. Briefly, 56105 cells

in 15 ml DMEM were injected in the adrenal gland using a 22G

needle connected to a Hamilton syringe. Tumor take and growth

were followed by ultrasound imaging every 10 days, at the

Lausanne Cardiovascular Assessment Facilities. Macroscopic

metastases were assessed by gross examination.

CXCL12 ELISA
Cultured NB cells were harvested and suspended in RIPA lysis

buffer (25 mM HEPES pH 7.4, 150 mM NaCl, 10% glycérol,

1.5 mM MgCl2, 1% Triton X-100, 1% sodium deoxycholate,

0.1% SDS, 100 mM NaF), supplemented with a protease inhibitor

cocktail (Complete mini, EDTA-free, Roche, Mannheim, Ger-
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many). Snap frozen tumors and mouse tissues were cut in small

pieces and suspended in the above described lysis buffer. Samples

were sonicated for 30 s, followed by a centrifugation step for

15 min at 20’000 g. Total protein amount was quantified using

the Bradford method (Biorad Laboratories, Richmond, CA, USA).

CXCL12 expression levels were quantified using a CXCL12

ELISA kit (R&D Systems) according to the manufacturer’s guide.

Statistical Analyses
Statistical analyses were performed using GraphPadPrism 5.0

(GraphPad Software Inc., San Diego, CA, USA). *p,0.05

represented significance; **p#0.01 and ***p#0.001 were inter-

preted to be highly significant.

Results

Expression of CXCR7 and CXCL12 in NB Tissues
A NB TMA including a panel of 156 primary NB tumors, 56

metastatic and 65 control normal tissues, such as adrenal glands

(AG) and sympathetic ganglia (SG), was screened for CXCR7 and

CXCL12 expression. Patient clinical data and associated tumors

are detailed in Table 1. The expression of CXCR7 or CXCL12

was semi-quantitatively assessed as an immunostaining score (0–4)

in three distinct cell populations in each tissue: the neural,

endothelial and stromal compartments. Neuroblasts and tumor

ganglion cells were included in the neural compartment of tumors,

while adrenal medulla and normal ganglion cells represented the

neural part of AG and SG, respectively. Fibroblasts in tumors and

AG, and Schwann cells in tumors and SG were attributed to the

stroma.

CXCR7 is preferentially expressed by mature neural cells

in differentiated and matured tumors. A low CXCR7

expression (median score of 0.92) was observed in neural cell

compartment in 76% of NB primary tumors (PTs), while no

CXCR7 expression (all median scores ,0.5) was detected in the

vascular and stromal compartments of PTs, metastatic and control

tissues (Figure 1A, Table 2). Thus, CXCR7 staining, albeit low,

was generally localized in the neural compartment of NBs.

Interestingly, CXCR7 expression did not correlate with NB grades

(Table S1), but significantly enhanced with tumor differentiation

stage (Figure 1B, 1C). Neural-associated CXCR7 staining score

was significantly enhanced in differentiated tumors, such as

ganglio-neuroblastomas (GGNBs) (median score of 0.9360.65,

p,0.05) and ganglioneuromas (GGNs) (median score of

1.6260.64, p,0.01), when compared to undifferentiated NBs

(UnNBs) (median score of 0.5760.37). In particular, our data

showed that CXCR7 staining was associated to tumor ganglion

cells (black arrow) in GGNBs and GGNs, while no staining was

observed in normal SG tissues. Moreover, CXCR7 expression

increased in tumors from less than 1 year-old patients (Figure 1D),

whom are known to present tumors with the potential to regress

spontaneously, or to mature into benign matured tumors, such as

GGNs [2]. Despite these observations, the TMA analyses did not

allow to assign CXCR7 a statistically significant favorable

prognosis value (data not shown).

CXCL12 is associated to the vascular and stromal

structures of NBs. The CXCL12 ligand was strongly ex-

pressed in endothelial cells (red arrow) in all PTs (median score of

3.12), and highly associated to the stroma (median score of 1.97),

while weakly expressed in the neural compartment (median score

of 0.82) in NB PTs (Figure 1A, 1E, Table 2). In particular, tumor

endothelial cells expressed higher levels of CXCL12 when

compared to normal tissues (Table 2). Although, vascular

CXCL12 expression was found independent of NB clinical stages

(Table S1), it increased in tumors from patients over one year-old,

whom are known to potentially present aggressive tumors [2]

(Figure 1F). Even though high and similar CXCL12 levels were

observed in the stromal compartment of tumors and controls

(mean scores of 1.9, Table 2), ligand expression was further

enhanced in the schwannian stroma of GGNBs, and, albeit not

statistically significant, of GGNs (Figures 1E, 1G). In addition,

chemokine expression, even low, was enhanced in the neuroblastic

compartment of metastatic samples as compared to PTs, and in

PTs as compared to controls (Table 2).

Table 1. TMA: clinical characteristics.

Patient at diagnosis N=156

Age (mo)

Median (range) 26 (0–151)

,12 mo, n (%) 78 (50)

$12 mo, n (%) 78 (50)

Follow-up (mo)

Median (range) 101 (1–243)

Survival

Alive at time of last follow-up, n (%) 117 (75)

INSS stage

1, n (%) 31 (20)

2, n (%) 19 (12)

3, n (%) 32 (21)

4, n (%) 58 (37)

4S, n (%) 16 (10)

COG Risk Classification

Low, n (%) 54 (35)

Intermediate, n (%) 44 (28)

High, n (%) 58 (37)

Neuroblastoma type

Standard, n (%) 101 (65)

Mass screening, n (%) 55 (35)

Sample type

Primary tumor, n 156

Metastasis, n 56

Lymph node, n (%) 48 (86)

Liver, n (%) 6 (10)

Skin, n (%) 2 (4)

Control normal tissue, n 65

Adrenal Gland, n (%) 50 (77)

Sympathetic ganglion, n (%) 15 (23)

Differentiation Stage

UnNB, n (%) 36 (23)

GGNB, n (%) 20 (12)

GGN, n (%) 6 (3)

mo: month.
n: number of cases.
INSS: International Neuroblastoma Staging System.
COG: Children Oncology Group.
NB: neuroblastoma.
UnNB: undifferentiated NB.
GGNB: ganglioneuroblastoma.
GGN: ganglioneuroma.
doi:10.1371/journal.pone.0043665.t001
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Expression of the CXCR7 Receptor in NB Cell Lines
CXCR7 expression in N-, S-and I-type NB cell lines. To

corroborate our TMA analyses, we next assessed CXCR7

expression by RT-PCR analyses in well-characterized NB cell

lines harboring neuronal-like (N-type), glial/schwannian-like (S-

type), or intermediate and undifferentiated (I-type) phenotype

[1,34]. In contrast to CXCR4, CXCR7 expression was not detected

in any analyzed I-type NB cell lines (SK-N-Be(2c), LAN-5, SH-

IN), while 4/8 N-type cell lines (IGR-N91, LAN-1, IMR-32, SJN-

B12) and 1/2 S-type cell line (SH-EP) expressed the receptor

(Figure 2A). Moreover, poor CXCR7 surface expression was

detected in RT-PCR-positive NB cells, while only IMR-32 cells

harbored significant levels of both CXCL12 receptors (Figure 2B).

Thus, our data suggested that, as observed in tumor tissues,

CXCR7 expression may be linked to NB cell differentiated

phenotype, as no CXCR7 expression was detected in the most

undifferentiated NB cell lines.

CXCR7 expression may be associated with NB cell

differentiation in vitro. As we observed a stronger CXCR7

expression in differentiated tumor tissues, we next investigated

whether the receptor expression could bealso associatedwithNBcell

differentiation in vitro. Consequently, we induced CXCR7-negative

NB cell lines to differentiate in vitro, by using all-trans retinoic acid

(RA) and bromodeoxyuridine (BrdU) [38,42,43]. As N-and I-type

NB cell subtypes have been shown to progress towards neuronal or

glial/schwannian fateuponRAorBrdUtreatment, respectively[44],

N-type IGR-NB8andSH-SY-5Y cells, aswell as I-type SK-N-Be(2c)

cells were exposed to 10 mM of either differentiation agent for

30 days. NB cell morphology changes appeared as early as 3 days

after either RA or BrdU exposure (right panel, Figure 2C), and

persisted during all the differentiation induction experiment (Figure

S1A), aspreviouslyobserved [44].Moreover, treatedNBcells elicited

global reduced proliferation, without enhanced apoptosis, further

confirming an induced differentiation of treated NB cells in vitro

(Figure S1B and S1C). As shown in Figure 2C (left panel), CXCR7

expression was induced in IGR-NB8 cells after 3 days of RA

treatment (p,0.01), whereas its expression was weakly detectable

upon BrdU exposure. Similar RA-induced CXCR7 expression

pattern was also detected in the SH-SY5Y and the SK-N-Be(2c) cell

lines (Figure S2A, S2B). These data thus suggested that induction of

CXCR7 expression, albeit weak, preferentially occurred when NB

cells underwent neuronal rather than glial/schwannian differentia-

tion. Addition of CXCL12 together with RA or BrdU treatment did

not further increase receptor expression in treated NB cells (Figure

S2B). However, induced CXCR7 protein levels might be too low, or

post-translationallymodified, as they could be neither detected at the

cell surface (FACS analyses), nor in the intracellular space of treated

NB cells (Immunofluorescence assays), by both anti-CXCR7

antibodies used in this study (data not shown).

Ectopic expression of CXCR7 in NB cell lines. Although

CXCR7 was found in a minority of NB cell lines as compared to

CXCR4, its expression was however detected in some CXCR4-

expressing NB cells. Consequently, we next focused on the

individual roles and functional interactions between CXCR7 and

CXCR4 in NB. To that extent, individual CXCR7, CXCR4 or

combined receptors were overexpressed in the CXCR4/CXCR7-

negative IGR-NB8 cell line (respectively NB867, NB8x4 and

NB86467 cell lines). CXCR7 was also ectopically overexpressed

in the SH-SY5Y cell line (SHSY67 cells), which expresses high

endogenous CXCR4 levels (Figure 2D). Of note, a decrease of

CXCR7 surface expression was observed in SHSY67 cells (mean

fluorescent intensity of 44) as compared to NB86467 cells (mean

fluorescent intensity of 60), while similar CXCR4 surface

expression was detected in these two cell lines. Different CXCR7

Figure 1. Expression of CXCR7, and its ligand CXCL12 in a NB TMA. (A) Semi-quantitative assessment of CXCR7 and CXCL12 expression levels
in neural, endothelial and stromal cell compartments of NB primary tumors. Median score represents the average of the immunostaining score (0–4).
Percentage (%) indicates percentage of CXCR7-or CXCL12-positive tumor tissues. (B) Immunohistochemical analysis of CXCR7 in undifferentiated
tumor (UnNB), ganglioneuroblastoma (GGNB), ganglioneuroma (GGN) and control normal sympathetic ganglion (SG) tissues. Black arrow: ganglion
cell. (C) CXCR7 expression levels (median score) in UnNBs, in differentiated tumor tissues, (D) and in tumors of patient according to the age of patient
at diagnosis. (E) Immunohistochemical analysis of CXCL12 in UnNBs, GGNBs, GGNs and SG tissues. Red arrow: endothelial cell. (F) CXCL12 expression
levels (median score) in the endothelial compartment of tumors according to the age of patient at diagnosis, (G) and in the stroma of UnNBs, GGNBs
and GGNs. Student’s t-test: *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0043665.g001

Table 2. Expression of CXCR7 and CXCL12 in NB primary tumors, metastases and control tissues.

Neural cells Endothelial cells Stromal cells

Primary tumor Metastasis Control Primary tumor Metastasis Control Primary tumor Metastasis Control

CXCR7 expression

Positive tissues (%) 76 75 63 33 33 26 58 53 24

Number of cases 119 42 41 52 19 17 92 30 16

Median score 0.92 0.93 0.78 0.15 0.18 0.14 0.48 0.45 0.2

p-value ns ns ns ns ns 0.01

CXCL12 expression

Positive tissues (%) 77 92 70 100 100 100 98 98 93

Number of cases 121 52 46 156 56 65 153 55 61

Median score 0.82 1.04 0.59 3.12 3.13 3 1.97 1.93 1.98

p-value 0.02 0.01 ns 0.01 ns ns

Control regroups normal adrenal gland and sympathetic ganglion tissues; Median score means average tumor score, as established by semi-quantitative analysis of the
immunostaining; p-value (Student’s t-test) refers to primary tumor: ns means not significant, p,0.05 is considered significant, p#0.01 is considered very significant.
doi:10.1371/journal.pone.0043665.t002
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expression levels in these two double receptor-expressing cell lines

were confirmed by semi-quantitative RT-PCR analyses

(Figure 2E). Thus, the two CXCR7/CXCR4-expressing trans-

duced cell lines harbored variable relative expression levels of the

two CXCL12 receptors.

CXCL12 and CXCL11 Induce ERK1/2, but not Akt Pathway
Activation in CXCR7-expressing NB Cells
As CXCR7/CXCL12-mediated ERK1/2 activation was de-

tected in various models [22,23,45,46], we next assessed ERK1/2

cascade activation in NB transduced cells, in response to either

CXCL12 or CXCL11 ligand. We showed herein that ERK1/2

was activated in CXCR4-and CXCR7-transduced NB cells after

CXCL12 stimulation, indicating that CXCR4 and CXCR7 were

both able to activate downstream pathways in response to their

common ligand (Figure 3A). Interestingly, constant ERK1/2

activation was maintained until 30 min after CXCL12 stimulation

in NB8x4 cells, whereas enhanced intensity after 5 and 10 min,

followed by a signal decrease was observed in the NB867 and

NB8x467 cell lines. These data indicated that CXCR7 might

interact with CXCR4/CXCL12-mediated signaling. Moreover,

ERK1/2 activation was lost in CXCR4-expressing NB864 cells

upon addition of the specific CXCR4 inhibitor (TN14003), further

confirming that this activation was specific and restricted to the

CXCR4/CXCL12 axis in those cells. As ERK1/2 activation was

not completely inhibited by TN14003 treatment in

NB86467 cells, it further suggested that ERK1/2 activation

was partially mediated by the CXCR7/CXCL12 axis in CXCR7/

CXCR4-expressing NB86467 cells. In parallel, CXCR7 only

slightly weakened CXCR4/CXCL12-induced ERK1/2 activation

Figure 2. Expression of the two CXCL12 receptors in NB cell lines. (A) Qualitative RT-PCR analyses for CXCR7 and CXCR4 mRNA expression in
a panel of N-, I-and S-type NB cell lines. GAPDH was used as gene of reference. The prostate cancer cell line PC-3 and the breast cancer cell line MCF-7
were used as positive controls for CXCR7 expression. (B) Flow cytometry analyses of CXCR7 and CXCR4 cell surface expression in NB cell lines. Percent
represents CXCR7-or CXCR4-positive cells. Grey line: cells stained without the primary Ab. Black line: cells stained with anti-CXCR7 or anti-CXCR4. (C)
Semi-quantitative real-time PCR analyses of CXCR7 mRNA expression level in the IGR-NB8 cell line after 3 days of treatment with either 10 mM RA or
BrdU (left panel). Expression levels of CXCR7 transcripts were calculated relatively to the level of the housekeeping gene HPRTI. Untreated (unt.) cells
and DMSO-treated NB cells represented control conditions. Columns indicate results in triplicates, and were representative of two independent
experiments. Error bars indicate S.D. Student’s t-test: *p,0.05, **p,0.01. Images (right panel) represent immunofluoresence staining of b3-tubulin
(red) and DAPI (blue) in treated or untreated IGR-NB8 cells. (D) CXCR7, CXCR4, or a combination of the two CXCL12 receptors was overexpressed in
the IGR-NB8 and the SH-SY5Y cell lines. As all vectors encoded for EGFP, transduced GFP-expressing NB cells were sorted by FACS to control
transfection efficiency. Both NB8pMigr and SHSYpMigr cell lines represented control cells, transduced with the pMigr empty vector. Percent of
CXCR7-and CXCR4-positive transduced cells are indicated as well as the mean fluorescent intensity (brackets) for CXCR7 and CXCR4 staining. Dark
and grey lines: cells stained without anti-CXCR7 and anti-CXCR4, respectively; Green and blue lines: cells stained with anti-CXCR7 and anti-CXCR4,
respectively. (E) Semi-quantitative real-time PCR analyses for CXCR7mRNA expression levels in NB transduced cell lines. Experiment was performed in
triplicates. Error bars indicate S.D.
doi:10.1371/journal.pone.0043665.g002
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in the other double receptor-positive SHSY67 cell line, and was

not able to signal via ERK1/2 upon addition of both CXCL12

and CXCR4 inhibitor (Figure 3B). In addition, CXCR7 was also

able to activate ERK1/2 cascade in NB867 and NB86467 cells

upon CXCL11 engagement (Figure 3C), but not in SHSY67 cells

(data not shown). These data thus suggested that the two CXCR7/

CXCR4-expressing SHSY67 and NB8x467 cell lines differently

responded to CXCL12 and CXCL11.

Looking for additional downstream effectors of CXCR7 and

CXCR4 receptors, we also evaluated Akt activation upon

stimulation of NB cells with either CXCL12 or CXCL11

chemokine ligand [10,47]. However, neither the CXCR4/

CXCL12 nor the CXCR7/CXCL12/CXCL11 axes were able

to activate Akt in transduced NB cells (Figure S3).

In Contrast to CXCR4, CXCR7 Alters NB Growth in vitro
As the CXCR7 receptor was shown here to activate growth-

regulating pathway such as ERK1/2 cascade, we next explored

the role of CXCR7, and analyzed the relative contribution of the

two CXCL12 receptors in mediating NB growth in vitro. Our data

showed that the presence of CXCR4 significantly enhanced

NB864 and NB86467 cell clonogenic abilities, while CXCR7

expression in NB867 cells resulted in significantly decreased

colony number, when compared to the NB8pMigr cell line, and in

absence of the ligand (Figure 4A, upper panel). Interestingly, the

Figure 3. ERK1/2 activation in NB cell lines. Immunobloting of phospho-ERK (pERK) and total ERK (ERK) in transduced cells, treated with (A, B)
100 ng/ml human recombinant CXCL12, in presence or in absence of 1 mM of the CXCR4 blocker TN14003, (C) 100 ng/ml human recombinant
CXCL11.
doi:10.1371/journal.pone.0043665.g003
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presence of CXCR7 also significantly decreased the number of

colonies derived from the SHSY67 cell line, in absence and in

presence of CXCL12 (Figure 4A, lower panel). Addition of the

ligand markedly increased the clonogenic capacity of the CXCR4-

positive SHSYpMigr cell line, without affecting that of SHSY67

cells. These data thus suggested that CXCR7 affected the

CXCR4-mediated SHSY67 growth, but not that of

NB86467 cells in vitro.

CXCR7 Impairs CXCR4/CXCL12-mediated NB Chemotaxis
The CXCR7/CXCL12 axis has been proposed to induce

tumor cell migration in various cancer models [10,46,48].

Therefore, we next evaluated the impact of CXCL12 binding to

CXCR7 on NB chemotaxis in vitro. No migration toward the

ligand CXCL12 was observed using CXCR7-expressing

NB867 cells and CXCR7/CXCR4-expressing NB86467 and

SHSY67 cells (Figure 4B). In contrast, the presence of CXCL12

significantly enhanced motility of CXCR4-expressing cells

(NB864 and SHSYpMigr cells), as previously described [16].

Thus, these data showed that the CXCR7/CXCL12 pair could

not stimulate NB chemotaxis, and further suggested CXCR7 as

a negative regulator of CXCR4 signaling, as it altered CXCR4/

CXCL12-mediated chemotaxis of NB cells in vitro.

CXCR7 Abrogates Subcutaneous NB Growth
We next addressed the impact of CXCR7 on NB growth in vivo,

and particularly its ability to regulate and/or impair the CXCR4-

mediated effects. In subcutaneous conditions, overall tumor take

was reduced in the group of mice engrafted with NB867, as only

3/6 sites presented a tumor versus 6/6 sites for the other groups

(Figure 5A). The volume of NB867 cell-derived tumors was also

significantly reduced, as compared to that of derived from the

control NB8pMigr cell line. Supporting our in vitro observations,

these data further suggested CXCR7 as a critical player in NB

growth regulation. However, H&E staining analyses did not reveal

particular differentiation area on paraffin-embedded sections of

NB867 cell-derived xenografts (data not shown). In addition,

growth of NB8 cell-derived tumors was not significantly affected

by the presence of CXCR4 alone, nor in association with CXCR7

in such in vivo conditions.

To evaluate a putative functionality of the CXCL12 ligand in

CXCR7-mediated effect in our heterotypic mouse model, we

measured the concentration of CXCL12 in s.c xenografts, and

associated NB transduced cell lines (Figure 5B). As CXCL12 was

highly produced in mouse adrenal gland tissues [16], production

levels of the chemokine in such tissues were used as positive

control. CXCL12 production in NB cell lines and xenografts was

low (mean concentration of CXCL12,180 pg/mg of protein) and

did not significantly vary between either cell lines or derived

tumors, suggesting that the CXCR7-mediated anti-proliferative

effect is unlikely due to the presence of its ligand CXCL12 in such

in vivo conditions.

Figure 4. Impact of CXCR7 on NB growth and migration in vitro. (A) Clonogenic growth of NB transduced cell lines was evaluated in a soft
agar assay, after at least two weeks of incubation at 37uC. Columns: mean values 6 SEM of two independent experiments. When stipulated, 100 ng/
mL CXCL12 were added to the culture medium. (B) Chemotaxis of transduced NB cells toward 100 ng/ml CXCL12. Columns: mean values6 SEM of at
least two independent experiments. Student’s t-test was used for all experiments: *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0043665.g004
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CXCR7 Delays CXCR4-mediated Proliferative Effect in
Orthotopic Conditions
As we showed herein that CXCR7 enabled NB growth

reduction in a heterotypic mouse model (Figure 5A), and altered

CXCR4/CXCL12-mediated NB migration (Figure 4B), we

further evaluated the extent to which CXCR7 would affect both

the in vivo CXCR4-mediated growth promoting effect and NB

dissemination in a orthotopic environment. To that purpose,

NB864 and NB86467 cells were orthotopically implanted in

mouse adrenal gland, as previously described [16], and tumor

growth was evaluated by echography for 6 weeks (Figure 5C). At

week 3, 33% of animals engrafted with NB864 cells developed

a tumor, whereas no tumors were detected in the NB86467

group. Interestingly, the volume of NB86467 cell-derived tumors

was significantly reduced as compared to that of the NB864 group

at week 5 (p,0.05), suggesting that CXCR7 significantly affected

tumor take of tumors derived from CXCR4-positive

NB86467 cells. Due to excessive tumor volume in the NB864

group, mice had to be sacrificed at earlier time point (week 5) than

those injected with the NB86467 cell line (week 6). At week 6, 6/

7 mice in the NB86467 group developed tumors, with volume

similar to those observed at week 5 with the NB864 group. No

macroscopic metastases were observed in either group.

Discussion

The CXCR4/CXCL12 axis has been largely shown to

participate in tumor development and progression [9,16].

Although several hypotheses on the role of CXCR7 and its

possible interaction with CXCR4 have been proposed in different

tumor systems, the functional implication of the global CXCL12/

CXCR7/CXCR4 axis in NB remains unknown. Our TMA

analyses revealed that CXCR7 expression was generally weak in

primary NB of all stages and in metastatic tissues. Moreover, in

contrast to breast, lung and hepatocellular carcinomas, CXCR7

was not expressed in NB vasculature but rather preferentially

associated to its neural compartment [30,49]. Interestingly,

CXCR7 expression was associated to mature neural cells, such

as ganglion cells, in stroma-rich GGNB and GGN tumors, which

are associated to a favorable prognosis [2]. However, no

statistically significant favorable prognosis value could be assigned

to CXCR7. The absence of significance may be explained by the

low and variable levels of CXCR7 expression in heterogeneous

NB tissues. Nonetheless, the particular CXCR7 expression pattern

Figure 5. Impact of CXCR7 on NB growth in vivo. (A) In vivo tumor take (number of sites with tumor/total sites) and growth (mean tumor
volume 6 SEM) after s.c implantation of transduced NB cells in nude mice. Two-way ANOVA: **p,0.01. (B) Production of CXCL12 was measured by
ELISA in transduced NB cell lines, and derived s.c tumors. Normal nude mouse adrenal gland (AG) tissue was used as positive control. Results are
expressed in triplicates as pg of CXCL12 per mg of extracted protein. Error bars indicate S.D. of triplicates. (C) In vivo orthotopic implantation of
NB864 and NB86467 cell lines in nude mice. Upper panel: tumor take represented as fraction and percentage of tumor-bearing mice from week 3
to week 6 after NB cell implantations. Lower panel: kinetics of tumor volume. Mann-Whitney test: *p,0.05.
doi:10.1371/journal.pone.0043665.g005
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on mature cells suggested an implication/association of the

CXCR7 receptor with NB differentiation.

Interestingly, TMA analyses also revealed a strong CXCL12

expression in endothelial and stromal cells in tumors, suggesting

a paracrine role of the chemokine in NB. In particular, a putative

implication of the ligand in NB angiogenesis is likely, as already

reported in the context of ovarian and colon cancers [50,51].

The pattern of CXCR4 expression in NB has been already

shown to be related to high stage disease, including non-metastatic

stage 3 and metastatic stage 4 NBs [52]. As the two receptors

elicited specific expression patterns in NB tissues, our TMA

analyses suggest a complex contribution of the CXCR7 and

CXCR4 receptors in NB pathogenesis, which may be tightly

modulated by a permanent cross-talk with their common ligand

CXCL12, highly produced by tumor microenvironment.

Screening of NB cell lines by RT-PCR analyses revealed specific

CXCR7 expression in N-type and S-type NB cell lines, rather than

in the most undifferentiated I-type NB cell lines [53], suggesting an

association of CXCR7 expression with neuronal-and/or glial/

schwannian NB cell phenotype. A link between CXCR7

expression and cell differentiation phenotype has already been

reported in immune cells. CXCR7 expression was indeed

proposed to correlate with dendritic cell maturation, and described

as a potential maker of differentiating memory B cells [54].

Moreover, CXCR7 expression has been also shown to drastically

increase in FCS-induced differentiation of glioma cells in vitro [45].

A weak induced CXCR7 expression was observed in NB cells

exposed to RA, but not to BrdU, suggesting that CXCR7 may be

associated with neuronal rather than glial differentiation. These

in vitro analyses correlated our TMA data showing CXCR7

staining in tumor ganglion cells, rather than in schwannian

stroma. However, CXCR7 could be neither detected at the

surface, nor in the intra-cellular space of NB cells during all the

differentiation induction experiment. These observations suggest

that receptor expression may be modulated by potential post-

translational modifications, or that putative induced-protein

expression is too low to be detected by antibodies used in this

study. In addition, exogenous CXCR7 did not induce, by its own,

phenotypic changes in the slow proliferating-tumors in our

heterotypic mouse model. Indeed, no ganglion-like cells and no

differentiating neuroblasts were detected in NB8x7-derived

xenografts. Therefore, further investigation will be necessary to

determine the intimate link between CXCR7 expression and NB

differentiation process.

Although specifically expressed in differentiated and matured

tumors, CXCR7 was also detected in a weak percentage of tumor

cells in tissues, independently of NB clinical stages. As CXCR4 is

largely expressed in high grade NBs, co-expression of the two

CXCL12 receptors in tumor tissues is then likely. Screening of NB

cell lines confirmed such hypothesis by showing co-expression of

CXCR7 and CXCR4 in some NB cells, as described elsewhere

[55]. Consequently, we next examined the role of CXCR7 in NB,

and particularly its relation with CXCR4. CXCR7, like CXCR4,

was able to induce downstream signaling pathway on its own.

However, co-expression of the two receptors in NB cells led to

a modulation of ERK1/2 activation in presence of CXCL12,

demonstrating a functional interaction between CXCR7 and

CXCR4 in NB, as described in other models [56]. However,

induction of ERK activation by either CXCL12 or CXCL11

appeared to be cell line-dependent, as NB8x4x7 and SHSYx7 cells

responded differently towards these chemokines. Such discrepancy

may result from CXCR4 endogenous expression levels, from

variable CXCR7 exogenous levels detected in these NB cell lines,

or suggests that CXCR7 may signal through pathways other than

ERK1/2 cascade in NB cells.

In contrast to CXCR4, CXCR7 alone significantly decreased

in vitro NB cell clonogenic potential, in absence of CXCL12.

Furthermore, CXCR7, by its own, also significantly reduced

subcutaneous growth of NB cell-derived tumors, independently of

its ligand. Such data are further supported by a recent study

showing that proliferation of CXCR7-positive glioma cells may

not be affected by CXCL12 [45]. In addition, a ligand-in-

dependent role for CXCR7 has been also demonstrated in

a prostate cancer model [57]. Therefore, CXCR7 and CXCR4

might individually display opposite ligand-independent-mediated

functions in NB.

Significant in vitro alterations of NB clonogenicity were noted in

the SHSY67 cell line expressing both CXCR7 and CXCR4

receptors, in presence or in absence of CXCL12. In an orthotopic

and CXCL12-producing environment, CXCR7 was not able to

suppress the growth of large, established tumors, as growth curve

slopes of both NB864 and NB86467 cell-derived tumors were

similar in the exponentially tumor growth phase. However, in such

environment and in contrast to s.c. conditions, presence of

CXCR7 clearly resulted in a delayed tumor take of CXCR4/

CXCR7-positive cell-derived tumors, as compared to NB864 cell-

derived tumors. Consequently, our observations suggest a critical

role of CXCR7 in regulating CXCR4-mediated effects in NB, and

underline the essential impact of a particular microenvironment

on NB cell behavior, as mentioned in our previous study [16].

CXCR7 alone did not favor migration of NB cells toward

CXCL12, in contrast to CXCR4. Conversely, a very recent study

reported that CXCR7 enhanced chemotaxis of CXCR7-expres-

sing NB cells in presence of CXCL12-producing mesenchymal

stromal cells [55]. However, it was not clear whether additional

factors released by stromal cells were required for truly activating

NB chemotaxis. More interestingly, CXCR7 significantly altered

the CXCR4-mediated chemotaxis of NB86467 and SHSY67

cells toward CXCL12, further supporting a negative regulation of

CXCR4 by CXCR7.

It has been recently proposed that CXCR7 may control

CXCL12 distribution by sequestrating the ligand present in the

extracellular space. In such model, CXCR7 enables establishment

of effective CXCL12 gradients, thus resulting in increased

responsiveness of CXCR4 signaling and chemotaxis in response

to these gradients [58,59]. In that context, CXCR7 has been

clearly demonstrated to control cell migration in a zebrafish

model, and to regulate migratory advantage provided by CXCR4

in CXCR4/CXCR7-expressing primary T cells and tumor cells

[32,59,60,61]. However in the present study, co-expression of

CXCR7 with CXCR4 apparently did not favor metastatic

dissemination of a non-aggressive IGR-NB8 cell line in vivo, as

no metastases were detected after orthotopic implantation of

NB86467 cells. In the other hand, ligand-scavenging effect

attributed to CXCR7 has been also proposed to limit acute

CXCR4/CXCL12-mediated signaling. Indeed, Hernandez et al

suggested that CXCR7 scavenging function might impair

CXCR4-induced breast tumor cell invasion, by down-regulating

CXCR4/CXCL12-mediated metalloproteinase-12 production

[33]. As altered CXCR4/CXCL12-mediated chemotaxis and

growth were observed upon co-expression of the two CXCL12

receptors in NB cells, such ligand scavenging role for CXCR7

appears likely, and may enable a negative regulation of CXCR4/

CXCL12-mediated fonctions in NB.

CXCR7 was also reported to act as a co-receptor for CXCR4.

Combined CXCR4/CXCR7 expression has been detected in

primary human tumors and tumor cell lines [45,62,63]. Structural
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association of the two receptors has been shown to affect CXCR4/

CXCL12-mediated G-protein signaling [64]. As ERK cascade

activation was modulated in CXCR4/CXCR7-expressing NB

cells as compared to CXCR4-expressing NB cells, putative

heterodimerization of the two receptors in NB cells is thus

possible. Moreover, it has been hypothesized that CXCR7, once

engaged in heterodimers with CXCR4, may also negatively

regulate CXCR4 functions through an allosteric mechanism

(independently of CXCL12) [64]. These observations further

support our data showing an alteration of the CXCR4-mediated

growth promoting effect in vitro in SHSYx7 cells, particularly in

absence of CXCL12. Several lines of evidence have suggested that

chemokine receptor homo-or heterodimerization activates distinct

signaling pathways, and thus distinct biological responses [65]. As

the two CXCL12 receptors may form heterodimers as efficiently

as homodimers [64], tight regulation of CXCR4 and CXCR7

expression may enable variable conformations of the two receptors

at cell membrane, and may thus lead to activation of distinct

signaling [66,67]. Such hypothesis may explain the heterogeneity

of responses observed in vitro, using the two transduced NB cell

lines expressing variable CXCR7/CXCR4 receptor expression

levels.

To conclude, our data reveal distinct functional roles for the two

CXCL12 receptors in NB. While CXCR4 favors NB growth and

chemotaxis, CXCR7 reduces tumor growth and may be associated

to less aggressive stages of the disease. Our data clearly show anti-

tumorigenic properties for the CXCR7 receptor in NB, as

CXCR7 was able to affect in vitro migration-promoting effect

mediated by the CXCR4/CXCL12 axis, and to delay orthotopic

tumor take of CXCR4-positive NB cells. Taken together our

observations suggest that CXCL12-induced responses may result

from a direct or indirect cross-talk between CXCR7 and CXCR4,

which may be tightly modulated by receptor expression and by

a particular ligand-producing microenvironment. However,

whether CXCR7 may modulate CXCR4 signaling as a result of

their heterodimerization or/and by scavenging the ligand will

need further investigation. Nonetheless, a putative cross-talk

between the two CXCL12 receptors may give clues to elucidate

the original and complex CXCR7/CXCR4/CXCL12 distribu-

tion and functions in NB pathogenesis.

Supporting Information

Figure S1 Characteristics of NB cells after RA or BrdU
treatment in vitro. (A) SK-N-Be(2c) cells were exposed to either

10 mM all-trans Retinoic Acid (RA) or 5-bromo-2-deoxyuridine

(BrdU) for 3 and 30 days. Images illustrate immunofluoresence

staining of b3-tubulin (red) and DAPI (blue). RA-treated NB cells

elaborated enhanced neuritic processes and proliferated by

forming interconnected cell clumps, while BrdU-treated cells

presented glial-like morphology, with large flat cytoplasm and

enhanced surface adherence. Morphological changes were not

detected in untreated (unt.), nor in DMSO-treated control cells. (B)

Growth of SK-N-Be(2c) (left panel) and IGR-NB8 (right panel)

cells was followed upon treatment with either differentiation agent

for 96 h. Columns represent OD mean 6 SEM of two

independent experiments. As previously described [44], RA

enhanced SK-N-Be(2c) cell growth for 72 h, as compared to cells

exposed to DMSO, before inducing a growth arrest in those cells

at 96 h. Proliferation of IGR-NB8 cells already slowed down after

72 h of RA treatment, as compared to DMSO-treated control

cells. BrdU-treatment induced a reduction of both SK-N-Be(2c)

and IGR-NB8 cell growth, as compared to untreated cells. (C)

Apoptosis was measured by detection of the sub-G1 apoptotic cell

using the PI staining method [68]. Such assay was performed after

7 day-treatment with either 10 mM RA or BrdU. Treatment of

NB cells with 1 mg/ml doxorubycin (Dox) for 48 h was used as

positive control. A slight induction of mortality was noted for the

SK-N-Be(2c) cell line when treated with RA, which was also

previously reported [44], while no effect was observed upon

treatment with BrdU, as compared to control cells. None of the

treatments induced apoptosis of IGR-NB8 cells.

(TIF)

Figure S2 CXCR7 mRNA expression levels upon differ-
entiation of NB cells in vitro. (A) Semi-quantitative real-time

PCR analyses of CXCR7 mRNA expression levels upon treatment

of SH-SY5Y cells with 10 mM RA or BrdU for 3 days. (B) The

SK-N-Be(2c) and the IGR-NB8 cell lines were treated with 10 mM
RA. Untreated cells (unt.) or cells exposed to DMSO were used as

controls. When stipulated, 100 ng/mL CXCL12 were added to

the culture medium. Expression levels of CXCR7 transcripts were

calculated relatively to the level of the housekeeping gene HPRTI.

The breast cancer cell line MCF-7 and the prostate cancer cell line

PC-3 were used as positive controls for CXCR7 expression.

Columns indicate results in triplicates and were representative of

two independent experiments. Error bars indicate S.D. Student’s

t-test: *p,0.05, **p,0.01.

(TIF)

Figure S3 Akt pathway activation in NB cell lines.
Immunobloting of phospho-Akt (pAkt) and total Akt (Akt) in NB

transduced cells, stimulated with (A) 100 ng/ml CXCL12, or (B)

100 ng/ml CXCL11 at indicated time points. NB transduced cells

were also treated with 10 ng/ml IGF-1 for 1 h, as positive control

[69].

(TIF)

Table S1 Expression of CXCR7 and CXCL12 in NB
clinical groups. CXCR7 and CXCL12 expression, as associ-

ated to neural, endothelial and stromal cell compartments, were

measured in INSS neuroblastoma clinical groups.

(DOC)
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