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Abstract: Modulated tone-burst light was employed to measure non-
radiative relaxation time of fluorophores with biomedical importance 
through photoacoustic effect. Non-radiative relaxation time was estimated 
through the frequency dependence of photoacoustic signal amplitude. 
Experiments were performed on solutions of new indocyanine green (IR-
820), which is a near infrared dye and has biomedical applications, in two 
different solvents (water and dimethyl sulfoxide (DMSO)). A 1.5 times 
slower non-radiative relaxation for the solution of dye in DMSO was 
observed comparing with the aqueous solution. This result agrees well with 
general finding that non-radiative relaxation of molecules in triplet state 
depends on viscosity of solvents in which they are dissolved. Measurements 
of the non-radiative relaxation time can be used as a new source of contrast 
mechanism in photoacoustic imaging technique. The proposed method has 
potential applications such as imaging tissue oxygenation and mapping of 
other chemophysical differences in microenvironment of exogenous 
biomarkers. 
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(300.6380) Spectroscopy, modulation 

References and links 
1. M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 

110(5), 2641–2684 (2010). 
2. Y. H. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence 

lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt. 15(5), 056022 (2010). 
3. J.-M. I. Maarek, L. Marcu, M. C. Fishbein, and W. S. Grundfest, “Time-resolved fluorescence of human aortic 

wall: use for improved identification of atherosclerotic lesions,” Lasers Surg. Med. 27(3), 241–254 (2000). 
4. P. H. Carpentier, “Méthodes actuelles d’exploration clinique de la microcirculation,” J. Mal. Vasc. 26(2), 142–

147 (2001). 
5. S. Murata, P. Herman, H. J. Lin, and J. R. Lakowicz, “Fluorescence lifetime imaging of nuclear DNA: effect of 

fluorescence resonance energy transfer,” Cytometry 41(3), 178–185 (2000). 
6. A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Single-wavelength functional photoacoustic 

microscopy in biological tissue,” Opt. Lett. 36(5), 769–771 (2011). 
7. A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Picosecond absorption relaxation measured with 

nanosecond laser photoacoustics,” Appl. Phys. Lett. 97(16), 163701 (2010). 
8. S. Ashkenazi, S. W. Huang, T. Horvath, Y. E. L. Koo, and R. Kopelman, “Photoacoustic probing of fluorophore 

excited state lifetime with application to oxygen sensing,” J. Biomed. Opt. 13(3), 034023 (2008). 
9. K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-

wave laser,” J. Biomed. Opt. 13(2), 024006 (2008). 
10. Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept 

system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am. 116(6), 3523–3533 (2004). 
11. M. Ouzafe, P. Poulet, and J. Chambron, “Photoacoustic detection of triplet state and singlet oxygen in highly 

absorbing samples,” Photochem. Photobiol. 55(4), 491–503 (1992). 

#150680 - $15.00 USD Received 7 Jul 2011; revised 19 Aug 2011; accepted 5 Sep 2011; published 8 Sep 2011
(C) 2011 OSA 1 October 2011 / Vol. 2,  No. 10 / BIOMEDICAL OPTICS EXPRESS  2749



12. A. Mandelis, N. Baddour, Y. Cai, and R. G. Walmsley, “Laser-induced photothermoacoustic pressure-wave 
pulses in a polystyrene well and water system used for photomechanical drug delivery,” J. Opt. Soc. Am. B 
22(5), 1024–1036 (2005). 

13. S. Boonsang and R. J. Dewhurst, “Pulsed photoacoustic signal characterization incorporating near- and far-field 
diffraction effects,” Meas. Sci. Technol. 16(4), 885–899 (2005). 

14. A. Mandelis, Y. C. Teng, and B. S. H. Royce, “Phase measurements in the frequency domain photoacoustic 
spectroscopy of solids,” J. Appl. Phys. 50(11), 7138–7146 (1979). 

15. X. Chen, K. Q. Schwarz, and K. J. Parker, “Acoustic coupling from a focused transducer to a flat plate and back 
to the transducer,” J. Acoust. Soc. Am. 95(6), 3049–3054 (1994). 

16. X. Chen, D. Phillips, K. Q. Schwarz, J. G. Mottley, and K. J. Parker, “The measurement of backscatter 
coefficient from a broadband pulse-echo system: a new formulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. 
Control 44(2), 515–525 (1997). 

17. J. E. Mark, Polymer Data Handbook, 2nd ed. (Oxford University Press, 2009). 
18. H. Tohmyoh, T. Imaizumi, and M. Saka, “Acoustic resonant spectroscopy for characterization of thin polymer 

films,” Rev. Sci. Instrum. 77(10), 104901 (2006). 
19. P. K. Wong, P. C. W. Fung, and H. L. Tam, “Low thermal diffusivity measurements of thin films using mirage 

technique,” J. Appl. Phys. 84(12), 6623–6627 (1998). 
20. G. J. Diebold, “Theory of thin layer photoacoustic cells for determination of volume changes in solution,” J. 

Phys. Chem. B 102(27), 5404–5408 (1998). 
21. F. A. Schaberle, R. M. D. Nunes, M. Barroso, C. Serpa, and L. G. Arnaut, “Analytical solution for time-resolved 

photoacoustic calorimetry data and applications to two typical photoreactions,” Photochem. Photobiol. Sci. 9(6), 
812–822 (2010). 

22. T. Autrey, N. S. Foster, K. Klepzig, J. E. Amonette, and J. L. Daschbach, “A new angle into time-resolved 
photoacoustic spectroscopy: A layered prism cell increases experimental flexibility,” Rev. Sci. Instrum. 69(6), 
2246–2258 (1998). 

23. F. L. Lizzi, M. Greenebaum, E. J. Feleppa, M. Elbaum, and D. J. Coleman, “Theoretical framework for spectrum 
analysis in ultrasonic tissue characterization,” J. Acoust. Soc. Am. 73(4), 1366–1373 (1983). 

24. M. Y. Berezin, L. Hyeran, W. Akers, K. Guo, R. J. Goiffon, A. Almutairi, J. M. J. Frechet, and S. Achilefu, 
“Engineering NIR dyes for fluorescent lifetime contrast,” in Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society, 2009. EMBC 2009 (2009), pp. 114–117. 

25. S. I. Prajapati, C. O. Martinez, A. N. Bahadur, I. Q. Wu, W. Zheng, J. D. Lechleiter, L. M. McManus, G. B. 
Chisholm, J. E. Michalek, P. K. Shireman, and C. Keller, “Near-infrared imaging of injured tissue in living 
subjects using IR-820,” Mol. Imaging 8(1), 45–54 (2009). 

26. A. Masotti, P. Vicennati, F. Boschi, L. Calderan, A. Sbarbati, and G. Ortaggi, “A novel near-infrared 
indocyanine dye-polyethylenimine conjugate allows DNA delivery imaging in vivo,” Bioconjug. Chem. 19(5), 
983–987 (2008). 

27. S. Telenkov and A. Mandelis, “Signal-to-noise analysis of biomedical photoacoustic measurements in time and 
frequency domains,” Rev. Sci. Instrum. 81(12), 124901 (2010). 

28. G. A. Holzapfel, G. Sommer, C. T. Gasser, and P. Regitnig, “Determination of layer-specific mechanical 
properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive 
modeling,” Am. J. Physiol. Heart Circ. Physiol. 289(5), H2048–H2058 (2005). 

29. S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical 
properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37(6), 1203–1217 (1992). 

30. L. Nicolaides, C. Feng, A. Mandelis, and S. H. Abrams, “Quantitative dental measurements by use of 
simultaneous frequency-domain laser infrared photothermal radiometry and luminescence,” Appl. Opt. 41(4), 
768–777 (2002). 

31. E. Delaey, F. van Laar, D. De Vos, A. Kamuhabwa, P. Jacobs, and P. de Witte, “A comparative study of the 
photosensitizing characteristics of some cyanine dyes,” J. Photochem. Photobiol. B 55(1), 27–36 (2000). 

32. M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for 
micropolarity measurements of biological systems,” Biophys. J. 93(8), 2892–2899 (2007). 

33. S. Ashkenazi, “Photoacoustic lifetime imaging of dissolved oxygen using methylene blue,” J. Biomed. Opt. 
15(4), 040501 (2010). 

34. B. Fückel, D. A. Roberts, Y. Y. Cheng, R. G. C. R. Clady, R. B. Piper, N. Ekins-Daukes, M. J. Crossley, and T. 
W. Schmidt, “Singlet oxygen mediated photochemical upconversion of NIR light,” J. Phys. Chem. Lett. 2(9), 
966–971 (2011). 

35. C. Franco and J. Olmsted III, “Photochemical determination of the solubility of oxygen in various media,” 
Talanta 37(9), 905–909 (1990). 

36. T. R. Rettich, R. Battino, and E. Wilhelm, “Solubility of gases in liquids. 22. High-precision determination of 
Henry's law constants of oxygen in liquid water from T = 274 K toT = 328 K,” J. Chem. Thermodyn. 32(9), 
1145–1156 (2000). 

37. O. Abimbola and N. Tebello, “Solvent effects on the photophysicochemical properties of tetra (tert-butylphenoxy) 
phthalocyaninato zinc (II),” Acta Phys. Chim. Sin 27(5), 1045-1052 (2011). 

38. H. Gratz, A. Penzkofer, C. Abels, R. M. Szeimies, M. Landthaler, and W. Bäumler, “Photo-isomerisation, triplet 
formation, and photo-degradation dynamics of indocyanine green solutions,” J. Photochem. Photobiol. Chem. 
128(1-3), 101–109 (1999). 

39. H. Tian, “The influence on the triplet state in antenna rhodamine dyes of intramolecular energy transfer and 
charge transfer,” J. Photochem. Photobiol. Chem. 91(2), 125–130 (1995). 

#150680 - $15.00 USD Received 7 Jul 2011; revised 19 Aug 2011; accepted 5 Sep 2011; published 8 Sep 2011
(C) 2011 OSA 1 October 2011 / Vol. 2,  No. 10 / BIOMEDICAL OPTICS EXPRESS  2750



40. S. Murphy, B. Sauerwein, H. G. Drickamer, and G. B. Schuster, “Spectroscopy of cyanine dyes in fluid solution 
at atmospheric and high-pressure—The effect of viscosity on nonradiative processes,” J. Phys. Chem. 98(51), 
13476–13480 (1994). 

41. R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Reflection mode photoacoustic measurement of speed 
of sound,” Opt. Express 15(6), 3291–3300 (2007). 

1. Introduction 

An excited molecule can return to its ground state through different pathways. Some of these 
pathways may include radiative transitions, which result in emission of photons and are called 
fluorescence or phosphorescence. The other transitions occur without emission of photon and 
are known as non-radiative transitions. In the modern medicine, different optical techniques, 
such as fluorescence lifetime (FL) measurement [1], are used to assess lifetime of a biomarker 
in an excited state. This type of assessment provides quantitative information about 
microenvironment in which molecules of the biomarker is situated. Measuring the excited 
state lifetime of a biomarker has applications like detection of brain tumors [2], diagnosis of 
blood pathologies [3], monitoring of microvessel oxygenation [4], and study of DNA 
dynamics [5]. Medical fluorescence imaging techniques, however suffer from loss of spatial 
information due to strong scattering of light in turbid media like tissue. Therefore developing 
other methods for assessment of the excited state lifetime besides fluorescence measurements 
is required to overcome such difficulties. In many instances non-radiative transitions either 
alone or in competition with fluorescence relaxation are responsible for the decay of 
molecules from an excited state to the ground state. Therefore study of non-radiative 
transitions also can provide information about relaxation dynamics of the excited state, which 
is affected by environmental properties. Recent studies have shown that measurement of the 
non-radiative relaxation time can provide a new source of contrast mechanism in 
photoacoustic imaging technique [6]. The non-radiative transitions are mainly characterized 
by heat generation and can be studied through produced thermal effects. 

Recently two different methods were proposed to assess non-radiative relaxation of 
excited state for biological chromophore or exogenous biomarkers [7,8]. Both of these 
methods exploited pulsed photoacoustic (PA) probing which relies on the detection of 
transient pressure induced in a sample after the sample is irradiated by short laser pulses. In 
one of these works, saturation of the optical absorption at high fluences of laser light was used 
to measure non-radiative relaxation of biological chromophores and other fluorophores [7]. 
This method allowed to measure picoseconds non-radiative relaxation of molecules from 
singlet excited state to the ground state. The other technique exploited a double-pulse 
illumination method and enabled measurement of slower non-radiative relaxations from a 
triplet state to the ground state (timescales of microsecond) [8]. Pulsed photoacoustic 
detection requires relatively complex and more expensive lasers, suffers from laser jitter noise 
and has a limited dynamic range of broad band detection [9,10]. 

To overcome these disadvantages, we investigated the usability of intensity-modulated 
continuous-wave (CW) photoacoustic detection for measuring non-radiative relaxation time of 
macromolecules. In this method, an intensity-modulated CW light source promoted the 
molecules of chromophore in a sample to their excited state. The excited molecules can relax 
to the ground state either directly from this excited singlet state or after transition to excited 
triplet state which has longer lifetime compared to the excited singlet state. Upon returning to 
their ground state through non-radiative transitions from either of the aforementioned excited 
states, these molecules release heat and cause thermoelastic expansion of the target which can 
be detected as a CW photoacoustic signal. In CW photoacoustic detection, dependence of both 
amplitude and phase of the generated PA signal to the modulation frequency of exciting light 
have been used to assess non-radiative relaxation times of samples [11]. 

One drawback of CW photoacoustic technique is limited intensities of light allowed to be 
used in this method for medical purposes. For this reason, medical applications of CW 
photoacoustic detection are more sensitive to the thermal and other environmental noises 
compared to pulsed PA techniques. In this work we opted to use a tone-burst modulated light 
from a laser diode. Using high intensity laser diodes which are modulated with low duty cycle 
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tone bursts can produce relatively stronger PA signals while keeping biological sample from 
exposure to high energies of laser light. Another advantage of using a tone-burst modulation 
scheme is that a time resolved investigation of the resulting PA signal can provide information 
about sample characteristics along its depth. Due to available frequencies of light modulation 
and frequency response of the used ultrasound transducer, the current experiments allow 
measurement of slower non-radiative relaxations of molecules from their excited triplet states. 
A mathematical model previously developed by other group of researchers [10,12] was 
extended in this work to include the role of a finite value of non-radiative relaxation time in 
generation of laser-induced PA signal. Then three-dimensional effects caused by finite size of 
heated area on the target were added to the model through introduction of diffraction effects 
[12,13]. Experiments were performed on samples with fast non-radiative relaxations and the 
results were used to obtain their optical absorption coefficients. These values measured by 
photoacoustic technique were compared with results of optical spectroscopy to evaluate the 
model when non-radiative relaxations play no role in the PA signal. Then by using solutions 
of a NIR fluorescent dye in two different solvents, the effect of viscosity on non-radiative 
relaxation of excited dye molecules were verified. 

 
Fig. 1. Geometry used for formulating model of frequency dependent PA signal from a laser 
target illuminated by CW laser beam. 

2. Theory 

We used a mathematical model that describes the generation of PA signals from a plane target 
immersed in a liquid in a forward detection mode. Figure 1 shows the corresponding geometry 
used for this mathematical analysis. A light beam with incident intensity of I0 illuminates the 
target. The two surrounding layers in the left and right sides of the target are considered semi-
finite and extended in regions z L−∞ < ≤ − , 0 z≤ < ∞ . The Fourier transform of the heat 
conduction equation for the angular modulation frequency of ω in the target layer can be 
written as a thermal-wave equation in form of 

 ( ) ( ) ( )
2

2

1, , , ,t
t t

iz z H z
z

ωθ ω θ ω ω
α λ

∂  − = − ∂  
  (1) 

where θt is the temperature rise in the target above ambient temperature, αt and λt are, 
respectively, the thermal diffusivity and conductivity of the target. The source term in Eq. (1) 
is the Fourier transform of the induced heat in the target. For a periodically modulated laser 
beam with angular modulation frequency, the source term is given by 

 ( )
0( , ) .a L z i t

aH z I e µ ωω µ − + +=   (2) 

This equation gives the generated heat in the target when it is caused by instantaneous 
non-radiative relaxation of molecules from their excited state to the ground state. In the case 
of samples with a finite non-radiative relaxation time τ, the source term in Eq. (1) will be in 
the form of [14] 
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Also, an equation in the form of 

 
2

2 ( , ) ( , ) 0,    , 0 ,f f
f

iz z z L z
z

ωθ ω θ ω
α

 ∂
− = −∞ < ≤ − ≤ < ∞  ∂  

  (4) 

which is similar to Eq. (1) but does not have the heat source term, expresses the heat 
conduction inside fluid layers surrounding the sample. In this equation θf and αf are 
respectively the temperature rise and the thermal diffusivity of the fluid. The solution of Eqs. 
(1) and (4) can be found using the thermal boundary conditions, which require 

 ( , ) ( , ), ,f t t t f f
z L

L L
z z

θ ω θ ω λ θ λ θ
=−

∂ ∂
− = − =

∂ ∂
  (5) 

in which λf is thermal conductivity of the surrounding fluid. The thermoelastic expansion of 
the target is dealt with by introducing a displacement potential ( , )t zφ ω , which is related to 
the displacement vector ( , )tU z ω , as 

 ( , ) ( , ).t tU z z
z

ω φ ω∂
=
∂

  (6) 

Then the Helmholtz equation for the displacement potential in the target can be written as 

 
2

2
2 2( , ) ( , ) ( , ),t t

t t t t
t t

K
z k z z

z c
β

φ ω φ ω θ ω
ρ

 ∂
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  (7) 

where kt = ω/ct is the acoustic wave number in the target layer. Here ct is speed of sound in the 
target, ρt, target’s density, Kt, its bulk modulus, and βt is isobaric thermal expansion 
coefficient of the target. Similarly the liquid motion can be described using a scalar potential 
of the velocity field ψfi which is related to the velocity as ( , ) fiv z zω ψ∂= ∂ . Here the subscript 

i = 1, 2 is to denote fluid layers in the left and right side of the target respectively. The motion 
of liquid because of the PA wave can be written as a wave equation: 

 
2

2
2 ( , ) ( , ) 0,fi f fiz k z

z
ψ ω ψ ω∂

+ =
∂

  (8) 

where kf = ω/cf is the wave number of the acoustic wave in the fluid and speed of sound in it is 
denoted by cf. The pressure fluctuation in the fluid is related to the velocity potential, ψfi, 
through 
 ( , ) ( , ).f fiP z i zω ωρ ψ ω= −  (9) 

The frequency domain pressure wave in fluid at the illuminated side of the target which is 
given by ( )

1( , )  ( ) fik z LP z i C eω ω ω − += −  is found in Ref. [10]. Relevant to our experiments, we 
obtain the frequency domain pressure wave at the back side of the target, as 
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where 

 
( )
( )

,t a f f
tf

f f t t

b
λ µ λ σ

λ σ λσ

+
=

+
  (11) 

 2 2, .t f
t f

i iω ωσ σα α= =   (12) 

By using Eq. (10) and knowing the physical parameters of the target and the surrounding 
fluid (i.e. sound speed, optical absorption coefficient, thermal conductivity and diffusivity, 
bulk modulus and volumetric expansion coefficient), one can determine the non-radiative 
relaxation time of the target from dependence of the PA signal to the modulation frequency of 
the CW exciting light beam. 

By introducing diffraction effects of the acoustic wave in the model, it is possible to 
account for finite size of photoacoustic source [12]. Since the target is placed in focal point of 
the laser, and the diameter of the laser spot is negligible compared to aperture of the 
transducer, diffraction of PA signal originated from the target and detected by a focused 
transducer can be expressed as [15,16] 

 { }0 1( ) 1 ( ) ( ) ,piG
p pD e J G iJ Gω  = − − −    (13) 

where r0 is geometrical focal length, and the focusing factor of the transducer is defined as 
2

02pG ka r≡ , in which a is aperture of the transducer. J0 and J1 denote respectively Bessel 
functions of order zero and one. The diffraction correction factor D(ω) as formulated by Eq. 
(13) can be inserted into Eq. (10) in the form of a spectrum transfer function to take into 
account diffraction effects, which arise from the three-dimensional nature of the problem. 
However in the range of frequencies used in the present work, modifications on the PA signal 
due to this effect are small. 

Although the model presented here is used for calculating forward laser-induced PA 
pressure waves from a plane target, but a similar approach can be used to develop a similar 
model for the case of signals generated in a more general geometry and in backward detection 
mode. 

Table 1. Physical properties used in the mathematical model of frequency domain 
photoacoustic effect 

Material ρ (kg/m3) c (m/s) λ (W/mK) α (m2/s) β (K−1) Ref. 

water 998 1480 0.61 0.1 × 10−6 2.1 × 10−4 [10] 

silicone 1045 1030 0.16 0.098 × 10-6 (1) 6.9 × 10−4 [17] 

PVC film 1350 1750 0.15 0.08 × 10-6 (2)   [18] 

(1)Calculated by 
p

C
λα ρ= , where Cp is the specific heat. 

(2)Ref. [19]. 

To demonstrate the effect of finite non-radiative relaxation time on frequency dependent 
amplitude of the PA signal, theoretical simulations were carried out. Physical properties of an 
optically absorbent polyvinyl chloride film as they are listed in Table 1 are used for those of 
the target. The thickness of the target was assumed to be 1 mm and its optical absorption 
coefficient 100 cm−1. The fluid surrounding the target was considered to be water. A wide 
range of modulation frequencies were used and diffraction effects were ignored. Normalized 
amplitudes of PA signal versus modulation frequency of the light for different values of non-
radiative relaxation times were calculated using the mathematical model developed in this 
section. Results of these calculations in log-log scale are shown in Fig. 2 and agree well with 
results of frequency domain photoacoustic spectroscopy in a cell [14]. Similar to cell-based 
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photoacoustic spectroscopy, one of predictions of the theoretical model presented here is that 
for samples with very fast (instantaneous) non-radiative relaxation (τ = 0), the amplitude of 
the PA signal with increase of the modulation frequency decay following a dependency of ω−1 
to the modulation frequency. The finite non-radiative relaxation time (τ > 0) causes breakage 
of the curve at high frequencies and approach to logarithmic slopes higher than that for the 
instantaneous curve. 

 
Fig. 2. Prediction of the theoretical model developed in this work on frequency dependence of 
the PA amplitude for targets with different non-radiative relaxation times. Physical properties 
of the target are those of PVC film listed in Table 1. The thickness of target is assumed to be 1 
mm and its optical absorption coefficient is μa = 100 cm−1. The induced photoacoustic pressure 
is detected 2.54 cm far from the target surface and on the z-axis. 

The model predicts that for detecting shorter non-radiative relaxation times, higher 
frequencies of the modulation are needed. The conclusion is in agreement with the assessment 
that in pulsed photoacoustic experiments for measuring short lifetime, using laser pulse widths 
that are shorter than required lifetime measurement resolution is necessary [8]. Direct 
modulation of intensity of CW light to higher frequency (until few hundred megahertz) is 
easier and cheaper than that of pulsed picosecond laser sources. 

 
Fig. 3. Time domain simulation of the PA signal for a configuration commonly used in time-
resolved calorimetry for ultrasound transducer with central frequency of (a) 15 MHz, (b) 2.25 
MHz. 

Since the geometry of our model is similar to the geometry often used in time-resolved 
photoacoustic calorimetry [20], the model developed here is also used to simulate results of 
such experiments. The geometry dependent PA transfer function given by Eq. (10) must be 
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multiplied by frequency response of the ultrasound transducer, which is used to detect the PA 
signal. Since in time-resolved photoacoustic calorimetry, laser pulses usually have short 
duration, hence their spectral profile is much broader than transducer bandwidths. Therefore, 
compared to frequency response of the transducer, frequency response of the laser pulse can 
be neglected. The time-dependent PA signal can be calculated by taking inverse Fourier 
transform of the resulting frequency domain pressure function. The results of such simulation 
using our model and for different values of non-radiative relaxation times are shown in Fig. 3 
for two transducers with central frequencies of 2.25 MHz and 15 MHz. These results are in 
agreement with results of time-resolved PA calorimetry [21,22]. 

 
Fig. 4. Block diagram of experimental setup used in CW intensity-modulated laser-induced PA 
measurements. 

3. Experiment 

To test this theoretical model for extraction of non-radiative relaxation time from PA signals, 
measurements were carried out using an experimental configuration shown in Fig. 4. The PA 
signals were induced in targets by tone-burst intensity modulated beams from a diode laser 
(L808P200, ThorLabs, Newton, NJ; power: 200 mW; wavelength: 808 nm). The diode laser 
was driven by a laser diode current controller (LDC220, ThorLabs, Newton, NJ) and its power 
was modulated in burst mode with 5 cycles at different modulation frequencies. A modulation 
depth of 50% was used by applying 10 Vpp electric signal from a function generator (33250A, 
Agilent, Santa Clara, CA) to the laser bias through an input with 50 Ω impedance. The 
repetition rate of the burst signal was set to be 1 kHz. The transmitted light directly 
illuminated the target at focal point of the laser diode in a distance of 5 mm. The focalized 
spot was secured to be aligned on the axis of the transducer. The output power of laser diode 
for different modulation frequencies was measured and has been found that it stays constant in 
the range of modulation frequencies of the current work. A high curvature focused ultrasonic 
transducer (V315, Olympus NDT, Waltham, MA; 1 inch focus length, 10 MHz) was used to 
detect the PA signals from the target. The resulting signal was amplified by an amplifier 
(5072PR, Olympus, Waltham, MA) and registered on an oscilloscope (Tektronix DPO3034, 
Tektronix Inc, Beaverton, OR, 80 MHz) to be processed later. Frequency response of the 
transducer was found by measuring the amplitude of reflection for tone-burst signals at 
different modulation frequencies from a ¼ inch thick borosilicate glass (McMaster-Carr, 
Chicago, IL) placed at the focal point of the transducer [23]. 

Two samples were prepared by mixing black ink from permanent marker with 
commercially available 1-part silicone elastomer. The mixture was left in the room 
temperature to cure. The thickness of the resulting silicone phantoms was measured by a 
digital caliper (Fred V. Fowler Co., Inc., Newton, MA) and was determined to be 1.57 ± 0.13 
mm (mean ± standard deviation) for the target with a lower absorption and 0.96 ± 0.1 mm for 
the target with higher absorption coefficient. By using an optical spectrometer (Thorlabs SP2-
USB, wavelength 500 to 1000 nm, Thorlabs, Newton, NJ) the optical densities (OD) of the 
two samples were measured in 5 different points. Knowing the mean thickness of the 
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phantoms and by using the Beer-Lambert law, μa = (2.303 × OD)/L, the optical absorption 
coefficients of the two targets at the wavelength of 808 nm were determined to be 2235 ± 412 
m−1 and 7130 ± 955 m−1 (mean ± standard deviation). The uncertainties on the measured 
optical absorption coefficients are due to local inhomogeneities in resulting phantoms and also 
relatively considerable variation of thickness in different locations of the sample. 

To demonstrate performance of the proposed technique and validate the developed 
mathematical model for estimating non-radiative relaxation time, measurements were 
performed on solutions of a near infrared (NIR) dye in two different solvents. IR820 (Sigma-
Aldrich, St. Louis, MO) is a chlorinated heptamethine indocyanine dye with fluorescence 
lifetime of 0.13 ns in water and maximum optical absorption around 820 nm [24]. It is used 
for imaging of injured tissue in living subjects [25] and non-invasive monitoring of DNA 
delivery by using its conjugate with Polyethylenimine (PEI) [26]. Its optical absorption in 
near infrared with a peak absorption around 820 nm places IR-820 amongst the best 
candidates for being used in the current experimental setup which is using a diode laser with 
wavelength of 808 nm. Two solutions of 624 μM and 849 μM of IR820 dye respectively in 
deionized water and dimethyl sulfoxide (DMSO) were prepared. The dye solutions were then 
purred in space between two thin layers of optically clear polyvinyl chloride (PVC) films 
which were water sealed by sealing glue. The thickness of each film was determined to be 140 
μm. 

The amplitude of the PA signals from different targets for different modulation 
frequencies of laser light were obtained by using the cross-correlation operation, also known 
as matched filtering on the detected ultrasound signal with the reference signal of the 
intensity-modulated light [27]. Examples of laser-induced tone-burst PA signal from optically 
absorbant silicone phantom and resulting signals after applying the matched filtering with the 
reference signal are shown in Fig. 5. Finally these results were normalized to the frequency 
response of the transducer. 

 
Fig. 5. Photoacoustic signals induced in phantom #1 made of silicone elastomer mixed with 
black ink after its illumination by tone-burst modulated laser light at 808 nm (a,b) and the 
result of matched filtering by the reference signal on them (c,d) for light modulation 
frequencies of 2.25 MHz (a,c) and 5.25 MHz. (b,d). 

4. Results and discussion 

The theoretical model presented here was used to fit experimentally obtained frequency 
dependent PA amplitudes, and to obtain optical absorption coefficient and non-radiative 
relaxation time of the targets. Similar to previous works by other group [10] we found that the 
fitting procedure is not very sensitive to exact values of volumetric thermal expansion 
coefficient, βs, thermal diffusivity, αs,f, thermal conductivity, λs,f and bulk modulus, Ks. In 
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contrast, the values of sound speed, sample thickness, and its optical absorption coefficient 
were important parameters for fitting. For fitting procedure the known values of sound speed, 
thermal diffusivity, thermal conductivity, bulk modulus, thermal expansion coefficient and 
density from literature were used, which are listed in Table 1. The remaining parameters was 
found by using a nonlinear least square algorithm lsqnonlin in MATLAB® software (The 
Mathworks, Natick, MA) to minimize sum of squared residuals between experimental data 
and numerical results of Eq. (10). By changing parameters of the model in a reasonable range 
of values, several fitting results to the experimental data were found. The best fit among these 
fitting results was selected by looking for the smallest root-square-mean-error (RMSE) [28] as 
a measure for the “goodness of fit”. This procedure is similar to global fitting procedures 
previously employed for determining optical parameters of turbid media from pulsed or 
frequency domain photothermal radiometries [29,30]. 

 
Fig. 6. Experimental and best-fit for PA amplitude versus laser intensity modulation frequency 
from the silicone phantoms #1 (a) and the phantom #2 (b). The best fits for the phantoms 1 and 
2 are found for μa = 2300 m−1 and μa = 7100 m−1 respectively. The physical properties used for 
fitting are listed in Table 1. 

The experimental and best-fitted frequency dependence of PA amplitude from two 
absorbing phantoms of silicone elastomer are presented in Fig. 6. Logarithmic slopes of the 
frequency dependence PA amplitude for the two silicone phantoms are −0.84 and −1.31, 
respectively, for the phantom with lower optical absorption and that with a higher optical 
absorption. These values are not equal to the logarithmic slope of −1, which is characteristic 
of a sample with instantaneous non-radiative relaxation time. This difference can be attributed 
to oscillatory behavior originated from creation of standing acoustic waves between two 
surfaces of the target [10]. This oscillatory behavior is to a better extend reflected by fitting, 
especially in the case of phantom with lower optical absorption, through the more complete 
mathematical model developed in Section 2. Physical properties of phantoms obtained by 
fitting the experimental data with the model are listed in Table 2 and are compared with 
measurements of the optical absorption coefficient of phantoms using a spectrometer. The 
discrepancies between experimental and theoretical values obtained from these results are due 
to sensitivity of the CW photoacoustic measurements to thermal noise and mechanical 
vibrations in the experimental environment [27]. 

One limiting factor in our experiments is the modulation depth of laser intensity (around 
50%). Increasing the modulation depth and using higher intensities of the laser light are 
required for increasing the PA signal and reducing the limiting factor of environmental noise. 
Amplitude of the PA signal drops rapidly to the level of noise with the increase of the light 
modulation frequencies. Therefore using highly sensitive broadband ultrasound transducers 
are desirable for measuring shorter non-radiative relaxation times by using high frequency 
modulation. Another possible reason for the observed differences between numerical results  
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Table 2. Obtained parameters through fitting the theoretical model with experimental PA 
data and their comparison with values measured by other methods 

  Phantom #1   Phantom #2 
  PA measurement direct measurement   PA measurement direct measurement 

μa (m−1) 2300 2235 ± 235 
(mean ± SD) 

  7100 7130 ± 1131 
(mean ± SD) 

l (mm) 1.7 1.57 ± 0.13 
(mean ± SD) 

  0.7 0.96 ± 0.1 
(mean ± SD) 

R2 0.94     0.915   
RMSE 2 × 10−5     3.86 × 10−5   

and the experimental data can be the relatively high sensitivity of the model on the changes in 
sound speed. A more accurate determination of this parameter can eventually improve the 
outcome of the fitting. Regardless of these difficulties, the fitting procedure with PA signals 
provides an estimation of optical absorption coefficients for the two silicone phantom 
samples, which agree fairly well with measurements of this parameter by the spectroscometer. 
In the case of silicone phantoms, no noticeable improvement in fitting results was observed by 
introducing an appreciable non-zero value of non-radiative relaxation time. 

 
Fig. 7. Experimental and best-fit for PA amplitude versus laser intensity modulation frequency 
from solution of IR820 in two different solvents. (a) IR820 in water; the fitting parameters are 
μa = 9.15 × 105 m−1, τ = 21.5 ns (b) IR820 in DMSO; the fitting parameters are μa = 1 × 106 
m−1, τ = 3.29 ns. The physical properties used for the target and the surrounding water are listed 
in Table 1. 

Figure 7 shows measurement results and best-fitted frequency dependence of PA 
amplitude versus modulation frequency of laser light in the solution of IR820. The values of 
−1.62 and −1.93 are obtained for logarithmic slopes of the frequency dependence PA 
amplitude dissolved IR820 in water and DMSO, respectively. This shows that one can expect 
longer non-radiative relaxation times for solution of IR820 in DMSO. Knowing the molar 
absorption coefficient of IR820 in water [30] (ε = 1466000 cm−1 at λ = 824 in water) by 
considering the concentration of aqueous solution, which is 624 μM and for a conservative 
thickness of 1 mm, one finds an absorption coefficient of 9150 cm−1 for this solution. This 
value is not considered excessively high but it is close to the upper limit of resolvable 
absorption coefficient through PA measurements [10]. Since NIR dyes generally have poor 
solvatochromic properties [31,32], one can assume a similarly high absorption coefficient of 
dissolved IR820 in DMSO. The fitting with experimental data yields a best fit for non-
radiative relaxation time of 21.5 ns and 33 ns for solutions of IR820 in water and DMSO 
respectively. The parameters of fit for these two samples are R2 = 0.941, RMSE = 9.96 × 10−5 
for the aqueous solution of IR820 and R2 = 0.949, RMSE = 4.31 × 10−5 for dissolved IR820 in 
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DMSO. This slowly released heat in the dye solutions can be mainly attributed to non-
radiative deactivation of triplet state [11,33]. Although in oxygen-free solutions, IR820 shows 
a low triplet quantum yield however its triplet yield increases in presence of oxygen [34]. At 
the same time, oxygen in solution can accelerate deactivation of the triplet state upon 
collisions [33]. Since solubility of oxygen in air-saturated DMSO, 0.33 mM [35], is higher 
than that for water [36], 0.28 mM, and because the two solutions are prepared in normal 
atmosphere without degassing, therefore it is reasonable to assume that concentration of 
oxygen in the prepared aqueous solution is not much higher than that in the solution of IR820 
in DMSO. 

Previous studies have shown that solutions of oxygenated IR820 exhibit a weak delayed 
fluorescence with decay times on the order of 100 ns [34]. This E-type delayed fluorescence is 
attributed to enhanced intersystem crossing in presence of dissolved oxygen [34]. It also has 
been shown that triplet lifetime increases with the increase in solvent viscosity [37]. Gratz et 
al. [38] have found that dwell time, which is a measure of efficiency for triplet-state 
accumulation, for indocyanine green sodium iodide (ICG-NaI), in N2-bubbled solutions of 
dye in DMSO is in the range of 35 ns while this value for solutions of this dye in N2-bubbled 
water is only 1.2 ns. A similar trend for lifetime of triplet state in solutions of different 
rhodamine dyes in two different solvents, ethanol and ethylene glycol, has been observed 
elsewhere [39]. Although complete explanation of dependence of non-radiative relaxation of 
dye molecules on viscosity of solvent needs more thorough insight on the photochemistry of 
this process, however, this dependence has already been shown [40]. In addition to previously 
mentioned factors such as high sensitivity to thermal and vibrational noise in environment, 
which affect the quality of fitting results, in the case of PA experiments with dye solutions 
there is also existence of two layers of PVC film between the target solution and the coupling 
fluid (water). Using an effective value for speed of sound [41] and an average value for 
density of the ensemble of the system can possibly improve the results of fitting. 

5. Conclusion 

A new method based on PA effect induced in a target by tone-burst intensity-modulated light 
from laser diode is investigated to assess non-radiative relaxation time of biological 
chromophores. A mathematical model is developed to incorporate the effect of a finite non-
radiative relaxation time on the frequency dependence of PA amplitude. The results of this 
model by varying non-radiative relaxation time are compared against results of cell-based PA 
spectroscopy and a good agreement between these two have be found. Also it is shown that 
the model is capable of correctly predict time-domain behavior of the PA signals observed in 
time-resolved PA calorimetry experiments. 

Experiments on samples with fast non-radiative relaxation times were performed. The 
results have shown that estimated optical absorption coefficients from resulting data are in 
agreement with measurements of the same parameter by optical spectroscopy. The CW PA 
measurements on solutions of the NIR dye, IR820 in two solvents water and DMSO by the 
proposed method resulted in two different values of non-radiative relaxation time. IR820 
dissolved in DMSO resulted in a non-radiative relaxation time 1.5 times higher than that for 
the dye in water. This behavior is explained based on effect of solvent viscosity on lifetime of 
triplet state. The measurements have the potential to map excited state lifetime of a NIR dye 
and to obtain information about microenvironment surrounding its molecules in tissue. The 
advantage of using this method in NIR region of the light spectrum is that in this region, light 
penetrate deeper in the tissue compared to the ultraviolet or visible light. Also due to smaller 
scattering of NIR light in tissue compared to visible light, PA images with submillimeter 
lateral resolution can be achieved. 
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